
Inference-Time Techniques for
LLM Reasoning

Xinyun Chen

CS294/194-280: Advanced Large Language Model Agents

Highlight of LLMs in 2024: the advancement of reasoning models

OpenAI o1 started to achieve impressive performance across various challenging
reasoning tasks in math, coding, STEM, etc.

https://openai.com/index/learning-to-reason-with-llms/

https://openai.com/index/learning-to-reason-with-llms/

Performance improves with more inference-time compute

https://arcprize.org/blog/oai-o3-pub-breakthrough

O3 achieved 87.5%
accuracy on ARC-AGI, with
>$1k test-time cost to solve
each task
• Other existing LLMs

achieved <25%
accuracy if no special
inference-time
techniques were used

https://arcprize.org/blog/oai-o3-pub-breakthrough

OpenAI o1 demo: hidden thought before generating the solution

User
query Summarized

hidden
thought

Model-generated response

Gemini 2.0 Flash Thinking demo: generating long thought before the solution

https://x.com/OfficialLoganK/status/1869789822384255300

https://x.com/OfficialLoganK/status/1869789822384255300

Core idea: trigger the LLM to generate long chain-of-thought (CoT)

Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022.
Nye et al., Show Your Work: Scratchpads for Intermediate Computation with Language Models, 2021.

Thought

Approaches to trigger CoT generation
• Few-shot CoT prompting
• Instruction prompting
• Instruction tuning
• Reinforcement learning

This lecture: inference-time techniques
for scaling token budget

Outline

• Part 1: Introduction to basic prompting techniques
• Use more token budget to generate a single solution

• Part 2: Search and selection from multiple candidates
• Increase the width to explore the solution space

• Part 3: Iterative self-improvement
• Increase the depth to reach the final solution

Outline

• Part 1: Introduction to basic prompting techniques
• Use more token budget to generate a single solution

• Part 2: Search and selection from multiple candidates
• Increase the width to explore the solution space

• Part 3: Iterative self-improvement
• Increase the depth to reach the final solution

Background: standard prompting

Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022.
Nye et al., Show Your Work: Scratchpads for Intermediate Computation with Language Models, 2021.

Exemplar

• Before the advancement in
post-training techniques, standard
prompting performance is poor on
reasoning benchmarks.

• Issue: standard few-shot exemplars
only provide information on the final
solution format, but not the rationale
to derive the solution.

Chain-of-thought prompting: providing thoughts in the exemplars

Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022.
Nye et al., Show Your Work: Scratchpads for Intermediate Computation with Language Models, 2021.

Exemplar
Thought

CoT performance scales with the model size

Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022.
Wei et al., Emergent Abilities of Large Language Models, TMLR 2022.

• CoT performance improves more significantly with the
increase of the model size.

• Better models benefit more with CoT generation
• A drastic improvement on reasoning performance

when the model reaches a certain scale.

• Note: these experiments used pretrained-only LLMs
• Recent post-trained LLMs might have different

scaling curves, but the main conclusions still hold.

Zero-shot CoT: elicit CoT generation with an instruction

Kojima et al., Large Language Models are Zero-Shot Reasoners, NeurIPS 2022.

“Let’s think step by step” triggers CoT generation w/o exemplars.

Zero-shot CoT significantly outperforms zero-shot performance

Kojima et al., Large Language Models are Zero-Shot Reasoners, NeurIPS 2022.

Issue: zero-shot CoT performance is still worse than few-shot CoT

Kojima et al., Large Language Models are Zero-Shot Reasoners, NeurIPS 2022.

How to improve CoT performance w/o manually labeling exemplars?

Q: What is the area of the square with the four vertices at (-2,
2), (2, -2), (-2, -6), and (-6, -2)?

Instruction:
Recall relevant exemplars:
Solve the initial problem:

Model Input

Relevant exemplars:
Q: What is the area of the square with a side length of 5?
A: The area of a square is found by squaring the length of its side.
So, the area of this square is 5^2 = 25. …

Solve the initial problem:
To find the area of the square, we need to find the side length.
The length is … \sqrt{(2 - (-2))^2 + (-2 - 2)^2} = \sqrt{32}. So, the
area of the square is (\sqrt{32})^2 = 32.

Model Output

Prompt the LLM to first recall
relevant exemplars, before
solving the test problem.

Analogical prompting: instruct the LLM to generate exemplars

Yasunaga, Chen, Li, Pasupat, Leskovec, Liang, Chi, Zhou, Large Language Models as Analogical Reasoners, ICLR 2024.

Q: What is the area of the square with the four vertices at (-2,
2), (2, -2), (-2, -6), and (-6, -2)?

Instruction:
Recall relevant exemplars:
Solve the initial problem:

Model Input

Relevant exemplars:
Q: What is the area of the square with a side length of 5?
A: The area of a square is found by squaring the length of its side.
So, the area of this square is 5^2 = 25. …

Solve the initial problem:
To find the area of the square, we need to find the side length.
The length is … \sqrt{(2 - (-2))^2 + (-2 - 2)^2} = \sqrt{32}. So, the
area of the square is (\sqrt{32})^2 = 32.

Model Output

Analogical prompting: instruct the LLM to generate exemplars

Yasunaga, Chen, Li, Pasupat, Leskovec, Liang, Chi, Zhou, Large Language Models as Analogical Reasoners, ICLR 2024.

Benefits

● Exemplars are self-generated
by LLMs, no manual labeling.

● Exemplars are tailored to
individual problems.

Motivation: human analogical reasoning
• Humans are not explicitly given demonstrations every time for a new task
• Instead, humans intrinsically recall from past relevant experience

How to solve it, George Pólya, 1945.

Example: Codeforces (prompt)

• Besides exemplars, the LLM can also self-generate high-level knowledge
• The generated knowledge complements the problems with broader insights

Example: Codeforces (self-generated knowledge + exemplars)

Example: Codeforces (solving the initial problem)

0-shot

14.8%

50.3%
54.0%

61.0%

0-shot
CoT

(Kojima+22)

Few-shot
CoT

(Wei+22)

This
work

Math problems
(GSM8K, text-davinci-003)

0-shot

8% 9%

15%

0-shot
CoT

(Kojima+22)

This
work

Code generation
(Codeforces, GPT3.5 turbo)

Temporal reasoning
(BIG-Bench, GPT3.5 turbo)

0-shot

40.4%
44.8%

57.6%

0-shot
CoT

(Kojima+22)

This
work

● Analogical prompting outperforms 0-shot CoT and manual few-shot CoT

Result overview

Stronger LLMs are better analogical reasoners

• Weaker LLMs benefit less from analogical prompting, though it does not hurt
the zero-shot performance

• With stronger LLMs, analogical prompting outperforms CoT with
manually-designed or retrieved exemplars
○ The generated CoT is more tailored to the underlying LLM

GSM8K for math reasoning

Zero-shot CoT on MultiArith with text-davinci-002

Which instructions work for CoT generation?

Kojima et al., Large Language Models are Zero-Shot Reasoners, NeurIPS 2022.

● Current LLMs are sensitive to
prompt design

● There is no clear principle of
how to write optimal prompts

● How to reduce the manual
work for writing prompts?

Large language models for prompt engineering

Zhou et al., Large Language Models are Human-Level Prompt Engineers, ICLR 2023.

● Proposal generation:
leverage the LLM to
generate initial instructions.

● Scoring each instruction
based on the prediction
correctness on a small set
of problems.

Going further: LLM as the optimizer to iteratively improve the prompt

Yang, Wang, Lu, Liu, Le, Zhou, Chen, Large Language Models as Optimizers, ICLR 2024.

● Core idea: instruct the LLM to leverage the past optimization trajectory,
represented as sorted (solution, score) pairs

● Optimizer: the LLM to propose a new instruction given old ones and task exemplars
● Evaluator: the LLM to evaluate the accuracy of an instruction

Example meta-prompt for GSM8K:
I have some texts along with their corresponding scores. The texts are arranged in ascending order
based on their scores, where higher scores indicate better quality.

text:
Let’s figure it out!
score:
61
text:
Let’s solve the problem.
score:
63
(. . . more instructions and scores . . .)

The following exemplars show how to apply your text: you replace <INS> in each input with your
text, then read the input and give an output. We say your output is wrong if your output is different
from the given output, and we say your output is correct if they are the same.

input:
Q: Alannah, Beatrix, and Queen are preparing for the new school year and have been given books
by their parents. Alannah has 20 more books than Beatrix. Queen has 1/5 times more books than
Alannah. If Beatrix has 30 books, how many books do the three have together?
A: <INS>
output:
140
(. . . more exemplars . . .)

Write your new text that is different from the old ones and has a score as high as possible. Write the
text in square brackets.

exemplars

(top) past instructions and accuracies

Meta-prompt for prompt optimization

● Initial instruction for prompt optimization: “Let’s solve the problem.” with acc = 60.8%.

● Our best LLM-generated prompt outperforms “Let’s think step by step” by ~8%, matching the
few-shot CoT accuracy (80.7%) in PaLM-2 technical report.

Results on GSM8K

The accuracy increases with more optimization steps, then plateaus.

scorer: PaLM 2-L

optimizer: PaLM 2-L-IT

scorer: text-bison

optimizer: PaLM 2-L-IT

Optimization graphs

Going back to CoT: what CoT brings into LLM reasoning

• Chain-of-thought prompting: variable computation of the thought process adapting to
tasks of different difficulty levels
• More complex questions -> more reasoning steps in the chain-of-thought

• Reasoning strategies enabled by CoT
• Decomposition
• Planning
• …

• We can explicitly instruct the LLM with the desired reasoning strategies for problem solving

Least-to-most prompting: easy-to-hard generalization via decomposition

Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.

Example: solving the SCAN compositional generalization benchmark

Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.

• SCAN: translating synthetic natural language commands into actions sequences
• Length split: action sequences in the test set are longer than training samples
• Least-to-most prompting can achieve nearly perfect test accuracy with 0.1%

training samples as exemplars

SCAN length split

Example: solving text-to-code compositional generalization benchmarks

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.
Keyers et al., Measuring Compositional Generalization: A Comprehensive Method on Realistic Data, ICLR 2020.

Question: Did M1 star M2 , star M3 , and star a art director and editor of M0?
SPARQL: SELECT count(*) WHERE
 { ?x0 edited M0 . ?x0 art directed M0 . M1 starred ?x0 . M1 starred M2 . M1 starred M3 }

Question: What was produced by a art director that M1 and M2 employed?
SPARQL: SELECT DISTINCT WHERE
 { ?x0 produced by ?x1 . ?x1 a art director . M0 employed ?x1 . M1 employed ?x1 }

Examples in CFQ (Compositional Freebase Questions) benchmark

• Challenge: more complicated grammar with a larger vocabulary
• A single prompt might not be enough to cover all grammar rules

• Decomposition enables customized prompt for each subproblem

Our approach: dynamic least-to-most prompting

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.

Evaluation on CFQ

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.
Keyers et al., Measuring Compositional Generalization: A Comprehensive Method on Realistic Data, ICLR 2020.

Self-Discover: instruct the LLM to compose reasoning structures for each task

Zhou, Pujara, Ren, Chen, Cheng, Le, Chi, Zhou, Mishra, Zheng, SELF-DISCOVER: Large Language Models Self-Compose Reasoning Structures, NeurIPS 2024.

• Different reasoning tasks require different reasoning structures, i.e., different
ways to decompose the task and plan for each stage.

• Self-Discover composes task-specific reasoning structures without
manually-written demonstrations.

Self-Discover: instruct the LLM to compose reasoning structures for each task

Zhou, Pujara, Ren, Chen, Cheng, Le, Chi, Zhou, Mishra, Zheng, SELF-DISCOVER: Large Language Models Self-Compose Reasoning Structures, NeurIPS 2024.

Summary

• Chain-of-thought generation: variable computation of the thought process adapting to
tasks of different difficulty levels

• How to improve the CoT performance at inference time
• Few-shot prompting with labeling of thoughts
• Instruction prompting to trigger CoT generation
• Instruct the LLM to automate the prompt design

• Note: the best practice to interact with LLMs evolves over time
• The principles of how to discover good prompting strategies for reasoning hold true

• Encourage longer CoT for complex tasks
• Support reasoning strategies required for the task

Outline

• Part 1: Introduction to basic prompting techniques
• Use more token budget to generate a single solution

• Part 2: Search and selection from multiple candidates
• Increase the width to explore the solution space

• Part 3: Iterative self-improvement
• Increase the depth to reach the final solution

What is missing so far?

• We should not limit the LLM to generate only one solution per problem!

• Exploring multiple branches allows the LLM to recover from mistakes in a single generation
• Generate multiple candidate solutions per problem
• Generate multiple potential next reasoning steps given the current (partial) thought

• Challenge: how to select the best response from multiple candidates?
• In most cases, we do not have an oracle scorer at inference time

Self-Consistency: select the response with the most consistent final answer

Wang et al., Self-Consistency Improves Chain of Thought Reasoning in Language Models, ICLR 2023.

Note: the selection is only based on the final answer, the reasoning paths do not need
to be the same across different sampled responses.

Self-Consistency boosts the performance across models and benchmarks

Self-Consistency performance scales with more samples

• Sample-and-Rank baseline: select the response with the highest log probability
• Self-Consistency performance scales much better than probability-based ranking

• Unless the model is trained to be a good verifier (will cover later)

Sampling diverse responses is crucial to self-consistency

• Beam search: keep top k paths with the highest probabilities in the decoding process
• Ensemble baselines: apply greedy decoding for all prompt variants of a problem
• Self-Consistency using sampling scales with more samples

• The sampling method needs to ensure the response diversity, e.g., using a high
temperature, nucleus sampling, etc.

Consistency is highly correlated with the accuracy

If more sampled responses lead to
the same final answer:
• The LLM is more certain with its

predicted conclusion
• The aggregated solution is more

likely to be correct

Consistency-based code selection in AlphaCode

Li et al., Competition-level Code Generation with AlphaCode, Science 2022.

Clustering predicted code based on the consistency on execution results

• The problem includes: (1) long and complicated text description; and (2) a few
input-output pairs as test cases

• The code needs to pass both given and held-out test cases

Problem setting: competitive programming

Li et al., Competition-level Code Generation with AlphaCode, Science 2022.

• We can filter programs that fail the given test cases, but the remaining programs
might still fail on the held-out test cases

• Train a model to generate new test inputs

Clustering by execution on generated inputs

• Execute sampled programs on all generated inputs
• Cluster all programs with the same outputs together

• Assumption: all programs in the same cluster are semantically equivalent if the
generated inputs are diverse and of high quality

• Sample 1 program from each of the 10 largest clusters

Text description
…

Example tests
…

Generated
Inputs

…

Results on Codeforces

Oracle selection

1B encoder-decoder model

• Clustering provides additional
performance gain over filtering only

• Still a gap from the oracle selection

Limitation of self-consistency decoding: require an answer extraction process

Wang et al., Self-Consistency Improves Chain of Thought Reasoning in Language Models, ICLR 2023.

Can we enable consistency-based decoding for free-form generation?

Universal self-consistency: ask the LLM to perform consistency-based selection

Chen*, Aksitov*, Alon, Ren, Xiao, Yin, Prakash, Sutton, Wang, Zhou, Universal Self-Consistency for Large Language Model Generation, 2023.

Results

● Universal Self-Consistency
(USC) improves the
performance on open-ended
generation (summarization,
QA), where the original
self-consistency is
inapplicable.

● USC matches self-consistency
performance on math
reasoning and coding.
● USC does not require

answer extraction and
code execution.

● USC performance is bounded
by the long-context capability.

Improve further over consistency-based selection: training LLM rankers

Cobbe et al., Training Verifiers to Solve Math Word Problems, 2021.
Lightman et al., Let’s Verify Step by Step, 2023.

Two types of LLM-based verifiers/reward models
• Outcome-supervised Reward Model (ORM): verify at the solution level
• Process-supervised Reward Model (PRM): verify at the step level for each solution

(Strong) LLM-based verifiers outperform consistency-based selection

Lightman et al., Let’s Verify Step by Step, 2023.

• Process-supervised reward
model (PRM) scales better
with more samples

• Note: the performance is
highly dependent on the
verifier quality

• The same verifier might
not generalize across tasks

So far: response selection only after the full responses are generated

• This does not fully utilize a step-wise scorer!
• LLM + tree search: prioritize the exploration of more promising partial solutions

Yao et al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models, NeurIPS 2023.

Tree-of-thought example: game of 24

At each step:
• Thought generation: prompt the LLM to propose possible next thinking steps
• Thought evaluation: prompt the LLM to evaluate how promising the current state is

Voting-based state evaluation

LLM selects the best state among the candidates
• LLM votes multiple times, then selects the majority vote as the final choice

Tree-of-thought results: game of 24

• ToT with breadth-first search (BFS) scales better than standard prompting and CoT
w.r.t. token budget

• Going further: we can integrate more advanced search algorithms, e.g., Monte-Carlo
Tree Search (MCTS)

• Need a good LLM + prompt design for self-evaluation

Summary

• We can further scale the inference-time compute by sampling multiple branches in the
solution space

• Consistency-based selection: a simple, effective and general principle
• Self-Consistency: marginalize out reasoning paths and select based on the final answer
• Code generation: reranking based on execution consistency

• When LLM self-evaluation works well: search in the partial solution space can help

Outline

• Part 1: Introduction to basic prompting techniques
• Use more token budget to generate a single solution

• Part 2: Search and selection from multiple candidates
• Increase the width to explore the solution space

• Part 3: Iterative self-improvement
• Increase the depth to reach the final solution

Even the best LLMs still make (sometimes obvious) mistakes…

• But humans also tend to make (sometimes trivial) mistakes at first thought!

• Sampling multiple solutions can reduce mistakes from a single prediction, but it is still
suboptimal
• No feedback loop to correct the mistakes after a complete solution is generated

• Inference-time self-improvement: LLM iteratively improves its own response for the
given task

Reflexion and Self-Refine

Shinn et al., Reflexion: Language Agents with Verbal Reinforcement Learning, NeurIPS 2023.
Madaan et al., Self-Refine: Iterative Refinement with Self-Feedback, NeurIPS 2023.

• LLM generates feedback on its output. Use external evaluation when available.
• LLM self-refines its output given both internal feedback and external evaluation.

Self-reflection and self-refinement work with good (external) evaluation

Shinn et al., Reflexion: Language Agents with Verbal Reinforcement Learning, NeurIPS 2023.

• Reflexion improves on tasks with effective evaluation heuristics, e.g., ALFWorld.
• On HotPotQA: the external evaluation gives the answer correctness at each reflection step.

Self-debugging is a natural workflow for code generation

Chen, Lin, Schärli, Zhou, Teaching Large Language Models to Self-Debug, ICLR 2024.

Code execution provides natural external feedback: humans often debug better
within an IDE

Simple: a short universal feedback
for all wrong code

Unit test feedback: include the
execution results

Code explanation: line-by-line
explanation of the implementation

Trace: line-by-line simulation of
the execution trace

Self-debugging with different feedback formats

Self-debugging results

● Self-debugging consistently boosts the performance across different LLMs
● More informative feedback further improves the debugging performance

How does self-correction work for QA-style reasoning tasks?

Shinn et al., Reflexion: Language Agents with Verbal Reinforcement Learning, NeurIPS 2023.
Kim et al., Language Models can Solve Computer Tasks, NeurIPS 2023.

• Some prior work show improvement with self-correction, but using an oracle verifier.
• Oracle verifier is not available in most use cases. How do LLMs perform without such

external feedback?

Self-correction without oracle feedback hurts the reasoning performance

Huang, Chen, Mishra, Zheng, Yu, Song, Zhou, Large Language Models Cannot Self-Correct Reasoning Yet, ICLR 2024.

● Oracle: utilize the ground truth
answer for correction

● Without oracle feedback, LLMs
need to judge the response
correctness themselves

● LLMs can wrongly judge the
correctness of its predictions,
leading to worse performance
after self-correction

General-purpose feedback prompt variants do not improve the performance

Edit the feedback prompt affects the self-correction behavior (tendency to keep the
initial response), but none of them significantly improves over the initial performance.

Multi-agent debate does not improve over self-consistency

Huang, Chen, Mishra, Zheng, Yu, Song, Zhou, Large Language Models Cannot Self-Correct Reasoning Yet, ICLR 2024.
Du et al., Improving Factuality and Reasoning in Language Models through Multiagent Debate, 2023.

● Multi-agent debate: prompt the LLM
to review multiple responses and
give an updated one.

● Recall: self-consistency selects the
response with the most common
final answer.

● Without a good evaluator,
multi-agent debate does not
effectively utilize the token budget.

Putting everything together: how to best utilize the token budget

Snell et al., Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters, 2024.

● How to balance the inference budget for generating multiple samples
● In parallel or sequentially?

● This is mostly a model-specific and task-specific empirical question, depending on the
model’s self-reflection and correction abilities.

Another factor for optimizing inference cost: model size

Wu et al., Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference for LLM Problem-Solving, 2024.

• With the same FLOPs budget, we can sample more solutions from a lighter model.
• The optimal model with different inference budget can be different

What we covered in this lecture

• Part 1: Introduction to basic prompting techniques
• Use more token budget to generate a single solution

• Part 2: Search and selection from multiple candidates
• Increase the width to explore the solution space

• Part 3: Iterative self-improvement
• Increase the depth to reach the final solution

The best practice to interact with an LLM should be adapted according
to its capabilities.

General principle of how to design effective reasoning techniques

• The Bitter Lesson from Richard Sutton (again) is an important guideline for designing
reasoning techniques, including both inference-time and training-time algorithms.

• “One thing that should be learned from the bitter lesson is the great power of
general purpose methods, of methods that continue to scale with increased
computation even as the available computation becomes very great.”

• “We want AI agents that can discover like we can, not which contain what
we have discovered. Building in our discoveries only makes it harder to see
how the discovering process can be done.”

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Thanks!

• Part 1: Introduction to basic prompting techniques
• Use more token budget to generate a single solution

• Part 2: Search and selection from multiple candidates
• Increase the width to explore the solution space

• Part 3: Iterative self-improvement
• Increase the depth to reach the final solution

The best practice to interact with an LLM should be adapted according
to its capabilities.

