Inference-Time Techniques for
LLM Reasoning

Xinyun Chen
Google DeepMind

CS294/194-280: Advanced Large Language Model Agents

Highlight of LLMs in 2024: the advancement of reasoning models

Competition Math Competition Code PhD-Level Science Questions
(AIME 2024) (Codeforces) (GPQA Diamond)
100 A 100 - 100 -
89.0
893 783 78.0
80 A 80 A 80 A ' '
3> 60 - % 60 - >
e c S
3 S Q
S 40- 8 40- :
20 - 20+
0 - 0"
gpt4o ol ol gptdo ol ol gpt4o ol ol expert
preview preview preview human

OpenAl o1l started to achieve impressive performance across various challenging
reasoning tasks in math, coding, STEM, etc.

https://openai.com/index/learning-to-reason-with-lims/

https://openai.com/index/learning-to-reason-with-llms/

Performance improves with more inference-time compute

O SERIES PERFORMANCE / ARC-AGI SEMI-PRIVATE EVAL

AVG. MTURKER

KAGGLE SOTA

31% 32%

25%
25%
13.33%
7.80% ® O1 PREVIEW
® O1-MINI

0%
$1.0

https://arcprize.org/blog/oai-03-pub-breakthrough

STEM GRAD

76%
® 03 LOW (TUNED)

COST PER TASK

88%
O3 HIGH (TUNED) @

$1,000.0

O3 achieved 87.5%

accuracy on ARC-AGI, with

>S1k test-time cost to solve

each task

* Other existing LLMs
achieved <25%
accuracy if no special
inference-time
techniques were used

https://arcprize.org/blog/oai-o3-pub-breakthrough

OpenAl 01 demo: hidden thought before generating the solution

You are visiting San Francisco for the day and want to meet as many
friends as possible. Solve the problem by considering various
different schedules and picking the best one to optimize your goals.

Travel distances (in minutes):
Bayview to Alamo Square: 16.
Bayview to Union Square: 17.
Bayview to Golden Gate Park: 22.
U Se r Alamo Square to Bayview: 16.

Alamo Square to Union Square: 14.
Alamo Square to Golden Gate Park: 9.
q U e ry Union Square to Bayview: 15.
Union Square to Alamo Square: 15.
Union Square to Golden Gate Park: 22.
Golden Gate Park to Bayview: 23.
Golden Gate Park to Alamo Square: 10.
Golden Gate Park to Union Square: 22.

CONSTRAINTS: You arrive at Bayview at 9:00AM. Ronald will be at
Alamo Square from 8:30AM to 7:45PM. You'd like to meet Ronald for
a minimum of 90 minutes. Richard will be at Union Square from
2:30PM to 9:45PM. You'd like to meet Richard for a minimum of 30
minutes. Kenneth will be at Golden Gate Park from 10:00AM to
3:15PM. You'd like to meet Kenneth for a minimum of 60 minutes.

&)

Thought about optimizing meeting schedules for Tm 14s

Below is one clear way to fit in all three visits without wasting time, together with the travel times

and the required minimum meeting windows. The key insights are:

Model-generated response

Details X

Crafting meeting logistics

I'm collaborating on a schedule to meet Ronald,
Richard, and Kenneth, ensuring each meeting fits
within their specified time slots, factoring in travel
time and optimal routing.

Mapping travel logistics

Evaluating the best route to Golden Gate Park first,
considering travel time and waiting for Kenneth.
Balancing early arrival against travel efficiency.

Crafting the itinerary

Piecing together a travel plan, starting with Kenneth,
then Ronald, and ending with Richard. Assessing the
optimal sequence and meeting durations.

Mapping travel routes

OK, let me see. Traveling from Golden Gate Park to
Alamo Square, I'm thinking about extending Ronald's
meeting to 1.5 hours then moving to Union Square to
meet Richard.

Evaluating options

I'm weighing the benefits of a longer Ronald meeting
or a later one to avoid waiting for Richard. The goal is
to strike a good balance.

Balancing schedules

I'm organizing a plan to visit Alamo Square first, then
head to Golden Gate Park to meet Kenneth. This
sequence maximizes time management and minimizes
travel between meetings.

Streamlining the timeline

1'm thinking through the optimal approach: meeting
Ronald for an uninterrupted 90 minutes to avoid
waiting for Richard and making efficient use of the
available time before 2:30.

Tweaking the schedule

Meeting Ronald for 90 minutes as scheduled, then
quickly traveling to Union Square. This reduces
waiting time significantly.

Mapping the timeline

Summarized

hidden
thought

Gemini 2.0 Flash Thinking demo: generating long thought before the solution

*® Untitied prompt ~

a v System Instructions
.

https://x.com/OfficialLoganK/status/1869789822384255300

https://x.com/OfficialLoganK/status/1869789822384255300

Core idea: trigger the LLM to generate long chain-of-thought (CoT)

Chain-of-Thought Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of

tennis balls. Each can has 3 tennis balls. How many . .
tennis balls does he have now? Approaches to trigger CoT generation

Few-shot CoT prompting
Instruction prompting
Instruction tuning
Reinforcement learning

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

This lecture: inference-time techniques

Model Output for scaling token budget

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 =9. The

answer is 9. Thought

Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022.
Nye et al., Show Your Work: Scratchpads for Intermediate Computation with Language Models, 2021.

Outline

e Part 1: Introduction to basic prompting techniques
* Use more token budget to generate a single solution

* Part 2: Search and selection from multiple candidates
* Increase the width to explore the solution space

* Part 3: Iterative self-improvement
* Increase the depth to reach the final solution

Outline

e Part 1: Introduction to basic prompting techniques
* Use more token budget to generate a single solution

Background: standard prompting

| Standard Prompting
~~ Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

Exemplar

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

~{ Model Output |

: A: The answer is 27. x

Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022.
Nye et al., Show Your Work: Scratchpads for Intermediate Computation with Language Models, 2021.

Before the advancement in
post-training techniques, standard
prompting performance is poor on
reasoning benchmarks.

Issue: standard few-shot exemplars
only provide information on the final
solution format, but not the rationale
to derive the solution.

Chain-of-thought prompting: providing thoughts in the exemplars

Standard Prompting
Model Input |

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

Exemplar
A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

§ Model Output

A: The answer is 27. x

Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022.
Nye et al., Show Your Work: Scratchpads for Intermediate Computation with Language Models, 2021.

| Chain-of-Thought Prompting
- Model Input)

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? Thought

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

~ Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 =9. The

/| answeris 9.

CoT performance scales with the model size

—e— Standard prompting
—6— Chain-of-thought prompting
Prior supervised best

LaMDA GPT PalL.M

R =)
o O

GSMS8K
solve rate (%)

[\V)

S

./
./

04 8 137 04 7 175 8 62 540

Model scale (# parameters in billions)

o

SVAMP
N R D ®©
S S S

solve rate (%)

o)

o

MAWPS
solve rate (%) .
N4 O
S =

N Ot
ot O

o

CoT performance improves more significantly with the
increase of the model size.

Better models benefit more with CoT generation
e A drasticimprovement on reasoning performance
when the model reaches a certain scale.

Note: these experiments used pretrained-only LLMs
e Recent post-trained LLMs might have different
scaling curves, but the main conclusions still hold.

Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022.

Wei et al., Emergent Abilities of Large Language Models, TMLR 2022.

(a) Few-shot

@oger has 5 tennis balls. He buys 2 more cans of ter&

balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

_ /
(c) Zero-shot

6: A juggler can juggle 16 balls. Half of the balls are golf balla
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

(Output) 8 X

L /

Zero-shot CoT: elicit CoT generation with an instruction

(b) Few-shot-CoT

ﬁRoger has 5 tennis balls. He buys 2 more cans of teﬁ
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf
balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
W. So there are 8/ 2 = 4 blue golf balls. The answer is 4. /J

(d) Zero-shot-CoT (Ours)

ﬂ): A juggler can juggle 16 balls. Half of the balls are golf balls\
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
Qre blue. That means that there are 4 blue golf balls. v J

“Let’s think step by step” triggers CoT generation w/o exemplars.

Kojima et al., Large Language Models are Zero-Shot Reasoners, Neur[PS 2022.

Zero-shot CoT significantly outperforms zero-shot performance

Arithmetic

SingleEq AddSub MultiArith GSM8K AQUA SVAMP
zero-shot 74.6/78.7 72.2/77.0 17.7/22.7 10.4/12.5 22.4/22.4 58.8/58.7
zero-shot-cot 78.0/78.7 69.6/74.7 78.7/79.3 40.7/40.5 33.5/31.9 62.1/63.7
Common Sense Other Reasoning Tasks Symbolic Reasoning

Common Strategy Date Shuffled Last Letter ~ Coin Flip

SenseQA QA Understand Objects (4 words) (4 times)
zero-shot 68.8/72.6 12.7/54.3 49.3/33.6 31.3/29.7 0.2/- 12.8/53.8

zero-shot-cot 64.6/64.0 54.8/52.3 67.5/61.8 52.4/52.9 57.6/- 91.4/87.8

Kojima et al., Large Language Models are Zero-Shot Reasoners, Neur[PS 2022.

Issue: zero-shot CoT performance is still worse than few-shot CoT

MultiArith GSM8K

Zero-Shot 17.7 10.4
Few-Shot (2 samples) 33.7 15.6
Few-Shot (8 samples) 33.8 15.6
Zero-Shot-CoT 78.7 40.7
Few-Shot-CoT (2 samples) 84.8 41.3
Few-Shot-CoT (4 samples : First) (*1) 89.2 -
Few-Shot-CoT (4 samples : Second) (*1) 90.5 -
Few-Shot-CoT (8 samples) 93.0 48.7
Zero-Plus-Few-Shot-CoT (8 samples) (*2) 92.8 51.5

How to improve CoT performance w/o manually labeling exemplars?

Kojima et al., Large Language Models are Zero-Shot Reasoners, Neur[PS 2022.

Analogical prompting: instruct the LLM to generate exemplars

Prompt the LLM to first recall
relevant exemplars, before
solving the test problem.

Model Input

Q: What is the area of the square with the four vertices at (-2,
2): (21 -2)1 (-21 -6)1 and (-61 -2)‘P

Instruction:
Recall relevant exemplars:
Solve the initial problem:

Model Output

Relevant exemplars:

Q: What is the area of the square with a side length of 5?

A: The area of a square is found by squaring the length of its side.
So, the area of this square is 52 = 25. ...

Solve the initial problem:

To find the area of the square, we need to find the side length.
The length is ... \sqrt{(2 - (-2))*2 + (-2 - 2)*2} = \sqrt{32}. So, the
area of the square is (\sqrt{32})*2 = 32.

Yasunaga, Chen, Li, Pasupat, Leskovec, Liang, Chi, Zhou, Large Language Models as Analogical Reasoners, ICLR 2024.

Analogical prompting: instruct the LLM to generate exemplars

Benefits

e Exemplars are self-generated
by LLMs, no manual labeling.

e Exemplars are tailored to
individual problems.

Model Input

Q: What is the area of the square with the four vertices at (-2,
2); (21 -2)1 (_21 -6)1 and (_61 -2)'P

Instruction:
Recall relevant exemplars:
Solve the initial problem:

Model Output

Relevant exemplars:

Q: What is the area of the square with a side length of 5?

A: The area of a square is found by squaring the length of its side.
So, the area of this square is 52 = 25. ...

Solve the initial problem:

To find the area of the square, we need to find the side length.
The length is ... \sqrt{(2 - (-2))*2 + (-2 - 2)*2} = \sqrt{32}. So, the
area of the square is (\sqrt{32})*2 = 32.

Yasunaga, Chen, Li, Pasupat, Leskovec, Liang, Chi, Zhou, Large Language Models as Analogical Reasoners, ICLR 2024.

Motivation: human analogical reasoning

- Humans are not explicitly given demonstrations every time for a new task

- Instead, humans intrinsically recall from past relevant experience

a new aspect of
mathematical method

G. POLYA

How to solve it, George Polya, 1945.

(Do you know a related problem? JWe can scarcely
imagine a problem absolutely new, unlike and unrelated
to any formerly solved problem; but, if such a problem
could exist, it would be insoluble. In fact, when solving

a problem, we always profit from previously solved prob-

lems, using their result, or their method, or the experi-

ence we acquired solving them. And, of course, the

problems from which we profit must be in some way
rclated to our present problem. Hence the question: Do
you know a related problem?

There is usually no difficulty at all in recalling for-
merly solved problems which are more or less related to
our present one. On the contrary, we may find too many
such problems and there may be difhculty in choosing a
useful one. We have to look around for closely related
problems; we LOOK AT THE UNKNOWN, or we look for a

formerly solved problem which is linked to our present

one by GENERALIZATION, SPECIALIZATION, Or ANALOGY.

Example: Codeforces (prompt)

Our Prompt: Self-generate Exemplars + Knowledge

Your goal is to write Python3 code to solve competitive programming problems. Given a problem, explain the core concepts in it and provide
other relevant problems. Then solve the original problem.

Problem:
You are given a sequence a_1, a_2, .., a_n. Each element of a is 1 or 2. Find out if an integer k exists so that the following conditions are
met. 1 < k < n-1, and a_1 - a_2 .. a_k = a_{k+1} .. a_n. If there exist multiple k that satisfy the given condition, print the smallest.

Instruction:

Algorithms:
Identify the core concepts or algorithms used to solve the problem.

Tutorial:
Write a tutorial about these algorithms.

Example Problems:

Provide three examples of relevant competitive programming problems that involve these algorithms. For each problem, describe the problem,
explain the solution in detail, and then write the correct Python3 code.

Python3 code to solve the original problem:

- Explanation of the solution:
- Python3 code to solve the problem:

- Besides exemplars, the LLM can also self-generate high-level knowledge
- The generated knowledge complements the problems with broader insights

Example: Codeforces (self-generated knowledge + exemplars)

Algorithms: The core algorithm for solving this problem is the prefix product algorithm.

by initializing a variable "prefix" to 1, and then iterating through the array from left to right. At each iteration, the current element is
multiplied with the prefix, and the result is stored in the prefix variable. This way, the prefix variable keeps track of the product of all
the elements in the prefix of the array. The time complexity of this algorithm is 0(n), where n is the size of the input array.

W Example Problems: T e Self-generated Exemplars "

Tutorial: The prefix product algorithm is used to calculate the product of all the elements in a prefix of an array. The algorithm works

1. Problem: Given an array of integers, find the product of all the elements in each subarray of size k.
Solution: We can use the prefix product algorithm to solve this problem. We initialize a prefix variable to 1, and then iterate through
the array from left to right. At each iteration, we multiply the current element with the prefix,

def product_of_subarrays(arr, k): f
prefix = 1 E
result = [] :
for i in range(len(arr)): f

prefix = prefix * arr[i]

if i >= k-1: 3

result.append(prefix)
prefix = prefix // arr[i-k+1]
return result

2. Problem: Given an array of integers, find the longest subarray with a product less than or equal to a given target.
Solution:

3. Problem: Given an array of integers, find the smallest k such that the product of all the elements in the prefix of the array is equal to
the product of all the elements in the suffix of the array.
Solutions s o

Example: Codeforces (solving the initial problem)

Python3 code to solve the original problem:
Explanation of the solution:
- Initialize prefix and suffix variables to 1, and k to -1.
- Calculate the product of all the elements in the sequence using the prefix product algorithm.
- Iterate through the sequence from right to left.
- Update the prefix and suffix variables.
- If the prefix is equal to the suffix, update k to the current index.
- Print the value of k.

t = int(input())
for _ in range(t):
n = int(input())
arr = list(map(int, input().split()))
prefix, suffix =1, 1
k = -1
for i in range(n):
prefix = prefix * arr[i]
for i in range(n-1, 0, -1):
prefix = prefix // arr[i]
suffix = suffix x arr[i]
if prefix == suffix:
k =1
print(k)

Result overview

o Analogical prompting outperforms 0-shot CoT and manual few-shot CoT

Math problems
(GSMB8K, text-davinci-003)

54.0%
50.3%

14.8%

0-shot O0-shot Few-shot

CoT CoT
(Kojima+22) (Wei+22)

Code generation
(Codeforces, GPT3.5 turbo) (BIG-Bench, GPT3.5 turbo)

(Kojima+22)

Temporal reasoning

57.6%

44.8%

40.4%

0-shot 0-shot This

CoT work
(Kojima+22)

Stronger LLMs are better analogical reasoners

; (+— scale down) (scale up —)
Prompting Method text-curie-001 text-davinci-001 text-davinci-002 text-davinci-003
0-shot 2% 6% 13% 14%
0-shot CoT 2% 6% 22% 50%
5-shot (fixed) CoT 2% 10% 43% 54%
5-shot retrieved CoT 3% 11% 47% 57%
Ours: Self-generated Exemplars 2% 9% 48 % 61%

GSM8K for math reasoning

- Weaker LLMs benefit less from analogical prompting, though it does not hurt
the zero-shot performance

.- With stronger LLMs, analogical prompting outperforms CoT with
manually-designed or retrieved exemplars
o The generated CoT is more tailored to the underlying LLM

Which instructions work for CoT generation?

No. Category Template Accuracy

1 instructive Let’s think step by step. 78.7

2 First, o 713 o Current LLMs are sensitive to
3 Let’s think about this logically. 74.5 .

4 Let’s solve this problem by splitting it into steps. 72.2 prompt d esign

5 Let’s be realistic and think step by step. 70.8

6 Let’s think like a detective step by step. 70.3

7 Let’s think 575 o There is no clear principle of
8 Before we dive into the answer, 55.7 . .

9 The answer is after the proof. 45.7 how to write optim al prompts
10 misleading Don’t think. Just feel. 18.8

11 Let’s think step by step but reach an incorrect answer. 18.7 d h |

12 Let’s count the number of "a" in the question. 16.7 ¢ How to reduce the manua

13 By using the fact that the earth is round, 9.3 work for writi ng prom pts?

14 irrelevant By the way, I found a good restaurant nearby. 17.5

15 Abrakadabra! 15.5

16 It’s a beautiful day. 13.1

- (Zero-shot) 17.7

Zero-shot CoT on MultiArith with text-davinci-002

Kojima et al., Large Language Models are Zero-Shot Reasoners, NeurlPS 2022.

Large language models for prompt engineering

J Keep the high score candidates

LLMs as Inference Models

Professor Smith was given the \
following instructions: <INSERT>

Here are the Professor’s responses:

Demostration Start
Input: prove Output: disprove

Input: on Output: off
QDemostration End /
[Optional]

/— LLMs as Resampling Models

Generate a variation of the following
instruction while keeping the semantic
meaning.

Input: write the antonym of the word.

Output: <COMPLETE>)

A

x Discard the low score candidates

®

Proposal

—>

@

High Score
Candidates

) <=

®

Similar
Candiates

=N

* Final selected prompt with highest score

LLMs as Scoring Models
Instruction: write the antonym of the
word. <LIKELIHOOD>
LN]
Input: direct Output]indirect
. Log
@ Scoring ﬁ ® Probability @
write the antonym of the word. -0.26 I
give the antonym of the word provided. -0.28 J
reverse the input. -0.86 x
to reverse the order of the letters -1.08 x
write the opposite of the word given. -0.16 *
list antonyms for the given word. -0.39

Zhou et al., Large Language Models are Human-Level Prompt Engineers, ICLR 2023.

Proposal generation:
leverage the LLM to
generate initial instructions.

Scoring each instruction
based on the prediction
correctness on a small set
of problems.

Going further: LLM as the optimizer to iteratively improve the prompt

. Coreidea: instruct the LLM to leverage the past optimization trajectory,
represented as sorted (solution, score) pairs

o Optimizer: the LLM to propose a new instruction given old ones and task exemplars
o Evaluator: the LLM to evaluate the accuracy of an instruction

objective function
scores
evaluator

P generated
return top solutions__ solutions l, v
when finish meta-prompt
LLM as solution-score pairs
. <«
optimizer task description

Yang, Wang, Lu, Liu, Le, Zhou, Chen, Large Language Models as Optimizers, ICLR 2024.

Meta-prompt for prompt optimization

Example meta-prompt for GSM8K:

I have some texts along with their corresponding scores.

based on their scores, where higher scores indicate better quality.

//;ext:

Let’s figure it out!
score:

61

text:

Let’s solve the problem.
score:

63

\

\\g. . . more instructions and scores . . .) ‘//

The following exemplars show how to apply your text: you replace <INS> in each input with your
text, then read the input and give an output. We say your output is wrong if your output is different
from the given output, and we say your output is correct if they are the same.

//input:

A: <INS>

output:
140
\\}. . . more exemplars

Q: Alannah, Beatrix, and Queen are preparing for the new school year and have been given books
by their parents. Alannah has 20 more books than Beatrix. Queen has 1/5 times more books than
Alannah. If Beatrix has 30 books, how many books do the three have together?

)

\

/

The texts are arranged in ascending order

(top) past instructions and accuracies

exemplars

Write your new text that is different from the old ones and has a score as high as possible. Write the

text in square brackets.

Results on GSMS8K

Table 1: Top instructions with the highest GSM8K zero-shot test accuracies from prompt optimization
with different optimizer LLLMs. All results use the pre-trained PalM 2-L as the scorer.

Source Instruction Acc
_Baselines o o ___.
(Kojima et al., 2022) Let’s think step by step. 71.8
(Zhou et al., 2022b) Let’s work this out in a step by step way to be sure we have the right answer. 58.8

(empty string) 34.0

JOHIS. o e e i e e o s 2 St 2 2 S 2 i
PalM 2-L-IT Take a deep breath and work on this problem step-by-step. 80.2
PalM 2-L Break this down. 79.9

gpt—3.5—turbo A little bit of arithmetic and a logical approach will help us quickly arrive at ~ 78.5
the solution to this problem.
gpt-4 Let’s combine our numerical command and clear thinking to quickly and 74.5
accurately decipher the answer.

e Initial instruction for prompt optimization: “Let’s solve the problem.” with acc = 60.8%.

e Our best LLM-generated prompt outperforms “Let’s think step by step” by ~8%, matching the
few-shot CoT accuracy (80.7%) in PaLM-2 technical report.

Optimization graphs

80.0
. > .*,.\ S """f’
scorer: PaLM 2-L 5 IO i i SR
‘5700 f "" 4 g e
8 e ':r‘m‘
0 . . © { [} ¢
optimizer: PaLM 2-L-IT 260.0{ ']
£ |
= |
& 500 o GSM8K
0 50 100 150
steps
100.0 2
. M Py R > | PR >
scorer: text-bison 270.0 L aantimed | 3 A it 3 0o Y
2 e alddik S .-....,_,f} el it £ 70. g gl B
8 P 4 ‘*ﬁ‘f";{f ’,.“ l ‘1' . 8 ;e"-." ¥ 8 vru:g: s
gsoo e © 80.0f 4 50.0 ol SR
. . et . c ¥ o c . . ! T
: -L- = = ot E pN
optimizer: PaLM 2-L-IT < i £ g = L
L (scorer: text-bison) | = " "® movie recommendation “30.0 temporal_sequences
50.0 - .
0 50 100 150 200 °%97%5 5o 100 130 200 . o 100 150
steps # steps # steps

The accuracy increases with more optimization steps, then plateaus.

Going back to CoT: what CoT brings into LLM reasoning

* Chain-of-thought prompting: variable computation of the thought process adapting to
tasks of different difficulty levels
* More complex questions -> more reasoning steps in the chain-of-thought

* Reasoning strategies enabled by CoT
* Decomposition
* Planning

* We can explicitly instruct the LLM with the desired reasoning strategies for problem solving

Least-to-most prompting: easy-to-hard generalization via decomposition

Problem Reduction

A: To solve “How many times
can she slide before it
closes?”, we need to first
solve: “How long does each
trip take?”

Q: It takes Amy 4 minutes to climb to the top
of a slide. It takes her 1 minute to slide down.
The water slide closes in 15 minutes. How
many times can she slide before it closes?

Language
Model

Stage 1

Sequentially Solve Subquestions

Stage 2

It takes Amy 4 minutes to climb to the top of a
slide. It takes her 1 minute to slide down. The
slide closes in 15 minutes.

A: It takes Amy 4 minutes to
climb and 1 minute to slide
down. 4 + 1 =5. So each trip
takes 5 minutes.

Language
Model

Subquestion 1 Q: How long does each trip take?

It takes Amy 4 minutes to climb to the top of
a slide. It takes her 1 minute to slide down.
The slide closes in 15 minutes. A: The water slide closes in

" Q: How long does each trip take? L 15 minutes. Each trip takes 5
:E:ﬁgf::o = | A:lttakes Amy 4 minutes to climb and 1 a'\';ggalge minutes. So Amy can slide
Subquestion 1 minute to slide down. 4 + 1 = 5. So each trip ece 15 + 5 = 3 times before it

takes 5 minutes. closes.

#

_ Q: How many times can she slide before it

Q)ses? /

Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.

Subquestion 2 —

Example: solving the SCAN compositional generalization benchmark

Command Action Sequence

“look thrice after jump” | JUMP LOOK LOOK LOOK

“run left and walk”™ TURN_LEFT RUN WALK

“look opposite right” TURN_RIGHT TURN_RIGHT LOOK

Method Standard prompting | Chain-of-Thought | Least-to-Most
code—davinci-002 16.7 16.2 99.7
text—-davinci-002 6.0 0.0 76.0
code—-davinci-001 0.4 0.0 60.7

SCAN length split

e SCAN: translating synthetic natural language commands into actions sequences

* Length split: action sequences in the test set are longer than training samples

e Least-to-most prompting can achieve nearly perfect test accuracy with 0.1%
training samples as exemplars

Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.

Example: solving text-to-code compositional generalization benchmarks

Examples in CFQ (Compositional Freebase Questions) benchmark

Question: Did M1 star M2 , star M3, and star a art director and editor of MO?

SPARQL: SELECT count(*) WHERE
{ ?x0 edited MO . ?x0 art directed MO . M1 starred ?x0 . M1 starred M2 . M1 starred M3}

Question: What was produced by a art director that M1 and M2 employed?

SPARQL: SELECT DISTINCT WHERE
{ ?x0 produced by ?x1 . ?x1 a art director . MO employed ?x1 . M1 employed ?x1 }

* Challenge: more complicated grammar with a larger vocabulary
* Asingle prompt might not be enough to cover all grammar rules
* Decomposition enables customized prompt for each subproblem

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.
Keyers et al., Measuring Compositional Generalization: A Comprehensive Method on Realistic Data, ICLR 2020.

Our approach: dynamic least-to-most prompting

Problem Reduction (Syntactic Parsing)

(What was produced by a art director that M1 : LM) ;(What was produced by (a art director) that (M1 A
L and M2 employed and was directed by M3 '\) '\ and M2) employed and was directed by (M3)
(What was produced by N1 that N2 employed f LM A ;What was produced by (N1 that (N2 employed)))
L and was directed by N3 } L) L and was directed by N3)
Dynamically Select Exemplars for Each Subproblem
Retrieve using constituent from decomposition Selected exemplar

=i —’[M1 and M2 employed H Who edited a film that M1 and M2 produced J

Sequentially Solve Subproblems
d M e B

(Exemplars] (Output]

Q: Who edited a film that M1 and M2 produced ——[LM }—» A: SELECT DISTINCT WHERE {
A: <Exemplar Answer> ... ?x0 produced_by ?x1 . ?x1 a art_director .

M1 employed ?x1 . M2 employed ?x1 .
(Subproblems | 2x0 directed_by M3}

Q: What was directed by M3 C e

A: <Predicted Answer> ...

[Input)
Q: What was produced by an art director that
M1 and M2 employed and was directed by M3
J

.

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.

Evaluation on CFQ

MCD1 | MCD2 | MCD3 | Ave.
Fully Supervised
T5-base (Herzig et al., 2021) 585 | 27.0 | 184 | 346 180
TS5-large (Herzig et al., 2021) 65.1 32.3 25.4 40.9 < 99
T5-3B (Herzig et al., 2021) 65.0 41.0 42.6 495 < so
HPD (Guo et al., 2020) 796 | 596 | 67.8 | 690 & 40 _
T5-base + IR (Herzig et al., 2021) | 858 | 64.0 | 53.6 | 67.8 3 | o oamla Fewshet
TS-large + IR (Herzig et al.,, 2021) | 886 | 792 | 727 | 802 = | e Dynamic LoM
T5-3B + IR (Herzig et al., 2021) 88.4 85.3 717.9 83.9 TR T et
LeAR (Liu et al., 2021) 91.7 89.2 91.7 90.9 Exemplar Pool Size
Prompting
(Ours) Dynamic Least-to-Most 94.3 95.3 95.5 95.0

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.
Keyers et al., Measuring Compositional Generalization: A Comprehensive Method on Realistic Data, ICLR 2020.

Self-Discover: instruct the LLM to compose reasoning structures for each task

Stage 1: Discover Reasoning Structure on Task-Level Reasoning Structure
{ Key-Value pairs
Language TaSk: Reafom.ng , "Type and color of each item": '}‘"
Model colored objects "Number of items of each color": ""
—] Self_Discover > "Number of items of each type": ""
. . "Number of items of each color and type":
Atomic Reasoning Modules S "Final answer":
}

Stage 2: Solve Problems Using Discovered Structure on Instance-Level
Keys during decoding

[Task Instance} 5 | Reasoning Structure |—» Lﬁggglge —» Answer

* Different reasoning tasks require different reasoning structures, i.e., different

ways to decompose the task and plan for each stage.
» Self-Discover composes task-specific reasoning structures without

manually-written demonstrations.
Zhou, Pujara, Ren, Chen, Cheng, Le, Chi, Zhou, Mishra, Zheng, SELF-DISCOVER: Large Language Models Self-Compose Reasoning Structures, NeurlPS 2024.

Self-Discover: instruct the LLM to compose reasoning structures for each task

40- Avg. BBH: +11%
T4D: + 39%

Self-Discover Over Direct Answer Self-Discover Over Chain-of-Thought
Avg. BBH: +7%

1 MATH: +5.5%

201

301 T4D: + 20%
MATH: +8.5% I|
i -lllllllllllllllll y ""l.IIIIIIIIIIII
0 I-

=20

A Accuracy
A Accuracy

Zhou, Pujara, Ren, Chen, Cheng, Le, Chi, Zhou, Mishra, Zheng, SELF-DISCOVER: Large Language Models Self-Compose Reasoning Structures, NeurlPS 2024.

Summary

* Chain-of-thought generation: variable computation of the thought process adapting to
tasks of different difficulty levels

 How to improve the CoT performance at inference time
* Few-shot prompting with labeling of thoughts
* [nstruction prompting to trigger CoT generation
* Instruct the LLM to automate the prompt design

* Note: the best practice to interact with LLMs evolves over time

* The principles of how to discover good prompting strategies for reasoning hold true
* Encourage longer CoT for complex tasks

» Support reasoning strategies required for the task

Outline

* Part 2: Search and selection from multiple candidates
* Increase the width to explore the solution space

What is missing so far?

* We should not limit the LLM to generate only one solution per problem!

e Exploring multiple branches allows the LLM to recover from mistakes in a single generation
* Generate multiple candidate solutions per problem
* Generate multiple potential next reasoning steps given the current (partial) thought

* Challenge: how to select the best response from multiple candidates?
* In most cases, we do not have an oracle scorer at inference time

Self-Consistency: select the response with the most consistent final answer
Greedy decode

Chain-of-thought
prompting

Self-consistency

Language
model

The answer is $14.

This means she uses 3 + 4 =
She sells the remainder for $2 per egg, so in
total she sells 7 * $2 = $14 per day.

7 eggs every day.

Sample a diverse set of
reasoning paths

The answer is $14. J

Marginalize out reasoning paths

to aggregate final answers

/
P e e e e o e — I
\
Q: If there are 3 cars in the parking She has 16 - 3 - 4 = 9 eggs \
lot and 2 more cars arrive, how many left. So she makes $2*9 = | The answer is $18.
cars are in the parking lot? $18 per day. I P \
A: There are 3 cars in the parking lot i < \
already. 2 more arrive. Now there are This means she she sells the \
3 +2 =5 cars. The answer is 5. remainder for $2 * (16 - 4 - 3)| The answer is $26. V
; = $26 per day.
Q: Janet’s ducks lay 16 eggs per day. Language $.
She eats three for breakfast every 9 d |g ’ o The answer is $18.
morning and bakes muffins for her juoce She eats 3 for breakfast, so | N
friends every day with four. She sells she has 16 - 3 = 13 left. Then |
the remainder for $2 per egg. How she bakes muffins, so she The answer is $18.
much does she make every day? has 13 - 4 = 9 eggs left. So !
I

N /

she has 9 eggs * $2 = $18.

Note: the selection is only based on the final answer, the reasoning paths do not need
to be the same across different sampled responses.

Wang et al., Self-Consistency Improves Chain of Thought Reasoning in Language Models, ICLR 2023.

Self-Consistency boosts the performance across models and benchmarks

Method AddSub MultiArith ASDiv~ AQuA SVAMP GSMS8K
Previous SoTA 94.9° 60.5% 75.3° 37.9¢ 57.4% 35¢ /559
UL2-20B CoT-prompting 18.2 10.7 16.9 23.6 12.6 4.1
Self-consistency 24.8 (+6.6) 15.0 (+4.3) 21.5 (+4.6) 26.9 (+3.3) 19.4 +6.8) 7.3 (+3.2)
i CoT-prompting 52.9 51.8 49.0 17.7 38.9 17.1
LaMb-l 57k Self-consistency 63.5 (+10.6) 75.7 (+23.9) 58.2 (+9.2) 26.8 (+9.1) 53.3 (+14.4) 27.7 (+10.6)
Pal M-540B CoT-prompting 91.9 94.7 74.0 35.8 79.0 56.5
Self-consistency 93.7 (+1.8) 99.3 (+4.6) 81.9 (+7.9) 48.3 (+12.5) 86.6 (+7.6) 74.4 (+17.9)
GPT-3 CoT-prompting 57.2 39.5 2:T 18.9 39.8 14.6
Code-davinci-001 Self-consistency 67.8 (+10.6) 82.7 (+232) 61.9 (+9.2) 25.6 (+6.7) 54.5 (+14.7) 23.4 (+8.8)
GPT-3 CoT-prompting 89.4 96.2 80.1 39.8 75.8 60.1
Code-davinci-002 Self-consistency 91.6 (+22) 100.0 (+3.8) 87.8 (+7.6) 52.0 (+12.2) 86.8 (+11.0) 78.0 (+17.9)

Self-Consistency performance scales with more samples

GSM8K MultiArith ARC (Challenge)

X 22 S X 50
> =
318 570 -u v 49 J —
0 e © 40
= 16 - 5 60 o-—e » S —k— Self Consistency (Multi-path)
O 14 |29 ® Oss o 35 - Sample & Rank (Multi-path)
<< 12 < 50 < 3p —@—- Greedy Decode (Single-path)
0O 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
#Sampled Reasoning Paths #Sampled Reasoning Paths #Sampled Reasoning Paths

* Sample-and-Rank baseline: select the response with the highest log probability
» Self-Consistency performance scales much better than probability-based ranking
e Unless the model is trained to be a good verifier (will cover later)

Sampling diverse responses is crucial to self-consistency

GSM8K MultiArith SVAMP ARC-e ARC-c

CoT (Wei et al., 2022) 17.1 51.8 38.9 75:3 55.1

Ensemble (3 sets of prompts) 186+05 57.1+07 42.1+06 766+01 57.0+02
Ensemble (40 prompt permutations) 192 +01 609 +02 427+01 769401 57.0+0.1
Self-Consistency (40 sampled paths) 27.7 +02 75.7+03 533 +02 793+03 598102

Beam size / Self-consistency paths 1 5 10 20 40

Beam search decoding (top beam) 23.6 19.3 16.1 15.0 10.2
AQuA Self-consistency using beam search ~ 23.6 19.8 £03 21.24+0.7 24.6 £ 04 24.2 +05
Self-consistency using sampling 19.7 £25 24.9 +£2.6 253 £1.8 26.7 +1.0 26.9 +05

Beam search decoding (top beam) 10.7 12.0 11.3 11.0 10.5
MultiArith Self-consistency using beam search ~ 10.7 11.8+00 114 +01 123 +£01 10.8 +0.1
Self-consistency using sampling 95+12 11.3+12 123 +08 13.7 09 14.7 03

 Beam search: keep top k paths with the highest probabilities in the decoding process
 Ensemble baselines: apply greedy decoding for all prompt variants of a problem
* Self-Consistency using sampling scales with more samples
 The sampling method needs to ensure the response diversity, e.g., using a high
temperature, nucleus sampling, etc.

Consistency is highly correlated with the accuracy

100

Accuracy (%)
N B O 00
O O O O

o

% o

y

)

20 40 60 80
Consistency (%)

100

If more sampled responses lead to

the same final answer:

* The LLM is more certain with its
predicted conclusion

 The aggregated solution is more
likely to be correct

Consistency-based code selection in AlphaCode

FRESESANRRP e YR DRTA ss=sssscaassssy X

1 I

: GitHub CodeContests : Codeforces

: Problems ; Problems
LEARNING ----f-----n---

Large scale

Pre-training — Fine-tuning . 4 .
: sampling

-

Large set
of potential
solutions

Selected
small set

of candidates

=

C++

ai

Filtering
& clustering

—

36

Execute
& evaluate

Clustering predicted code based on the consistency on execution results

Li et al., Competition-level Code Generation with AlphaCode, Science 2022.

Problem setting: competitive programming
D.Backspace

You are given two strings s and ¢, both consisting
of lowercase English letters. You are going to type
the string s character by character, from the first
character to the last one.

When typing a character, instead of pressing the
button corresponding to it, you can press the
"Backspace” button. It deletes the last character
you have typed among those that aren't deleted
yet (or does nothing if there are no characters in
the current string). For example, if s is "abcbd"
and you press Backspace instead of typing the
first and the fourth characters, you will get the
string "bd" (the first press of Backspace deletes
no character, and the second press deletes the
character 'c'). Another example, if s is "abcaa"
and you press Backspace instead of the last two
letters, then the resulting text is "a".

Your task is to determine whether you can obtain
the string ¢, if you type the string s and press
"Backspace” instead of typing several (maybe
zero) characters of s.

Input

The first line contains a single integer g
(1=¢=<10°) — the number of test cases.

The first line of each test case contains
the string s (1<|s|<10°). Each character
of s is a lowercase English letter.

The second line of each test case contains
the string ¢ (1<|7|<10%). Each character
of t is a lowercase English letter.

It is guaranteed that the total number
of characters in the strings over all test cases
does not exceed 2-10°.

Output

For each test case, print "YES" if you can obtain the
string ¢ by typing the string s and replacing some
characters with presses of "Backspace” button,

or "NO" if you cannot.

You may print each letter in any case (YES, y
will all be recognized as positive answer, NO, r

no will all be recognized as negative answer).

Note

Consider the example
test from the statement.

In order to obtain "ba"
from "ababa", you may
press Backspace instead
of typing the first and the
fourth characters.

There's no way to obtain
"bb" while typing "ababa".

There's no way to obtain

"aaaa” while typing "aaa".

In order to obtain "ababa”
while typing “aababa”, you
have to press Backspace
instead of typing the first
character, then type all
the remaining characters.

 The problem includes: (1) long and complicated text description; and (2) a few
input-output pairs as test cases
 The code needs to pass both given and held-out test cases

Li et al., Competition-level Code Generation with AlphaCode, Science 2022.

Clustering by execution on generated inputs

- We can filter programs that fail the given test cases, but the remaining programs
might still fail on the held-out test cases
- Train a model to generate new test inputs

Text description

-4

g g Generated .
Inputs)

- Execute sampled programs on all generated inputs
. Cluster all programs with the same outputs together
- Assumption: all programs in the same cluster are semantically equivalent if the
generated inputs are diverse and of high quality
- Sample 1 program from each of the 10 largest clusters

Example tests

Results on Codeforces

Oracle selection

0.35{ —— Pass@k
10@k with filtering + clustering
0301 10@k with filtering
—— 10@k no filtering
0.25
3
C0.20
]
>
L)
n 0.15;
0.101
0.051
0.00+— ; | ‘ | |
10! 102 103 104 105 106

Sample budget
1B encoder-decoder model

- Clustering provides additional
performance gain over filtering only

. Still a gap from the oracle selection

Limitation of self-consistency decoding: require an answer extraction process

Greedy decode

This means she uses 3 + 4 = 7 eggs every day.
She sells the remainder for $2 per egg, so in
total she sells 7 * $2 = $14 per day.

The answer is $14.

Chain-of-thought
prompting

Language

model The answer is $14. }

Marginalize out reasoning paths

Self-consistency

Sample a diverse set of
reasoning paths

\

to aggregate final answers

Q: If there are 3 cars in the parking She has 16 - 3 - 4 = 9 eggs \
lot and 2 more cars arrive, how many left. So she makes $2* 9 = | The answer is $18.

cars are in the parking lot? $18 per day. i) \
A: There are 3 cars in the parking lot 1 ~ \

already. 2 more arrive. Now there are
3 +2 =5 cars. The answer is 5.

friends every day with four. She sells
the remainder for $2 per egg. How
much does she make every day?

A Y

This means she she sells the
remainder for $2 * (16 - 4 - 3)I The answer is $26.

she has 16 - 3 = 13 left. Then]
she bakes muffins, so she I The answer is $18.

has 13 - 4 = 9 eggs left. So
she has 9 eggs * $2 =$18. |

; = $26 per day.

Q: Janet’s ducks lay 16 eggs per day. Language $;

She eats three for breakfast every 9 d lg ! o The answer is $18.
morning and bakes muffins for her e She eats 3 for breakfast, so |)

Can we enable consistency-based decoding for free-form generation?

Wang et al., Self-Consistency Improves Chain of Thought Reasoning in Language Models, ICLR 2023.

Universal self-consistency: ask the LLM to perform consistency-based selection

Universal Self Consistency prompt

I have generated the following responses
Responses to the question {question}

Response 0: {response 0} Selected
Question —LLM Response 1: {response 1} > LLM—
" response

Select the most consistent response
based on majority consensus.

Chen*, Aksitov*, Alon, Ren, Xiao, Yin, Prakash, Sutton, Wang, Zhou, Universal Self-Consistency for Large Language Model Generation, 2023.

75

45

30

15

677 61.3 61.7 L
62.9 g
302 318 32.2 31.7 322
OV = O=—- o
mte= TruthfulQA
L . |=@= SummScreen
1 3 5 8 16

Results

T T I

k

(a) Results on open-ended generation.

89.2
A o

(-1.4)

46.6

+0.2) (+0.1)(-0.1) (+0.0)

30
0 1 § =@== BIRD-SQL
1 3 5 8 16

k

(b) Results on GSM8K and BIRD-SQL. The top num-
bers are USC accuracies, and the bottom numbers are
the differences to SC accuracies.

Universal Self-Consistency
(USC) improves the
performance on open-ended
generation (summarization,
QA), where the original
self-consistency is
inapplicable.

USC matches self-consistency

performance on math

reasoning and coding.

« USC does not require
answer extraction and
code execution.

USC performance is bounded

by the long-context capability.

Improve further over consistency-based selection: training LLM rankers
® ©, ®

Generate and label

100 solutions/problem Train Verifier

Train generator

Generator Generator Verifier

Qi | questions T ? T ¢ T T T
Qi | S - Q| s | v/

S; | solutions —p V!
Y: | labels S ol V2
Q;
[3 N J

5100 > Y‘IOO

Two types of LLM-based verifiers/reward models
Outcome-supervised Reward Model (ORM): verify at the solution level
Process-supervised Reward Model (PRM): verify at the step level for each solution

Cobbe et al., Training Verifiers to Solve Math Word Problems, 2021.
Lightman et al., Let’s Verify Step by Step, 2023.

(Strong) LLM-based verifiers outperform consistency-based selection

ORM | PRM | Majority Voting
% Solved (Best-of-1860) | 72.4 | 78.2 69.6
78 A
76 A

(*)}
(o¢]

% Problems Solved (Best-of-N)
(@)
(@)

(e)]
B

62 -

~
N
L

~
N
1

~
(@)
1

—— Process-Supervised RM
—— Qutcome-Supervised RM
—— Majority Voting

10* 102 103
N = number of solutions per problem

Lightman et al., Let’s Verify Step by Step, 2023.

Process-supervised reward
model (PRM) scales better
with more samples
Note: the performance is
highly dependent on the
verifier quality
The same verifier might
not generalize across tasks

So far: response selection only after the full responses are generated

This does not fully utilize a step-wise scorer!
LLM + tree search: prioritize the exploration of more promising partial solutions

; LT T

l CB CS l
v Y Majorlw vote

(a) Input-Output (c) Chain of Thought (c) Self Consistency
Prompting (lO) Prompting (CoT) with CoT (CoT-SC)

(d) Tree of Thoughts (ToT)

Yao et al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models, NeurlPS 2023.

Tree-of-thought example: game of 24

Input: 491013

10-4=6 4+9=13

(lef: 1013 13)

./l\>

13-6=7 13-9=4 ...

(lefe79)

m

4+6=10 4*6=24

(lefe: 10)

At each step:

Thought generation: prompt the LLM to propose possible next thinking steps
Thought evaluation: prompt the LLM to evaluate how promising the current state is

(a) Propose Prompt

Ihput: 491013
Possible next steps:

(b) Value Prompt

Evaluate if given numbers can

reach 24 (sure/likely/impossible)
1014:10 +14 = 24. sure

101313

pElay
—{

Thought Generation

4+9-13 (lefc 1013 13)
10-4=6 (left 69 13)

Thought Evaluation

(13-10)"13=3"13=39

10 +13 +13 = 36 There is no way
to obtain 24 with these big
numbers. impossible

Voting-based state evaluation

(a)

Input

(b)

Plans

=7
©
c
=
G o o - - o

Passage Passage
1 2

(c)

Votes

Write a coherent passage of 4 short paragraphs. The end sentence of each paragraph must be: 1. It isn't
difficult to do a handstand if you just stand on your hands. 2. It caught him off guard that space smelled of
seared steak. 3. When she didn't like a guy who was trying to pick her up, she started using sign language. 4.
Each person who knows you has a different perception of who you are.

Plan 1 Plan 2 Plan 3-5
1. Introduce and explain the technigue 1. Introduction to an unusual self-help book,
of doing a handstand 2. Switch to a mentioning a handstand as a metaphor for
story about an astronaut's first time in embracing challenges. 2. Discuss the unexpected 1
space 3. Describe a situation where a things learned from astronauts, including the smell of 2.
woman uses sign language to avoid space. 3. Describe a woman's clever tactic for avoiding
unwanted attention 4. The final unwanted attention at a bar. 4. Contemplate how
paragraph explains how everyone has different perceptions of oneself can shape one's | -
different perceptions of others identity.

0/5 votes t 3/5 votes n/5 votes I
— e —

)

)

)
2t

Analyzing each choice in detail: Choice 1, while incorporating the required end sentences, seems to lack a
clear connection between the paragraphs {..} Choice 2 offers an interesting perspective by using the
required end sentences to present a self-help book's content. It connects the paragraphs with the theme of
self-improvement and embracing challenges, making for a coherent passage. {..} The best choice is 2.

LLM selects the best state among the candidates
. LLM votes multiple times, then selects the majority vote as the final choice

Tree-of-thought results: game of 24

Method Success
IO prompt 7.3%
CoT prompt 4.0%

CoT-SC «k=100) 9.0%
ToT (ours) (=1 45%
ToT (ours) (b=5) 74 %0

(a) Success rate with nodes visited

0.6
0.4
0.2 — 10 (best of k)
/ CoT (best of k)
ToT (b=1...5)

0 25 50 9 100

ToT with breadth-first search (BFS) scales better than standard prompting and CoT

w.r.t. token budget

Going further: we can integrate more advanced search algorithms, e.g., Monte-Carlo

Tree Search (MCTS)

Need a good LLM + prompt design for self-evaluation

Summary

* We can further scale the inference-time compute by sampling multiple branches in the
solution space

* Consistency-based selection: a simple, effective and general principle
» Self-Consistency: marginalize out reasoning paths and select based on the final answer

* Code generation: reranking based on execution consistency

 When LLM self-evaluation works well: search in the partial solution space can help

Outline

* Part 3: Iterative self-improvement
* Increase the depth to reach the final solution

Even the best LLMs still make (sometimes obvious) mistakes...

 But humans also tend to make (sometimes trivial) mistakes at first thought!

* Sampling multiple solutions can reduce mistakes from a single prediction, but it is still
suboptimal
* No feedback loop to correct the mistakes after a complete solution is generated

* Inference-time self-improvement: LLM iteratively improves its own response for the
given task

Reflexion and Self-Refine
r______i 1. Decision making] < [2. Programming] < [3. Reasoning l______ﬂ

J

You are in the middle of a room Task: You are given a list of two Task: What profession does John
(a) Task [...] Task: clean some pan and put strings [...] of open '(' or close Lanchester and Alan Dean Foster
it in countertop. ') ' parentheses only [...] have in common?
\ 2 5 . J
l [) def match parens(1lst): Think: [...] novelist, journalist,
(b) Action:take panl from stoveburnerl if sl eounti(® (') =+ eritie [.«..] novelist,

Trajectory Obs:Nothing happens. [...] S Count ("), == sl Count (YY)) * screenwriter [...] common 1is
Action:clean panl with sinkbasinl g2 count (") ") [wss) novelist and screenwriter.
Obs:Nothing happens. [...] return 'No' Action: “novelist, screenwriter”

Evaﬁzﬁon Rule/LM Heuristic: Self-generated unit tests fail: Environment Binary Reward:

: Hallucination. assert match parens(...) 0
(internal / external) =
(F[...] failed because I incorrectly)

[...] wrong because it only checks
if the total count of open and
close parentheses is equal [...]
order of the parentheses [...]

assumed that they both had the
same multiple professions [...]
accurately identifying their

[...] tried to pick up the pan in
(d)_ stoveburner 1 [...] but the pan
Reflection | yas not in stoveburner 1. [...]

_professions.
[...] Action: take pan 1 from [] Think: [...] So the profession
(e) Next stoveburner 2 e i e, John Lanchester and Alan Dean

Foster have in common is novelist.
Action: “novelist”

Tnﬂecuwy [...] Obs: You put the pan 1 in ISk (o)) els= o)
countertop 1.

. LLM generates feedback on its output. Use external evaluation when available.
LLM self-refines its output given both internal feedback and external evaluation.

Shinn et al., Reflexion: Language Agents with Verbal Reinforcement Learning, NeurlPS 2023.
Madaan et al., Self-Refine: lterative Refinement with Self-Feedback, NeurlPS 2023.

Self-reflection and self-refinement work with good (external) evaluation

(a) ALFWorld Success Rate

-+-- ReAct only
—e— ReAct + Reflexion (Heuristic)
—eo— ReAct + Reflexion (GPT)

e
©

(a) HotPotQA Success Rate

--=-- CoT only
ReAct only
0.6 —* CoT + Reflexion
—o— ReAct + Reflexion _——»

o

.8

=
©

=
-

<
N

=
=

©
o

>

N

Proportion of Solved Environments
Proportion of Solved Tasks

=
0

a 6 g 2 4 6
Trial Number Trial Number

o
N
=
(=)
o

Reflexion improves on tasks with effective evaluation heuristics, e.g., ALFWorld.
On HotPotQA: the external evaluation gives the answer correctness at each reflection step.

Shinn et al., Reflexion: Language Agents with Verbal Reinforcement Learning, NeurlPS 2023.

Self-debugging is a natural workflow for code generation

Step 2: Code execution

|
Executor
Feedback

Code Explanation

]
Step 3: Code explanation —
H

Step 1: Code
generation

Problem

Code execution provides natural external feedback: humans often debug better
within an IDE

Chen, Lin, Scharli, Zhou, Teaching Large Language Models to Self-Debug, ICLR 2024.

Self-debugging with different feedback formats

[C++] =
int count_trailing_zeroes_factorial_number (int
p) {
int count = 0@;
for (inti=5; n/i>=1; 1i*=5)
count +=n / i;
return count;

}
[Original Python] =
def count_trailing_zeroes_factorial_number(n):
cnt = 0
i=25
while ((n / i) >= 1):
cnt = (ent + (n / 1i))
i*=35
return cnt
[Simple Feedback] =

The above Python translation does not do the same
thing as the C++ code. Correct the Python
translation.

[UT Feedback] =

The Python translation does not do the same thing as
the C++ code. These are the results of failed unit
tests that test whether the Python translation's
outputs match the C++ program's outputs:

Failed: assert
count_trailing_zeroes_factorial_number(9) ==

Actual Result: 1.8
Correct the translation.
[Revised Python #n] =

def count_trailing_zeroes_factorial_number(n):
cnt = 0
i=35
while ((n / i) >= 1):
cnt = (ent + (n // 1))
i*=5
return cnt

[C++ Explanation] =
The code is an implementation of counting the number of trailing

zeroes in the factorial of a given number.
int count = 0;

The variable count is used to record the number of trailing zeroes.
for (inti=5; n/i>=1;1i*5)
The loop iterates until the quotient of the given number and i (the

divisor) is greater than or equal to 1.
count +=n / 1i;

When the loop is executed, the quotient of the given number and i

will be added to the variable count.
return count;

Finally, the function returns the number of trailing zeroes.
[Python Explanation] =
The code is an implementation of counting the number of trailing

zeroes in the factorial of a given number.
cnt = 0;

The variable cnt is used to record the number of trailing zeroes.
i=5

The variable i is used as the divisor.

while ((n / i) >= 1):

The loop iterates until the quotient of the given number and i (the

divisor) is greater than or equal to 1.
cnt = (ent + (n / 1))

When the loop is executed, the quotient of the given number and i

will be added to the variable cnt.
i*=5
The variable i1 will be multiplied by 5.

return cnt

Finally, the function returns the number of trailing zeroes.
[Trace] =

1. Initialize 'n* as 9, ‘cnt’ as 0, 'i" as 5.

2. Enter the while loop since (9 / 5)" is greater or equal to 1.

3. cnt’ is assigned ‘cnt + (9 / 5)" which evaluates to 1.8.

4.1 is multiplied by 5, becomes 25.

5. Check the condition again (9 / 25)" is not greater or equal to 1.
Exit the while loop.

6. Return “cnt’ which is 1.8.

The incorrect translation fails because the division 'n /1" in Python
returns a float value, whereas in C++ it returns an integer value.
This issue affects the value assigned to “cnt’ and results in an
incorrect output.

Simple: a short universal feedback
for all wrong code

Unit test feedback: include the
execution results

Code explanation: line-by-line
explanation of the implementation

Trace: line-by-line simulation of
the execution trace

Self-debugging results

(a) Results on the Spider development set. (b) Results on TransCoder.
Spider Codex GPT-3.5 GPT-4 StarCoder TransCoder Codex GPT-3.5 GPT-4 StarCoder
Baseline 81.3 71.1 73.2 64.7 Baseline 80.4 89.1 77.3 70.0
Simple ~ 81.3 72.2 73.4 64.9 Simple 89.3 91.6 80.9 72.9
+Expl. 84.1 72.2 73.6 64.9 UT 91.6 92.7 88.8 76.4
+ Expl. 92.5 92.7 90.4 76.6
+ Trace. 87.9 92.3 89.5 73.6
(c) Results on MBPP.
MBPP Codex GPT-3.5 GPT-4 StarCoder
Baseline 61.4 67.6 72.8 47.2
Simple 68.2 70.8 78.8 50.6

UT 69.4 72.2 80.6 52.2
+ Expl. 69.8 74.2 80.4 52.2
+ Trace. 70.8 72.8 80.2 53.2

o Self-debugging consistently boosts the performance across different LLMs
« More informative feedback further improves the debugging performance

How does self-correction work for QA-style reasoning tasks?

(a) HotPotQA Success Rate

--+-- CoT only
ReAct only

o

.8

0.6 —* CoT + Reflexion

S
IS

GSM8K MultiArith AddSub SVAMP SingleEq
78.35 96.06 85.83 78.35 91.34
Zero-Shot + RCI 85.43 97.64 89.76 84.65 94.49
Zero-Shot CoT 82.28 96.85 83.86 79.92 89.37
Zero-Shot CoT + RCI 86.22 97.24 89.88 85.83 90.94
Few-Shot CoT 80.31 98.82 89.37 83.46 91.73
Few-Shot CoT + RCI 84.25 99.21 90.55 87.40 93.70

Proportion of Solved Tasks
o
N

0 2 4 6
Trial Number

. Some prior work show improvement with self-correction, but using an oracle verifier.
. Oracle verifier is not available in most use cases. How do LLMs perform without such

external feedback?

Shinn et al., Reflexion: Language Agents with Verbal Reinforcement Learning, NeurlPS 2023.
Kim et al., Language Models can Solve Computer Tasks, NeurlPS 2023.

Self-correction without oracle feedback hurts the reasoning performance

GSM8K CommonSenseQA HotpotQA

GPT3.5 Standard Prompting 75.9 75.8 26.0
' Self-Correct (Oracle) 84.3 89.7 29.0
GPT-4 Standard Prompting 95.5 82.0 49.0
Self-Correct (Oracle) 97.5 85.5 59.0

\ # calls] GSM8K CommonSenseQA HotpotQA
Standard Prompting 1 75.9 75.8 26.0
GPT-3.5 Self-Correct (round 1) 3 15 38.1 25.0
Self-Correct (round 2) 5 74.7 41.8 25.0
Standard Prompting 1 95.5 82.0 49.0
GPT-4 Self-Correct (round 1) 3 91.5 79.5 49.0
Self-Correct (round 2) 5 89.0 80.0 43.0

Oracle: utilize the ground truth
answer for correction

Without oracle feedback, LLMs
need to judge the response
correctness themselves

LLMs can wrongly judge the
correctness of its predictions,
leading to worse performance
after self-correction

Huang, Chen, Mishra, Zheng, Yu, Song, Zhou, Large Language Models Cannot Self-Correct Reasoning Yet, ICLR 2024.

General-purpose feedback prompt variants do not improve the performance

| #calls | GSM8K | CommonSenseQA
Standard Prompting | 1 | 915 | 84.0

Feedback Prompt. Assume that this answer could be either correct or incorrect.
Review the answer carefully and report any serious problems you find.

Self-Correct (round 1) 3 88.0 81.5
Self-Correct (round 2) 5 90.0 83.0

Feedback Prompt. Review your previous answer and determine whether it’s correct.
If wrong, find the problems with your answer.

Self-Correct (round 1) 3 90.0 74.5
Self-Correct (round 2) 5 90.0 81.0

Feedback Prompt:. Verify whether your answer is correct, and provide an explanation.

Self-Correct (round 1) 3 91.0 81.5
Self-Correct (round 2) 5 91.0 83.5

Edit the feedback prompt affects the self-correction behavior (tendency to keep the
initial response), but none of them significantly improves over the initial performance.

Multi-agent debate does not improve over self-consistency

responses | GSM8K
Standard Prompting 1 76.7
Self-Consistency 3 82.5
Multi-Agent Debate (round 1) 6 83.2
Self-Consistency 6 85.3
Multi-Agent Debate (round 2) 9 83.0
Self-Consistency 9 88.2

Multi-agent debate: prompt the LLM
to review multiple responses and
give an updated one.

Recall: self-consistency selects the
response with the most common
final answer.

Without a good evaluator,
multi-agent debate does not
effectively utilize the token budget.

Huang, Chen, Mishra, Zheng, Yu, Song, Zhou, Large Language Models Cannot Self-Correct Reasoning Yet, ICLR 2024.

Du et al., Improving Factuality and Reasoning in Language Models through Multiagent Debate, 2023.

Putting everything together: how to best utilize the token budget

« How to balance the inference budget for generating multiple samples
« In parallel or sequentially?

« This is mostly a model-specific and task-specific empirical question, depending on the
model’s self-reflection and correction abilities.

Revisions@128, Varying the Sequential to Parallel Ratio
= Compute Optimal Revisions
2
_10 45 = Majority
—— Best-of-N Weighted

@
o

@® Compute Optimal

1 40 ® Parallel

=10

| 35
;100
} 30
-1

=10 25

. , 20

mnm=H0_ 21 23 25 27
1 2 3 4 5

Generation Budget

6

o

4

MATH Accuracy (%)

MATH Test Accuracy (%)
Sequential to Parallel Ratio

2

o

0
Test Questions Binned by Increasing Difficulty Level

Snell et al., Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters, 2024.

Another factor for optimizing inference cost: model size

Inference scaling (Weighted Majority) Inference scaling (Weighted Majority)

70 70 . ' 14.5
- o : 14.0
= 60 D 601 ..

O 50- O 50/ ke 13575
& = @)
o o -13.0 1
= 40 = 40 ® E-’
o 2 125
5 5 { ok E
& 301 T 30 i -12.0
. . I ¥

s i11.5

2 8 32 128 512 2048 o5 1 2 a4 8 16
Inference FLOPs per question (x10'%) Model size (B)

With the same FLOPs budget, we can sample more solutions from a lighter model.
The optimal model with different inference budget can be different

Wu et al., Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference for LLM Problem-Solving, 2024.

What we covered in this lecture

* Part 1: Introduction to basic prompting techniques
* Use more token budget to generate a single solution

* Part 2: Search and selection from multiple candidates
* Increase the width to explore the solution space

* Part 3: lterative self-improvement
* Increase the depth to reach the final solution

The best practice to interact with an LLM should be adapted according
to its capabilities.

General principle of how to design effective reasoning techniques

* The Bitter Lesson from Richard Sutton (again) is an important guideline for designing
reasoning techniques, including both inference-time and training-time algorithms.

* “One thing that should be learned from the bitter lesson is the great power of
general purpose methods, of methods that continue to scale with increased
computation even as the available computation becomes very great.”

* “We want Al agents that can discover like we can, not which contain what
we have discovered. Building in our discoveries only makes it harder to see
how the discovering process can be done.”

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Thanks!

* Part 1: Introduction to basic prompting techniques
* Use more token budget to generate a single solution

* Part 2: Search and selection from multiple candidates
* Increase the width to explore the solution space

* Part 3: lterative self-improvement
* Increase the depth to reach the final solution

The best practice to interact with an LLM should be adapted according
to its capabilities.

