‘'owards Inside-out Inter
raining Dynamics in Mu

Yuandong Tian
Research Scientist

Meta Al (FAIR)

facebook Artificial Intelligence

”etab|\|ty Ar

-layer Transt

a\yzing
ormer

Large Language Models (LLMs)

\NPUT
4

OUTPUy

facebook Artificial Intelligence

Conversational Al

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

A: The answer is 27. x

Content Generation

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

se is 9. :‘ - ‘ o ')

Reasoning

- -

? aﬂﬁ
. E_
s] @ad ‘E
. i g . PV ih‘ﬁ:“

Finishinga
morning routine

A

laj j

Al Agents

\ CONCEP'1

e
1 S

Planning

Transformers

facebook Artificial Intelligence

Output

Probabilities
| Softmax |
|
{ Linear |
e)
| Add & Norm <=~
Feed
Forward
s 1 ~\ L Add & Norm Je~
—{Add &.Norm J Multi-Head
Feed Attention
Forward D) Nx
—
» (Add & Norm Je— Query Q
~—>| Add & Norm] VR
Multi-Head Multi-Head
Attention Attention
At 1t
] J .)
Positional Positional
E di D & [
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

[A. Vaswani et al, Attention is all you need, NeurlPS’17]

Key K

Attention mechanism

Part |
Understanding Attention Mechanism

Understanding Attention in 1-layer Setting

U= [uy,uy, .. uy]": token embedding matrix

Self-attention

Decoding & Softmax T-1
4 P
Ur = Z thuxt = UTXTbT
t=1

Normalization

?
Self-attention ‘ | eXP(’UwIT WQWI—(art/\/C_i)
? ‘ T th — T-1 T T \/’
e @ @ e
e o o XT-1
Contextual tokens Last/query token Next token

Normalized version iy = UTLN(XThy)

Objective:

T ~ T ~
max =Ep|u Wy —lo exp(u; Wyu
WK’WQ’WV’U] p Wy, , Wyur g El p(u; Wyr)

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurlPS’23]

Reparameterization

* Parameters Wy, Wy, Wy, U makes the dynamics complicated.

* Reparameterize the problem with independent variable Y and Z
« Y =UW}UT
/= UWQW,?UT (pairwise logits of self-attention matrix)

* Then the dynamics becomes easier to analyze

Training dynamics of Y'and Z

7 = o
Training Dynamics:
. Z,,: All logits of the contextual tokens
Y = nyLNXThy) (X741 — @) when attending to last token x; = m
Z = T’ZxT(xT+1 _ a) Y ”XTb ” X dlag(bT)X
T2

Here Z = [z, 2, ...,Zy]", each z,, € RM is the attention score for query/last token m:

1
PXr bl

IX T [e]br[e]l2

Zm = 1zX ' [i]diag(br[i]) X[i] Y(@r1li] — afi])

Major Assumptions

* No positional encoding

* Sequence length T — +0
* Learning rate of decoder Y larger than self-attention layer Z (ny > n,)
* Other technical assumptions

Xe €E[M]for1 <t<T

Data Distribution e)

K<KM
Contextual tokens x; (1 <t <T —1)
~ A -, Last token x; Next token x4
P(llmy,nq) nq

- -
n
Sequence 2

m;
v Ny
Distinct tokens: There exists unique n so that P(l|n) > 0 P(|m, 1) = P(|n) is the
Common tokens: There exists multiple n so that P(l|n) > 0 conditional probability of

token [given last token x; = m
and xp,1 =n

Assumption: m = yY(n), i.e., no next token shared among different last tokens

Question: Given the data distribution, how does the self-attention layer behave?

facebook Artificial Intelligence

Overall Picture of the Training Dynamics

At initialization

Clin, Distinct
A Token

Seq class
(m,nq)

Common
Token

(m, le)

v

Cl|n2

facebook Artificial Intelligence

v

Seq class

Co-occurrence probability

¥
Clin,: = P(l|m,nq) exp(zm)

Initial condition: z,,,;;(0) = 0

Z,,: All logits of the contextual tokens
when attending to last token x; = m

Overall Picture of the Training Dynamics

Common Token Suppression

Cl|n1

Seq class
(m,nq)

Seq class
(m, le)

A

v

Clin,

facebook Artificial Intelligence

(a) z,,;; < 0, for common token [

Overall Picture of the Training Dynamics

Winners-emergence

Cl|n1

Seq class
(m,n,)

Seq class
(m, le)

A u

v

Cl|n2

facebook Artificial Intelligence

= -

»
»

(a) z,,; < 0, for common token [

(b) z;,,; > 0, for distinct token [

Learnable TF-IDF (Term Frequency,
Inverse Document Frequency)

Overall Picture of the Training Dynamics

Winners-emergence

6l|n
. (a) z,,;; < 0, for common token [
Seq class
(minl)
u (b) z,,,; > 0, for distinct token [
ii — - (c) z,,,; (t) grows faster with

Seq class ! larger P(l |m; Tl)
(mJnZ)

5zi'nz Attention looks for discriminative tokens that

frequently co-occur with the query.

facebook Artificial Intelligence

Overall Picture of the Training Dynamics

Winners-emergence

(c) z,; () grows faster with larger P(l|m, n)

é'vl|7’11
A . . _ Cia®
Seq class Theorem 3 Relative gain 7,7, (t) = D —lhasa
(m,ny) close form:
i N 7”1/1’|n(t) = 7”1/1’|n(0))(z(t)
! _ e " If Iy is the dominant token: 17, /1, (0) > 0 forall I # [,
then

Seq class
(m» le) 2

v ezfnlo (0)By(t) < Xlo (t) < eZBn(t)

Clin,

where B,,(t) = 0 monotonously increases, B,(0) = 0

Overall Picture of the Training Dynamics

Winners-emergence

Cl|n1

Seq class
(m,ny)

Seq class
(m» le)

A

/

Contextual
Sparsity

"/

(query-dependent)

v

Cl|n2

L

»
»

(c) z,; () grows faster with larger P(l|m, n)

aﬁn(t)

512'|n(t) — 1 hasa

Theorem 3 Relative gain 7,7, (t) =

close form:

rl/l’ln(t) = Tl/l’|n(0))(l(t)

If Iy is the dominant token: 17, /1, (0) > 0 forall I # [,
then

ezfr%lo (0)Bn(t) < X1, (t) < e2Bn(t)

where B,,(t) = 0 monotonously increases, B,(0) = 0

Overall Picture of the Training Dynamics

Attention frozen

Cl|n1

A

Seq class
(m, nl)

Seq class
(m' le)

v

Cl|n2

facebook Artificial Intelligence

= -

»
»

Theorem 4 When t — +o0,

Mnyt
B.(t) ~ In CO+2K21n2("Y)
Ny K

Attention scanning:
When training starts, B,,(t) = O(Int)

Attention snapping:

Whent =ty =0 (ZKlnM

), B, (t) = O0(Inlnt)

(1) n, and ny are large, B, (t) is large and attention is sparse

(2) Fixing n,,, large ny leads to slightly small B,,(t) and
denser attention

Overall Picture of the Training Dynamics

v=1.0,M=10000

. 1.6 1
Attention frozen
1.4 A
Cl|n1 1.2 1
A 1.0 4
Seq class
(m, nl) % 0.8 -
0.6
0.4 - '72=0-5' nY=05
— nNz=1.0,ny=1.0
. —3 _ 0.2 - — nz=2.0, f]y=20
= g — nz=4.0,ny=4.0
I - 0.0 A — nz=28.0,ny=28.0
Seq class 0 10 20 30 40 50
t
(m! le)
v Larger learning rate 1, leads to faster phase transition
Clin,

Nz Mnyt
B.(t) ~ 1 2k 12 2()
L () n(Co + 0 n o)

facebook Artificial Intelligence

Overall strategy of the theoretical analysis

* The power of infinite sequence length T — +o0

f
Lemma 2. Given the event {xT = m,x711 = n}, when T — 400, we have "
XTbr — €, X T diag(br)X — diag(cm.n) normalize
where Cp, r, = [C1|m,nsC2|m,ns - - - ,c]\/”m,n]T € RM. Note that c;,r%nl = 1.
TP(l|m,n) exp(zmi) B P(l|m,n) exp(zm1) I

Here Cijmn = - DY
ere Cim, Zl’ TIP’(l’|m, ’TL) eXp(Zml') Zl’]P’(l’lm, n) eXp(Zml/) Zl’ Cl'\m,n

Define f,:= frun:= cm,n/”cm,n”2 a £,-normalized version of ¢, .

facebook Artificial Intelligence

Overall strategy of the theoretical analysis

* Since ny > 1y, we analyze the dynamics of decoder Y first, treating the
output of Z as constant.

~ (Y £,
Y = ann(en — an)Ta Q, = 1—|e- eI:))((p(YTf)n)

* The analysis gives backpropagated gradient:

Theorem 1. If Assumption 2 holds, the initial condition Y (0) = 0, M > 100, ny satisfies

M=999 <« ny < 1, and each sequence class appears uniformly during training, then after
t > K? steps of batch size 1 update, given event T, 1[i] = n, the backpropagated gradient
gli] .= Y (xr11[i] — ali]) takes the following form:

g[’L] =7 (Lnfn - Z ﬂnn’fn’) 9

n’#n

Overall strategy of the theoretical analysis

* Given the backpropagated gradient, we can analyze the behavior of the
self-attention layer.

Theorem 2 (Fates of contextual tokens). Let Gor be the set of common tokens (CT), and Gpr(n)
be the set of distinct tokens (DT) that belong to next token n. Then if Assumption 2 holds, under the
self-attention dynamics (Eqn. 10), we have:

* (a) for any distinct token | € Gpr(n), Zm > 0 where m = ¢¥(n);

* (b) if |Gor| = 1 and at least one next token n € 1~'(m) has at least one distinct token,
then for the single common token | € Gor, zZm; < 0.

Simple Real-world Experiments

WikiText2 (original parameterization)

iter-0 iter-500 iter-1000 iter-1500

0 10 20 30

iter-500 iter-1000 iter-1500

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Figure 7: Attention patterns in the lowest self-attention layer for 1-layer (top) and 3-layer (bottom) Trans-
former trained on WikiText2 using SGD (learning rate is 5). Attention becomes sparse over training.

How to get rid of the assumptions?

* A few annoying assumptions in the analysis
* No residual connections
* No embedding vectors
* The decoder needs to learn faster than the self-attention (ny > ny,).

* Single layer analysis
* How to get rid of them?

* New research work: JoMA

JoMA: JOint Dynamics of MLP/Attention layers

MLP
(upper layer)

Nonlinearity

MLP
(lower layer)

a2

Self-
attention

a

Layer O

facebook Artificial Intelligence

MLP
(upper layer)

Nonlinearity

MLP
(lower layer)

a2

Self-
attention

MLP
(upper layer)

Nonlinearity

MLP
(lower layer)

Self-
attention

JoOMA

MLP
(upper layer)

Nonlinearity

Modified
MLP
(lower layer)

Layer O

MLP
(upper layer)

Nonlinearity

Modified
MLP
(lower layer)

MLP
(upper layer)

Nonlinearity

Modified

MLP
(lower layer)

[Y. Tian et al, JOMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention, ICLR’24]

JOMA Settings

hie = ¢(Wif)

f = UC'b + uq
Uc and u, are embeddings

b=o0(z;)ex/A

Self- ; b = xlequ

< ExpAttn: bl = xlequ

X

uThiS iS an app|e" \ LinearAttn: bl - leql

facebook Artificial Intelligence

Assumption (Orthogonal Embeddings [U¢, u

Cosine similarity between embedding vectors at different layers.

Pythia-70M; Layer: 6; Dim: 512 Pythia-160M; Layer: 12; Dim: 768 Pythia-410M; Layer: 24; Dim: 1024
0.065 5 0.044 0.038 4
10
0.060 1 00421 0.036 1 20
0.0407 8 0.034
> > > L
2 0.055 1 2 29
C T 0.038 4 o 15
e 32 Z 0.032 4
£ 0.050 E 0.036 1 6 £
[} w (4]
c —— c 0.034 o 2 0.030 4 10
2 0.045 1 == 2 2 4 2
O O 0.032 1 O 0.028 1
0.040 1 / 1 0.030 - 2 0,026 1 5
| 0.028 1
0.035 r v r r v . 0 v r v . v . 0 0.024 1y v r v r - 0
0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125
Minibatch (k) Minibatch (k) Minibatch (k)
Pythia-1B; Layer: 16; Dim: 2048 Pythia-1.4B; Layer: 24; Dim: 2048 Pythia-2.8B; Layer: 32; Dim: 2560
14 0.0375+ 0.0350 30
0008 12 0.0350 1 0.0325 1 25
> > 0.0325 4 > 0.0300
£ 10 = 15 T 20
£ 0.026 1 < 0.0300 S 0.0275 4
£ g8 £ €
? 0.024 1 » 0.0275 1 n | 15
2 . g 10 9 0.0250
8 0.022 2 0.0250 1 8 0.0225 10
4 0.0225 |
0.020 1 5 0.0200 .
2 0.0200 1 0.0175 1
A o 00173 0 0.0150 1= 0
0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125
Minibatch (k) Minibatch (k) Minibatch (k)

facebook Artificial Intellig

2

(lower layer)

vz) Modified

JOMA Dyﬂamlcs v=A, cexp(z,,) =A,, cexp (—-l-C MLP

Theorem 1 (JoMA). Let vy, := Ug wy, then the dynamics of Eqn.[% satisfies the invariants:

e Linear attention. The dynamics satisfies z2 (t) = ., vi(t) + c.

e Ezp attention. The dynamics satisfies zm(t) = 3 > 1 vi(t) + c.

e Softmax attention. If b, := E,,.[b] is a constant over time and
IElq:m 1> gr B D] = b Eqy—m [D 1 gn b)), then the dynamics satisfies zm(t) =
5 2k V() — [l () [36m + c.

Under zero-initialization (wg(0) = 0, 2,,(0) = 0), then the time-independent constant ¢ = 0.

There is residual connection.
Joint dynamics works for any learning rates between self-attention and MLP layer.

No assumption on the data distribution.

facebook Artificial Intelligence

Comparison between Scan&Snap and JOMA

A General Formulation:

h=¢WTf) f=9pUEb+x7) b=0c(X"Zx;) R

MLP (lower layer) Notations

1. Input tokens X € RMXT
2. Pairwise attention logits Z € RM*M

Per-layer objective] = g"h
b We can get gradient dynamics via computing differential dJ

A

Embedding Layer U

Tokens X € RM*T

Common assumptions

1. W and Z are trainable parameters
2. U is fixed and column orthogonal
3. X =[xy, x5, .., x7] € RM*T contains one-hot column vectors

facebook Artificial Intelligence

Comparison between Scan&Snap and JOMA

Scan&Snap
1. Y =¥, normalization
MLP (lower layer) ; ;I: - hnf_far
. = softmax
4. g from cross-entropy
5. W learns much faster than Z

b
JoMA

1. Y =id (no normalization),

2. ¢ = linear or nonlinear (homogenous, e.g., ReLU)
— 3. b=exp(X"Zxp)/A

4. g constant

Tokens X € RM*T

facebook Artificial Intelligence

JoOMA derivation in a few lines

Y=id, g =¢'g,V=U"W

. 1 Zk Vj ° UV = Zy, (JOMAThm. 1)
IV = (Xb + xT)g'T
Z = Xdiag(b)X"Vg'x7

Zmm = 0

1 X’s columns are one-hot vectors V(0),,=0

(VoV)ix] = Z + diag(xp)Vg'x] o) Y v, ov, =2z, +[0,0,V[m,:]g’, 0]
Xr=m

Verification of JOMA dynamics

1.00 —————— I —e—"§.e—_—§a\@Iisnn —
- / B U N TE B B e
(] S 0.75 1 1 (3] © i e
E g " e z 0.75 //
= g 0.50 R = o
& = —— NC(Zn(t), Zm(t)) I 5 0509 [/ e
(@] N N O - ~~N\
2 O 0259 co NCEml(t), Zm(t) S < 1,77 ~—-.
=] . = © 0.259 s
E N 0.004 === NC(Zma(t), zm(t)) —___. 3 o 1 .
§ g I ,/ é E 0.00 - " — Nc(fm(t). Zm(t))
g CZL) —0.25 A ” I, g ’25 ll ——— NC(Zm]_(t),Zm(t))
li A
© ~0.504 ! © —0.254 | — == NC(Zma(t), Zm(1))
Class label y 0 500 1000 1500 2000 Class label y 0 500 1000 1500 2000
Number of Batches Number of Batches

z.,(t): Real attention logits 1 B
Zn(t): Estimated attention logits by JOMA Z_.(t) = EZ ve(t) — |lve®|3b,, + ¢

‘\k/_/ ——
Zm (8) Zma (0)

facebook Artificial Intelligence

Modified

JoMA for Linear Activation 1-,=Amoexp("2 e

(lower layer)

Alm = [E [g | l, m] [P [l Im] Discriminancy X CoOccurrence

erf(vy(t)/2) erf(vy(¢)/2)

We can prove
Im Aprm

erf(x) = £ jxe‘tzdt € [-1,1]
VT J

Only one component [* = argmax |A, | of v goes to +oo,
other components stay finite.

facebook Artificial Intelligence

JOMA for Linear Activation

V(t) initialization

=
=

" 0.02
o

(O]

Y4

o 0.01
E

£ 0.00
g

C

S —-0.01
Y

(o]

@ -0.02
o]

£

E —-0.03

facebook Artificial Intelligence

V(t) after convergence

-0.5

-1.0

-1.5

vo(t)

_ v
vV=A, cexp >

Linear

Modified

MLP
(lower layer)

—— component0
——— componentl
—— component2
component3

- 1.5

- 1.0

- 0.5

0.0

Number of MiniBatches

0 500 1000 1500 2000

Attention becomes sparser
(Consistent with Scan&Snap)

2 Modified

JoOMA for nonlinear activation ﬁ:(u-woexp(%) it

(lower layer)

i ~ A,,: Critical points that emerges from the presence of nonlinearity

What does the dynamics look like?

facebook Artificial Intelligence

2) Modified

JoOMA for nonlinear activation ﬁ:(u-woexp(‘% it

(lower layer)

i ~ A, : Critical points that emerges from the presence of nonlinearity

Colored line: dynamics of v(t). Dashed line: target p Entropy changes over time
5000
[2.25 |
3 4000)
/ ~ 2:0071 Attention becomes sparser
- 3000 3> 1.75 - and then denser!
S 2 = >
Q
: L2000 £ 1.50 1
1 o
: Ilooo 1.25 A
1.00 -
O 1 I I 1 1 1 O 1 1 1 1 1 1
0 2 4 6 8 0 1000 2000 3000 4000 5000
Sorted index of v components #iteration

facebook Artificial Intelligence

Real-world Experiments

Layers: 1, val_loss: 5.357 Layers: 2, val_loss: 5.255 Layers: 5, val_loss: 5.169 4 Layers: 10, val_loss: 5.110
2.50 A — layer0 i —— layer0
> layerl
§2.251 1 3
<2.00- |
Wikitext2 §1.75] | ’
C
() 4
g 1.50 1
1.251
1.00 = - T y T - - T T T - y T - T 0 T - T
0 10 20 30 40 50 0 10 20 30 40 50 0 20 40 0 20 40
Minibatch (k) Minibatch (k) Minibatch (k) Minibatch (k)
Layers: 1, val_loss: 5.047 Layers: 2, val_loss: 4.912 Layers: 5, val _loss: 4.762 4 Layers: 10, val_loss: 4.679
2.5 — layer0
é | 3
o
£ 2.01 '
w
oy - c 2
Wikitext103 S \
C 1 5 \‘\v‘\
8 “‘.t‘”
< — layer0 1 %
1.0 layerl
0 50 100 150 200 0 50 100 150 200 0 100 200 0 100 200
Minibatch (k) Minibatch (k) Minibatch (k) Minibatch (k)

facebook Artificial Intelligence

Real-world Experiments

Pythia-70M, Layers: 6, val_loss: 4.021 s Pythia-70M, Layers: 6, val_loss: 4.021 5 OPT-2.7B, Layers: 32, val_loss: 3.274 o 04E))PT—2.7B, Layers: 32, val_loss: 3.274
] H 6.0 . T
6 0.244 | 30 I 30
| 5.5 1 0.0354 |
51 4 0.12 A i 4 5.0 - 25 i
> ; =7 > 0.030 ;
£ 49 5 : G . S 4.5 20 ¢ : S —
) 3 © . ‘5‘\ 3 frar} © | \\
& < .08 1 NN N S 40 < 0.025 .r/ ——
g 3 o) ‘ 7 / . N g 15 8 i
2 S "7 RN Se- 2 351 200204 | ,i——— e -
: 2 Goos iy ~——_ |l @ | TS
g 21 * v £ 3.0 10 * L T ==
< 0.04 < 0,015 | /772 = e
! L 231 P
11 0.02 A - > 00104 pFT
U fm T T T
T . . 0 0.00 1= . T 0 . r T . . : 0 0.005 = . . T . . 0
0 50 100 0 50 100 0 50 100 150 200 250 0 50 100 150 200 250
Minibatch (k) Minibatch (k) Minibatch (k) Minibatch (k)
Pythia-1.4B, Layers: 24, val_loss: 2.625 P¥thia-1.4B, Layers: 24, val_loss: 2.625 Pythia-6.9B, Layers: 32, val_loss: 2.358 Pgthia-G.QB, Layers: 32, val_loss: 2.358
64 0.0 : 39 003 e 30
20 I 20 1
41
5 | 0051 1 51 25 0.0301
! /_’.—'\,\
> . e >
o 15 ¢ 004 V Tr~e—, 15 54+ 20 & |
241 & 1 B 2 g 0023
o 2@ I m g G BT x w o
s 50037 2~ e 53 15 &
2 3 10 £ l\,\-.g-.,,aaﬁ‘z_;__,ifﬁz: == 10 = £ 0.020 1
g %# 0.02 4 _Q-_/_ g 10
< \’ S < 2
2 5 N - 5 0.015 |
0.01 A N 5
e ——— 1
1 -
.010
T . . 0 0.00 +— . . 0 . T . 0 0.010 . . 0
0 50 100 0 50 100 0 50 100 0 50 100
Minibatch (k) Minibatch (k) Minibatch (k) Minibatch (k)

facebook Artificial Intelligence Stable Rank of the lower layer of MLP shows the “bouncing back” effects as well.

2> Modified

JoOMA for nonlinear activation v=<u-v>oexp<”_ it

(lower layer)

Why? Convergence speed of salient/non-salient components are very different.

ConvergenceRate(j) exp(u7/2)
ConvergenceRate(k) exp(uz/2)

ConvergenceRate(j) := In1/6;(t)
5(6) =1 - v;(t)/n;

facebook Artificial Intelligence

v2> Modified

JoOMA for nonlinear activation ﬁ:(u-woexp(_ it

(lower layer)

Why? Convergence speed of salient/non-salient components are very different.

Colored line: dynamics of v(t). Dashed line: target p Entropy changes over time
5000
[2.25 A
3 1 4000 2 00 4 Attention becomes sparser
S l
3000 3 175 and then denser!
> 27 >
L 2000 _g 1.50 A1
1 S
1000 1.25 -
0 1 T 1 1 1 1 0 1-00 | 1 1 1 1 I 1
0 2 4 6 8 0 1000 2000 3000 4000 5000
Sorted index of v components #iteration

facebook Artificial Intelligence

Why is this “bouncing back” property useful?

It seems that it only slows down the training??

Not useful in 1-layer, but useful in multiple Transformer layers!

facebook Artificial Intelligence

Multilayer Transformer

Class label
(observed)

Latent binary !
variables .
(not observed) i

Tokens
(observed)

Strong attention

Weak attention

Plllm] = 1 -
ALY

H: height of the common latent
ancestor (CLA) of [& m

L: total height of the hierarchy

Multilayer Transformer

Shallow Latent Yo

Distribution
e O o

Ul m' ||l | |m

Deep Latent
Distribution

CLA(l,m)

CLA(l’, m’) yﬁl

Ya

Yo

Learning the current hierarchical structure by

CLA(L,m)

C——

Strong Attention

Weak Attention

slowing down the association of tokens that are not directly correlated

Future Work

* Embedding vectors
* Positional Encoding

* Formulate the dynamics of Multi-layer Transformers
* How intermediate latent concept gets learned during training?
* Why we need over-parameterization?

Pattern Superposition

The same neuron in MLP hidden layers can be activated by multiple irrelevant combinations of tokens

Pythia-160M

A Every morning, as the city slowly awakens with the distant hum of traffic and the chirping of sparrows, John takes a moment to savor the peaceful ambiance before he walks
his dog, Max, around the block, greeting familiar faces and enjoying the fresh air.

B In the realm of physics, when water is subjected to a temperature of 100°C at one atmosphere of pressure, it undergoes a phase transition from liquid to gas, producing steam
that has long been harnessed for various technological and culinary applications.

The Sahara Desert, stretching across North Africa, is the third largest desert in the world and is renowned for its vast sand dunes and scorching temperatures. Despite its harsh
conditions, it\'s home to various unique species that have adapted to its extreme environment.

B Novels, beyond their entertainment value, serve as mirrors to society, often reflecting cultural, social, and political nuances of their time. Authors like George Orwell and Jane
Austen used their works to critique and provide insights into the world they lived in.

Pythia-70M

A | Cats are known for their independent nature. Many people appreciate them for their low-maintenance lifestyle, often content with just a comfortable spot to nap and an
occasional playtime.

Rainforests are vital for the Earth's ecosystem. They provide a habitat for countless species, many of which are not found anywhere else. Additionally, they play a crucial
B y y yw y, they play
role in regulating global climate and producing oxygen.

A The Eiffel Tower, an iconic landmark in Paris, was originally constructed as a temporary exhibit for the 1889 World's Fair. Over the years, it has become a symbol of the
city's romance and architectural prowess, attracting millions of tourists annually.

B The human digestive system is a complex network of organs working together to break down food into essential nutrients. Beginning with the mouth and ending at the small
intestine, each part plays a crucial role in ensuring our bodies receive the energy and vitamins needed for daily function.

Part i
Applications based on Attention Properties

Contextual Sparsity

9 100%
o 100% S o
T o 98%
S 80% =
(O] ©
g S 96%
S 60% 2
bS; 5 94%
» —— OPT-30B < — OPT-30B
=2 o . @]
< 9% Attention layers OPT-66B 2 92% MLP layers e
—— OPT-175B N —— OPT-175B
° 90%
20% 20 40 60 80 ° 0 20 40 60 80
Transformer Layer Transformer Layer

Key Observation

Keeping only high activation (contextual!) in attention/MLP
Contextual sparsity widely exists in

i - “trained models,
* results in 85% structured sparsity pre-trained models

o 80% attention, 95% MLP
* |eads to 7x potential parameter reduction for each input

* maintains same accuracy

e.g., OPT /LLaMA /Bloom/GPT

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]

Example: Contextual Sparsity in Attention

—_—_———_— - - —_——_——_——_——_——— — — —————— — — ——— —— — — — —— — ——— —————

Head 42

Head 43 outputs (almost)

uniform attention score. Head 43

Head 44

Layer L

~— e - Y-

This fruit shipping company provide different vehicle options like car and [MASK]

facebook Artificial Intelligence

Proposed idea: Predicting Contextual Sparsity

Attention,,, Challenge:
V\/V
. How to predict high activation on-the-fly without
@ computing the full attention or MLP?
MLP,
Attention, T T 5@ Benefits:
~— @ Only load the desired set of parameters
T © (save cache memory!)

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]

Proposed idea: Predicting Contextual Sparsity

Given the input, predicting which MLP hidden nodes are activated / which attention heads will be used.

W, Wy
MLP, Attn,
O(1|2 (3 |4)|5 |6 |7 AttnHead o123
Wl WQ WK

Just need to load W, [[2,6],:] and W,[:,[2,6]]

Proposed idea: Predicting Contextual Sparsity

Attention,,,
B Key idea: design a “similarity”-based prediction
! @®
8]0
MLP, L.
B @B Formulate the prediction problem as nearest-
<\/ .
®@ neighbor search (NNS).
Attention, 1 2 3 4 @@
N — @
! ®
input

NNS algorithms can make prediction based on the similarity between input & parameters.

Slowly Changing Embeddings across Layers

Cosine Similarity

+00 Challenge: how to reduce prediction overhead?
0.99

Key insight: cosine similarity between embeddings at
0.98 consecutive layers is very high.
0.97

Substantial Engineering Efforts:
0.96 * async prediction

* low-cost small trainable MLP as predictors
0.95 * system optimization
Qf’@ \:3,9 b’)Q RO I N \,/\o?

Use the embeddings from previous layer(s) to asynchronously make the prediction.

Deja Vu: 2X FasterTranstormer and 6X HuggingFace

COPA OpenBookQA Winogrande Lambada

100

80

60

4

Latency(ms)
o

2

o

B HuggingFace
W F2sterTraggormer OPT-1758 0.86 0.446 0.726 0.758
BN DejaVu ' ' ' '
Deja Vu-OPT-175B 0.85 0.45 0.726 0.753
I. I. I. Il OPT-175B + WAA16 0.85 0.44 0.714 0.757

128 256 512 1024 Deja Vu-OPT-175B +
Sequence Length W4A16 0.86 0.452 0.726 0.754

o

 Demonstrates best performance with batch size=1, ReLU, 175B model

* Maintains accuracy even combined with quantization.
* Achieves speed up with larger batch size, more activation functions, and smaller models.

facebook Artificial Intelligence [Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]

H20: Leverage attention sparsity for fast inference

Inference in Vanilla Transformers is 0 (n?)

In order to generate this token,
. / do we really need to store all previous tokens?

B
I

facebook Artificial Intelligence [Z. Zhang et al, H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, NeurlPS’23]

The answer is No

Finding “Heavy-Hitters” in Attention

Challenge: how to evict tokens? Once evicted, future tokens can no longer attend to it

leS le6
1.4
3 901 - [Baseline
, 12 ‘ 2'0§ 30 EZZA w.o. Heavy Hitter
O
E 1.0 \ g |
= 1.53 & 70
5% \ = S
O 0.8 1 5 ~
= s >
E \ < g 00
5 0.6 1.0 3 5
3 = 3 501
204 E <
~< 0.5 £ 40 M
0.2 1 S 3 | |
< 304
0.0 0.0 Ln
0 10000 20000 30000 40000 50000 20 ;
Word Index COPA OpenBookQA PiQA RTE

Key Observation: a small set of tokens are important along the generation
e accumulated attention scores of all the tokens follow a power-law distribution

* masking heavy-hitter tokens degrades model quality

facebook Artificial Intelligence

Greedy Algorithm to Pick Heavy Hitters

Token to be evicted

|
_

Local greedy algorithm

e sum up the attention scores of the
. previous tokens every decoding step

. * Add local / recent tokens
H B
i B

t t

Heavy Hitters

facebook Artificial Intelligence

H20: Heavy Hitter Oracle

facebook Artificial Intelligence

Children | laughed played | in __t_ the |'_ ;u;n;y_ | park F]
e 14 15 x 0.6
Key - o
1

= .

' L 0.1 0.1

1

__________________ o 0.1
Decoding Step 4 Query 0.2

0.03(0.

mmmmmmmmm ;e m—m e — =,
Children | laughed and played in the J- sunny J- park J- . [

06 o_.9_

H20: 3-20X Throughput and 1.9X Latency

ROUGE-2

S N

XSUM, LLaMA-7B XSUM, LLaMA-13B XSUM, LLaMA-30B
T I PN NN N (A — L e S S
141 707 A100 GPU FlexGen H,O
12 1 60 -
2 10 % 50 Heavy-Hitter Oracle Thr h 1
g 8- §40_ Local oughput 494 J18
S | S —- Fun (token/s) (1.9X)
Heavy-Hitter Oracle © Heavy-Hitter Oracle 30 53
Local 4 Local 20+ Latencv (s 99
— - Full p L 101 v(s) (1.9X)
100 8 60 40 20 0 0000 80 60 40 20 0 M0 s e 40 20 0
KV Cache Budget (%) KV Cache Budget (%) KV Cache Budget (%)
T4 GPU Hugging Face Deep Speed FlexGen H,O
Throughput token/s 0.6 0.6 8.5 18.83 (3-29X)

e compatible with quantization
* generate sentences with less repetition + more creativity

Model Input

In a small, bustling cafe nestled in the heart of a vibrant city, a serendipitous event unfolded, leaving a lasting
impression on all who witnessed it. As the patrons sat sipping their coffees and engaging in animated conversations,
a talented street musician entered the cafe, carrying a weathered guitar and radiating an aura of creativity.

LLaMA-7B Full Cache
Output

He began to play, and the patrons were captivated. The musician’s performance was so moving that the patrons
began to applaud, and the musician was so moved thatfhe began to cry|. The patrons were so moved that they
began to cry, and the musician was so

LLaMA-7B Local 20% Cache
Output

He ((CCCCCCCCCCCG D), 1999, 2000, 2001, 1, and, and, and, and, and, and, and, and, and, and, and,

LLaMA-7B H>O 20% Cache
Output

He began to play, and the room was filled with the sound of his music. The patrons of the cafe were enthralled
by the music, and the atmosphere was electric. The cafe was packed with people, all of whom were enjoying
the music. The musician was a young

less repetition + more creativity

What are these heavy hitters?
Where are they?

Attention Sinks: Initial tokens draw a lot of attentions

Layer 0 Head 0

2.2

Layer 1 Head 0 Layer 2 Head 0 Layer 9 Head 0 Layer 16 Head 0

2.00 1 o . o
2| N 2| h
0 4 4
o
6| 6| o
-1
—1 ¢ o .
10 2 10 i
12 12| 2
-2 I-s
| 14 14
o 2 4 6 8 10 12 1 - o 2 4 6 & 10 12 1 -
-3 Layer 23 Head 0 Layer 31 Head 0 R
0] 2 0]
2| 2
-4) l‘ , Il
_5 N o N (]
8 8
10 T -1
-6 ., I X I
-2
14 14
|
0 2 4 6 8 10 12 14 o 2 4 6 8 10 12 14 o 2 4 6 8 10 12 1

First few tokens!!

(=]

175

N

1.50

IS

6

2.0

0.75

1.8 0.50

0.25
1.6 94

0.00

Average attention logits in Llama-2-7B over 256 sentences

* Observation: Initial tokens have large attention scores, even if they're not semantically significant.
e Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.

facebook Artificial Intelligence [G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]

Understanding Attention Sinks

* Why? Attention scores have to sum up to 1 for all contextual tokens.
(SoftMax-Off-by-One, Miller et al. 2023)

eli

SoftMax(x); =
AR S

s L1 X5y) € 25unagdN

* Why initial tokens? Their visibility to subsequent tokens, rooted in

autoregressive language modeling.
Llama-2-13B PPL (4/)

* The model learns a bias towards their absolute 0+1024 (window) £158.07
position rather than the semantics. 4+1024 5.40
4"\n"+1020 5.6

facebook Artificial Intelligence [G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]

StreaminglLLM

(a) Dense Attention (b) Window Attention

Current Token

<4—— T cached tokens —» T-L evicted L cached
tokens tokens

O(TL) v PPL: 5158x

Breaks when initial
tokens are evicted.

O(T?x PPL: 5641X

Has poor efficiency and
performance on long text.

facebook Artificial Intelligence

(c) Sliding Window

w/ Re-computation (d) StreamingLLLM (ours)

previous tokens
are truncated

t -
Attention Sink

L cached
tokens

<<Lre computed
tokens

evicted
tokens

O(TL)v PPL:540v

O(TL*X PPL:5.43v

Has to re-compute cache
for each incoming token.

Can perform efficient and stable
language modeling on long texts.

[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]

StreaminglLLM

Generating

Token7 [0 |1 [2 13[4]15|[6 |7

Generating
Token 8

Generating |
Token 9

Attention Sinks Evicted Tokens Rolling KV Cache

Key design: Position Rolling
For all tokens, use their positions within cache to compute positional encoding!
— Token distance never exceeds pre-trained context window!

StreaminglLLM

w/ StreamingLLM

(streaming) guangxuan@l29:~/workspace/streaming-1lm$ CUDA_VISIBLE_DEVICE|(streaming) guangxuan@l29:~/workspace/streaming-1lm$ CUDA_VISIBLE_DEVICES=1 p
=0 python examples/run_streaming_llama.py thon examples/run_streaming_llama.py -—enable_streaming

Loading model from msys/vicuna-13b-v1.3 ... Loading model from lmsys/vicuna-13b-v1.3 ...

Loading checkpoint shards: 67%| B | 2/3 [00:09<00:04, 4.94s/it]]JLoading checkpoint shards: 67%| | NN | 2/3 [00:09<00:04, 4.89s/it]

StreaminglLLM: stable PPL, constant vVRAM

|:| Sliding Window with Re-computation

Log4%erp|exity & VRAM usage of Llama 2 7B as a function of input lengths

22x faster

facebook Artificial Intelligence

——- attention_sinks vram —.‘attention_sinks perplexity . StreamingLLM
—== transformers vram —=— transformers perplexity 15,5 21
-—- windowed vram ;J'— windowed perplexity ' E e 1600 1411 - 21 19
3.5 1 © m 1616
o] 2 1200 1414
g L 15.0 » é % 14 |1313 1313
; i % % 800 523 g ;
o 3.0 J_,J L 14.5 - = 400 223)
5 i] — 0 16331 10331 335 | 45 | 65 5 .
- I -t - ' ' '
4 ¥ [140 & 256 512 1024 2048 4096 256 512 1024 2048 4096
£ j 2
g23 7 Constant vVRAM - Llama-2-7B
QL =
@) L 135 &
g]/' Stable PPL 13.5 > 3000 = 38 3634
* - 3 @ 2355 m 2627 2929
2.0 | TR NSO «<ERE AN = £ 2250 O 29 |2525 2526
i L1300 N E
o' 1500 19
A R o 5 860 g
: . . : . . = 750 361 g 10
0 2000 4000 6000 8000 10000 = 9948 1695 560 | |75 | J06 S
Input Sequence Length 0 0
256 512 1024 2048 4096 256 512 1024 2048 4096
Llama-2-13B

StreaminglLLM: Stably Model up to 4 Million Tokens

Llama-2 (StreamingLLM)

Pythia (StreamingLLM)
1.5 -
Q. Q.
Q. Q. 1.5
(@)} (o)) .
o —— Llama-2-7B | © —— Pythia-2.8B
—— Llama-2-13B —— Pythia-6.9B
—— Llama-2-70B —— Pythia-12B
0.5 oM 1M 2M 3M am 02 oM 1M 2M 3M 4M
Input Length Input Length
Falcon (StreamingLLM) MPT (StreamingLLM)
E‘_ *"lml‘h
alb
(@]
fe}
—— Falcon-7B — MPT-7B
—— Falcon-40B — MPT-30B
0.5 oM M oM 3M am 9> oM M oM 3M 4M
Input Length

Input Length
facebook Artificial Intelligence

Pythia-12B

Llama-2-7B
12
7
10 6
g 8 c}:s
g © 2
ke, 93
4 2
2 1
0 ok 5K 10K 15K 20k O
Input Length
Falcon-7B
12
6 10
-~ ~J
a a 8
Q.4 Q.
(@)] (@) 6
IS S
, 4
2
0 oK 5K 10K 15K 20k O

Input Length

facebook Artificial Intelligence

OK 5K 10K 15K 20K
Input Length
MPT-7B
oK 5K 10K 15K 20K

Input Length

Window

Attention
m—— StreamingLLM

Window
Attention
(Re-compute)

Dense Attn

Understanding Attention Sinks

* Pre-train with a Dedicated Attention Sink Token

> — Vanilla Cache PPL (J)
. T 1 SToken Config 0+1024 1+41023 2+41022 4+1020
> Vanilla 27.87 1849 1805 18.05
= ZeroSink 29214 1990 1827 18.01
= Learnable Sink 1235 18.01 18.01 18.02
250 20 40 60 80 100 120 140 4 N 1020
k Steps A A

facebook Artificial Intelligence

Understanding Attention Sinks

* Similar Phenomenon in [Darcet et al. Vision transformers need registers]]
* ViT is not decoder-only so there is no preference on initial tokens,

Without registers With registers
Input DeiT-111 CLIP DINOv?2 DeiT-111 CLIP DINOv?2

-
> V4 e " S e
= e i -
o |
wa/
A“ £
Sho 4
o V4
N (O " .
/ O
’ \ _
: EY

facebook Artificial Intelligence

Does StreaminglLLM solve long-context? NO

Accuracy (in %) on StreamEval with increasing query-answer distance

Llama-2-7B-32K-Instruct Cache Config
Line Distances Token Distances 442044 444092 448188 4+16380
20 460 85.80 84.60 81.15 77.65
40 920 80.35 83.80 81.25 77.50
60 1380 79.15 82.80 81.50 78.50
80 1840 75.30 77.15 76.40 73.80
100 2300 0.00 61.60 50.10 40.50
150 3450 0.00 68.20 58.30 38.45
200 4600 0.00 0.00 62.75 46.90
400 9200 0.00 0.00 0.00 45.70
600 13800 0.00 0.00 0.00 28.50
800 18400 0.00 0.00 0.00 0.00

1000 23000 0.00 0.00 0.00 0.00

Can we solve the issues of loss in the middle?

EM Score

StreamingH20O: Infinite Streaming Ability

StreamingLLM is a subset of H20

Applying position rolling to H20!

The heavy-hitters of H20 helps mitigate “lost in the middle” issues.

10-Document Question Answering

[StreamLLM-4-508
ZZA StreamLLM-256-256
EZ3A H20-256-256

lt'h

2nd
Answer Locations

facebook Artificial Intelligence

3rd

Summarization Task

3 StreamLLM-4-252
EBEE H20-128-128

CNN-DailyMail

NLL

3.0 1

25

2.0

1.5

1.0 4

0.5

Streaming with H20 to 4 Million Tokens

0 IM

M

Input Length

3M

AM

StreamingH20: Infinite Streamin

(streaming) zz7962Rece-a51951:

Loading model from lmsys/vicuna-13b-v1.3
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.Ll
amaTokenizer'>. If you see this, DO NOT PANIC! This is expected, and simply means that the "legacy’ (prev
ious) behavior will be used so nothing changes for you. If you want to use the new behaviour, set "legacy
=False' . This should only be set if you understand what it means, and thouroughly read the reason why thi
s was added as explained in https://github.com/huggingface/transformers/pull /24566

$ bash scripts/streaming/baseline.sh

H20KVCache-LayerWise:
H20KVCache-LayerWise:

H20KVCache-LayerWise

H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:

1004,
1004,
1004,
1004,
1004,
1804,
1004,

o Ability

H20KVCache-LayerWise:
H20KVCache-LayerWw -
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVYCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KYCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise: 1004,

H20KVCache—-LayerWise: 1004,

Loading checkpoint shards: % | 2/3 [00:16<00:08,

9.10s/it]

Loading checkpoint shards: &7%| N | 2/3 [608:18<00:09, 1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1684,
1004,

8.10s/it)

facebook Artificial Intelligence

How to extend the pre-trained context window?

Extending context window for pre-trained models

Model Evaluation Context Window Size
Size Context Window Method 2048 4096 8192 16384 32768
7B 2048 None 720 >10% >10® >10% > 103

Key issues

Pre-trained model (e.g., LLaMA) cannot go beyond its pre-trained context window

[S. Chen et al, Extending Context Window of Large Language Models via Positional Interpolation, arXiv]

Why? Attention Function a(s) is ill-behaved

ROPE encoding: f(x,m) = [(xo+ix;)e™b, (x, + ix3)e™01, .., (xg_p + ixg_q)e™Pd/2-1]
Attention function: a(s) = a(m — n) = Re(f(q, m), f(k,n))

Effect of Extrapolation

3 .
8000 A
2 .
o 11 6000 -
©
g
(o]
% 0-
5 4000 +
e
c
g -1
m©
2000 A
_2 -
-3 0 -
0 500 1000 1500 2000 0 1000 2000 3000 4000
Positional difference s Positional difference s

a(s) behaves well within the pre-trained window, but could go crazy when extrapolating.

facebook Artificial Intelligence

Interpolation versus Extrapolation

Effect of Extrapolation

8000 A
6000 -
4000 -
2000 A
0

6 10'00 20‘(:)0 30'00 40l00

Positional difference s

facebook Artificial Intelligence

0.2

0.1 -

H IR
.......

.............
............

Effect of Interpolation

50

60
Positional difference s

70

Positional Interpolation (P1)

1.0

0.5

RoPE

=t Pre-trained range seen Range

-0.5

-1.0

2048 4096

Normal Extrapolation

1.0
0.5

0.0

RoPE

Prettrained range

-0.5

-1.0

0 N) 4096
Position Interpolation Position

f'(x, m) = f(x, m/2)

Interpolated encoding: f'(x,m) = f(x, Bm).Here a: = L/L' is the scaling factor

Or equivalently, 6/ = ac2/d = ab;, where 6, = c72//d ¢ =10000

facebook Artificial Intelligence

Experimental Results

Model

Evaluation Context Window Size

Size Context Window Method 2048 4096 8192 16384 32768
7B 2048 None 720 >10% >10% >10% >10°
7B 8192 FT 7.21 7.34 7.69 - -
7B 8192 PI 7.13 6.96 6.95 - -
7B 16384 PI 7.11 6.93 6.82 6.83 -
7B 32768 PI 7.23 7.04 6.91 6.80 6.77
13B 2048 None 6.59 - - - -
13B 8192 FT 6.56 6.57 6.69 - -
13B 8192 PI 6.55 6.42 6.42 - -
13B 16384 PI 6.56 6.42 6.31 6.32 -
13B 32768 PI 6.54 6.40 6.28 6.18 6.09
33B 2048 None 5.82 - - - -
33B 8192 FT 5.88 5.99 6.21 - -
33B 8192 PI 5.82 5.69 5.71 - -
33B 16384 PI 5.87 5.74 5.67 5.68 -
65B 2048 None 5.49 - - - -
65B 8192 PI 5.42 5.32 5.37 - -

With <1000 steps of fine-tuning,
Pl can extrapolate up to 8x length of its
original context windows

Experimental Results

#fine-tune steps needed to achieve longer context window (measured by passkey retrieval)

Model Fine-tuning steps

Size Context Window Method 200 400 600 800 1000 10000
7B 8192 FT 1792 | 2048 2048 2048 2304 2560
33B 8192 FT 1792 | 2048 1792 2048 2304 -

7B 8192 PI 8192 | 8192 8192 8192 8192 -

7B 16384 PI 16384 | 16384 16384 16384 16384 -

7B 32768 PI 32768 | 32768 18432 32768 32768 -

33B 8192 PI 8192 | 8192 8192 8192 8192 -

33B 16384 PI 16384 | 16384 16384 16384 16384 -

200 steps suffice!

facebook Artificial Intelligence

Performance remains in LLM benchmarks

Model Size Context Window Fine-tuneon BoolQ PIQA Race-M Race-H WinoGrande

7B 2048 None 76.1 78.9 55.7 42.2 69.6
7B 8192 Pile 73.2 78.2 53.8 41.7 69.0
7B 16384 Pile 69.8 77.6 53.3 40.9 67.8
7B 32768 Pile 64.7 77.2 50.1 39.6 66.9
7B 8192 RedPajama 75.5 774 54.5 41.5 68.1
33B 2048 None 81.6 80.2 61.1 45.9 76.2

33B 8192 Pile 80.2 80.7 60.2 45.7 75.9

-uture Development Inspired
DY our work

[Jun. 29, two days after our arXiv release]
“NTK” positional encoding

0; = (ac)~4/4

Extrapolation in high-frequency

Interpolation in low-frequency

No fine-tuning needed.

facebook Artificial Intelligence

@ r/LocalLLaMA

Posts

’ Posted by u/bloc97 5 months ago JAN

415 NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) '
</ context size without any fine-tuning and minimal perplexity degradation.

T've seen the posts about SuperHOT and just recently, the paper from Meta which uses RoPE
interpolation, and I've noticed an immediate improvement that can be brought to this method.
Basically if you apply Neural Tangent Kernel (NTK) theory to this problem, it becomes clear that simply
interpolating the RoPE's fourier space "linearly” is very sub-optimal, as it prevents the network to
distinguish the order and positions of tokens that are very close by. Borrowing from NTK literature,
scaling down the fourier features too much will eventually even prevent succesful finetunes (this is
corroborated by the recent paper by Meta that suggests an upper bound of ~600x)

Instead of the simple linear interpolation scheme, I've tried to design a nonlinear interpolation scheme
using tools from NTK literature. Basically this interpolation scheme changes the base of the RoPE
instead of the scale, which intuitively changes the "spinning" speed which each of the RoPE's
dimension vectors compared to the next. Because it does not scale the fourier features directly, all the
positions are perfectly distinguishable from eachother, even when taken to the extreme (eg. streched
1million times, which is effectively a context size of 2 Billion)

To my surprise, this method works extremely well, so much so that you don't even need to fine tune
the LLaMA 7B model for 4096 context size! The perplexity degradation is minimal. I'm sure with fine
tuning this would become even better.

Enough explanations, here's some empirical results. All the perplexity measurements are done on
LLaMA 7b with the tau/scrolls - Dat e dataset (I only used a subset of gov_report).

tH

Here's a graph showing the average perplexity of LLaMA 7b on a set of 40 very long prompts (12k+
context size). Compared to changing the scale (from SuperHOT, which was set to 4), we change a factor
alpha, which when equal to 8 provides the same context size increase but with much less perplexity
degradation. All without any finetuning!

8.0

T T
f —— scale = 1 (LLaMA 7b 2048, no finetuning)
=== scale = 4 (previous method, no finetuning)
h — a = 8 (this method, no finetuning)

75
7.0

6.5 1

5.01

4.5

4.0

0 2000 4000 6000 8000 10000 12000
Context length

Graph showing the average perplexity of LLaMA 7b on set of 40 very long prompt (12k+ context size) with previous and new

interpolation scheme

Thanks!

facebook Artificial Intelligence

