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Formal Reasoning Meets LLMs: Towards AI for Mathematics and 
Verification

Why Math and Coding?
• Proxies for complex reasoning and planning

• Important in human intelligence; challenging for LLMs
• Unlimited applications: travel planning, calendar scheduling, etc.

• Relatively easy to evaluate
• Math: check the answers
• Coding: run unit tests
• Writing a crime fiction? Composing a symphony?
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How LLMs are Trained to Solve Math 
Problems?

• Supervised finetuning (SFT): “Good data is all you need!”

• Reinforcement learning (RL): “Verifiability is all you need!”

• Methods are straightforward, but the devil is in the details, e.g., data curation/
cleaning, infrastructures for training and inference
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Problem: Suppose that the sum of the squares of two 
complex numbers  and  is , and the sum of their cubes 
is . List all possible values for , separated by 
commas.

𝑥 𝑦 7
10 𝑥 + 𝑦

           >>> [-5, -5, 1, 1, 4, 4]

Solution: Let’s use `sympy` to calculate and print all 
possible values for .𝑥 + 𝑦

Removing duplicates, the possible values for  are 
\boxed{-5, 1, 4}

𝑥 + 𝑦
LLM  pretrained 
on text and code
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Finetuned 
math LLM

Tool-
integrated 
math LLM

Math-related 
web documents
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Problem: Suppose that the sum of the squares of two 
complex numbers  and  is , and the sum of their cubes 
is . List all possible values for , separated by 
commas.

𝑥 𝑦 7
10 𝑥 + 𝑦

           >>> [-5, -5, 1, 1, 4, 4]

Solution: Let’s use `sympy` to calculate and print all 
possible values for .𝑥 + 𝑦

Removing duplicates, the possible values for  
are \boxed{-5, 1, 4}

𝑥 + 𝑦

• Training data is foremost important
• Problems + (step-by-step, tool-integrated) 

solutions curated by humans and LLMs
• Size of largest public datasets: ~900K

[Li et al., 
NuminaMath-1.5]
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Problem: Suppose that the sum of the squares of two 
complex numbers  and  is , and the sum of their cubes 
is . List all possible values for , separated by 
commas.

𝑥 𝑦 7
10 𝑥 + 𝑦

           >>> [-5, -5, 1, 1, 4, 4]

Solution: Let’s use `sympy` to calculate and print all 
possible values for .𝑥 + 𝑦

Removing duplicates, the possible values for  
are \boxed{-5, 1, 4}

𝑥 + 𝑦

• Training data is foremost important
• Problems + (step-by-step, tool-integrated) 

solutions curated by humans and LLMs
• Size of largest public datasets: ~900K

• What if the data has final answers but not 
intermediate steps ?

[Li et al., 
NuminaMath-1.5]
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• Verify the model’s solution by comparing the final 
answer with the ground truth

• RL algorithms such as GRPO optimize the model 
to achieve high rewards
• Popularized by DeepSeek-R1

Reward

[Guo et al., 2025]

Feedback
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Problem: Suppose that the sum of the squares of two 
complex numbers  and  is , and the sum of their cubes 
is . List all possible values for , separated by 
commas.

𝑥 𝑦 7
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Solution: Let’s use `sympy` to calculate and print all 
possible values for .𝑥 + 𝑦

Removing duplicates, the possible values for  
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𝑥 + 𝑦

Solution: ... \boxed{-5, 1, 
4}

Solution: …\boxed{-2, 
6}

• Verify the model’s solution by comparing the final 
answer with the ground truth

• RL algorithms such as GRPO optimize the model 
to achieve high rewards
• Popularized by DeepSeek-R1

• The solution must be verifiable, e.g., w/ 
numeric answers. Not applicable to proofs?

[Guo et al., 2025]

Reward

Feedback
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How LLMs are Trained to Solve Math 
Problems?
• State-of-the-art math LLM ≈ strong pretrained model + two post-training 

techniques + marvelous engineering

• Supervised finetuning (SFT): “Good data is all you need!”

• Reinforcement learning (RL): “Verifiability is all you need!”
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How LLMs are Trained to Solve Math 
Problems?
• State-of-the-art math LLM ≈ strong pretrained model + two post-training 

techniques + marvelous engineering

• Supervised finetuning (SFT): “Good data is all you need!”

• Reinforcement learning (RL): “Verifiability is all you need!”

• Will AI soon “solve mathematics”?

24
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Gap 1: Pre-college Math -> Advanced Math
• Existing successes are mostly on pre-college math, e.g., AIME, IMO
• LLMs struggle with more advanced math, e.g., mathematical research

• o3’s FrontierMath results come with caveats
• How to solve problems w/o numeric answers?

25
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• LLMs struggle to generate valid proofs
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[Kevin Buzzard “Can AI do maths yet? Thoughts from a mathematician” 
2024]
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[Petrov et al. "Proof or Bluff? Evaluating LLMs on 2025 USA Math Olympiad" 
2025]

[Kevin Buzzard “Can AI do maths yet? Thoughts from a mathematician” 
2024]
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LLMs Alone are Not Enough
• Current math LLMs rely heavily on data and verifiability

• Data scarcity
• Limited to data-rich domains, e.g., pre-college math
• Cannot tackle advanced math or proofs

• Lack of verifiability
• Solutions can only be evaluated by comparing with the ground truth
• Limited to problems with numeric solutions, e.g., GSM8K, MATH
• Not applicable to most problems in advanced math

29
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Formal Mathematical Reasoning
• Our position paper
• Mathematical reasoning grounded in formal systems, e.g.,

• First/higher-order logic
• Dependent type theory
• Computer programs & formal specifications

• Formal environments can verify proofs and provide automatic feedback
• Verification enables rigorous evaluation of reasoning
• Learning from feedback mitigates data scarcity

• Integrating formal reasoning and LLMs’ informal reasoning

30



Formal Reasoning Meets LLMs: Towards AI for Mathematics and 
Verification

The Missing Ingredient: Formal Reasoning

31

[Yang et al. "Formal Mathematical Reasoning: A New Frontier in AI" 
2024]

• Mathematical reasoning grounded in formal systems, e.g.,
• First/higher-order logic, dependent type theory
• Computer programs & formal specifications

• Formal systems can verify proofs and provide automatic feedback
• Learning from feedback mitigates data scarcity
• Verification enables rigorous evaluation of reasoning

• We need to integrate formal reasoning with informal reasoning by LLMs
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Proof Assistants (Interactive Theorem 
Provers)
• Programming languages for writing formal math and software

32
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Formalizing Mathematics in Lean
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Lean file
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n : ℕ 
⊢ add 0 n = n

⊢ add 0 0 = 0 n’ : ℕ
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Tactic
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n

rfl

simp [add, ih]

Lean file
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• Large-scale search and reinforcement learning using feedback from Lean

[Google DeepMind "AI achieves silver-medal standard solving International Mathematical Olympiad problems" 
2024]
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• Theorems and proofs are 
represented formally in Lean

• Lean can check if the proof is 
correct. No room for hallucination
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LLMs for Theorem Proving
• We can train LLMs to generate either

• Next steps in the proof (a.k.a. tactic)
• Complete proofs

• Proof steps can be assembled into complete 
proofs using search algorithms

• How to generate the next step?

43
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• We can train LLMs to generate either
• Next steps in the proof (a.k.a. tactic)
• Complete proofs

• Proof steps can be assembled into complete 
proofs using search algorithms

• How to generate the next step?
• Learn from human-written formal proofs
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Machine Learning for Predicting the Next 
Step
• Classical ML algorithms, e.g., KNN

• Deep neural networks

• LLMs

45

[Gauthier et al. "TacticToe: Learning to Prove with Tactics" 2018]

[Huang et al. “GamePad: A Learning Environment for Theorem Proving” ICLR 2019]
[Yang et al. “Learning to Prove Theorems via Interacting with Proof Assistants” ICML 2019]
[Yang et al. “Learning to Prove Theorems via Interacting with Proof Assistants” ICML 2019]
[Bansal et al. "HOList: An Environment for Machine Learning of Higher-Order Theorem Proving" ICML 
2019]

[Polu and Sutskever "Generative Language Modeling for Automated Theorem Proving" 
2020]
[Lample et al. "HyperTree Proof Search for Neural Theorem Proving" NeurIPS 2022]
[Han et al. "Proof Artifact Co-training for Theorem Proving with Language Models" ICLR 
2022]
…
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LeanDojo
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[Yang et al. “LeanDojo: Theorem Proving in Lean using Language Models” NeurIPS 
2023]

• Previous LLM-based provers are private
• LeanDojo provides open-source

• Data for training and evaluation
• Trained model checkpoints
• Tools for extracting data and interacting with Lean
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Lean 

Data 
extraction

LeanDojo Benchmark
• 98,641 theorems and proofs
• 217,639 tactics
• 129,162 premises
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Lean Machine learning model

Data 
extraction Training

LeanDojo Benchmark
• 98,641 theorems and proofs
• 217,639 tactics
• 129,162 premises
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Lean Machine learning model

Data 
extraction Training

Prove theorems by Interaction

LeanDojo Benchmark
• 98,641 theorems and proofs
• 217,639 tactics
• 129,162 premises
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• Given a state, we retrieve premises from the set of all accessible premises
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• Given a state, we retrieve premises from the set of all accessible premises
• Retrieved premises are concatenated with the state and used for tactic 

generation



Formal Reasoning Meets LLMs: Towards AI for Mathematics and 
Verification

Retrieval-Augmented Prover (ReProver)

54

• Given a state, we retrieve premises from the set of all accessible premises
• Retrieved premises are concatenated with the state and used for tactic 

generation



Summary: A Typical Neural Theorem Prover
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n : ℕ 
⊢ add 0 n = n

⊢ add 0 0 = 0

n’ : ℕ
ih: add 0 n’ = n’ 
⊢ add 0 (n’+1) = 
n’+1

n : ℕ
⊢ false

⊢ add 0 0 = 0

n’ : ℕ
⊢ add 0 (n’+1) = 
n’+1

ind
uc

tio
n n

cases n

exfalso

n’ : ℕ
ih: add 0 n’ = n’ 
⊢ add 0 (n’+1) = 
n’+1

rfl
simp [add, ih

]

n’ : ℕ
ih: add 0 n’ = n’ 
⊢ add 0 (n’+1) = 
n’+1

simp [add, ih]
rw [ih]

linarith

…

…

…

…

…

…

…

…

…

…

Formal math library

Local context + 
goal

Tactic 
suggestion
s

Language 
model

rw [ih]
linarith

Tactic 
generation

Proof search





Limitations
• LLMs work well in domains with abundant data, but novel mathematical research 

is data-scarce
• The “action space” in proving mathematical theorems large

• Go: 19x19 board. Math: infinite?
• Hard to cover the space uniformly by human-created data
• Exploration is difficult in reinforcement learning
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Taming the Action Space in Proving Inequalities

𝟐𝒂𝟐 + 𝒃𝟐 + 𝟐𝒄𝟐 + 𝒃𝟐

𝟐
≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐  ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

QED.

Given  three reals, prove that𝑎 , 𝑏, 𝑐
𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

(𝟐𝒂𝟐 + 𝒃𝟐)(𝟐𝒄𝟐 + 𝒃𝟐) ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

Apply AM-GM

Simplify

Apply Cauchy-Schwarz

QED.

Given  three reals, prove that𝑎 , 𝑏, 𝑐
𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

Neural network

𝐱 ∧ 𝐲 ∨ 𝐳
∀∃⊨
𝐚𝟐 = 𝟏

Symbolic tool

+

[Li et al. "Proving Olympiad Inequalities by Synergizing LLMs and Symbolic Reasoning" ICLR 
2025]



Infinite Proof Search Space

… …

… …
… …

… …
…

>10,000 potential one-steps options

AM-GM (1)
Titu

Rewrite

Problem: If are positive reals and , then𝑎,  𝑏,  𝑐  𝑎2 + 𝑏2 + 𝑐2 = 1
1

𝑎2 + 2
+

1
𝑏2 + 2

+
1

𝑐2 + 2
≤

1
6𝑎𝑏 + 𝑐2

+
1

6𝑏𝑐 + 𝑎2
+

1
6𝑐𝑎 + 𝑏2

1
2√2𝑎

+
1

2√2𝑏
+

1
2√2𝑐

≤
1

6𝑎𝑏 + 𝑐2
+

1
6𝑏𝑐 + 𝑎2

+
1

6𝑐𝑎 + 𝑏2

1
𝑎2 + 2

+
1

𝑏2 + 2
+

1
𝑐2 + 2

≤
9

6𝑎𝑏 + 6𝑏𝑐 + 6𝑐𝑎 + 𝑎2 + 𝑏2 + 𝑐2

1
3𝑎2 + 2𝑏2 + 𝑐2

+
1

3𝑏2 + 2𝑎2 + 2𝑐2
+

1
3𝑐2 + 2𝑎2 + 2𝑏2

≤
1

6𝑎𝑏 + 𝑐2
+

1
6𝑏𝑐 + 𝑎2

+
1

6𝑐𝑎 + 𝑏2

1
𝑎2 + 2

+
1

𝑏2 + 2
+

1
𝑐2 + 2

≤ 3[(6𝑎𝑏 + 𝑐2)(6𝑏𝑐 + 𝑎2)(6𝑎𝑏 + 𝑐2)]− 1
3

AM-GM (2)



Manually Checking o1’s Proofs

…

o1-preview o3-mini DeepSeek-R1 Gold medalists
#Solved Olympiad-level Inequalities 0/20 3/20 4/20 15/20



Tactic Generation & Pruning
• We categorize the steps in inequality proving into two types: 

1) Scaling: substitute the given inequality using a known lemma (e.g., Cauchy-
Schwarz) 

2) Rewriting: transform the given inequality into an equivalent form  
• We enumerate and prune the scaling tactics using symbolic tools

Given  three reals, prove that𝑎, 𝑏, 𝑐

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

Cauchy_Schwarz_left_sqrt_2vars 
𝒖𝟏𝒗𝟏 + 𝒖𝟐𝒗𝟐  ≤ 𝒖𝟐

𝟏 + 𝒖𝟐
𝟐   𝒗𝟐

𝟏 + 𝒗𝟐
𝟐

Pattern match

Enumerate and prune all 
patterns using symbolic tools
u1:=1, u2:=1, v1:=a, v2:=b
u1:=a, u2:=1, v1:=1, v2:=b
u1:=c, u2:=b, v1:=a, v2:=c
u1:=1, u2:=1, v1:=a, v2:=b
u1:=1, u2:=b, v1:=a, v2:=1
u1:=1, u2:=a, v1:=b, v2:=1  
  … …

(𝟐𝒂𝟐 + 𝒃𝟐)(𝟐𝒄𝟐 + 𝒃𝟐) ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐



Tactic Generation & Pruning
• We categorize the steps in inequality proving into two types: 

1) Scaling: substitute the given inequality using a known lemma (e.g., Cauchy-
Schwarz) 

2) Rewriting: transform the given inequality into an equivalent form (e.g., fraction 
reduction)

Given  three reals, prove that𝑎, 𝑏, 𝑐

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

Prompt: You should rewrite the inequality given by 
the user according to the rule x*y+y*z = 
y*(x+z)
Please reason step by step 
Problem: {problem} 

Let's rewrite the inequality \( ab + bc + ca \leq a^2 + b^2 + 
c^2 \) step by step according to the rule \( xy + yz = y(x + z) 
\).
### Step 1: … 
… …
### Conclusion:
The inequality \( ab + bc + ca \leq a^2 + b^2 + c^2 \) can be 
rewritten as:
\[

a(b-a)+b(c-b)+c(a-c) \leq 0
\]



 
 

… …

𝟑𝒂𝒃 + 𝟑𝒃𝒄 + 𝟑𝒄𝒂 ≤ (𝒂 + 𝒃 + 𝒄)𝟐

𝒂(𝒃 − 𝒂) + 𝒃(𝒄 − 𝒃) + 𝒄 (𝒂 − 𝒄) ≤ 𝟎

Rewriting

LLM-generated transformation

LIPS: LLM-based Inequality Prover with Symbolic Reasoning

• Summary: we develop an inequality proving system, where LLM and symbolic 
tools are used for rewriting and scaling the current inequality, respectively

𝟐𝒂𝟐 + 𝒃𝟐 + 𝟐𝒄𝟐 + 𝒃𝟐

𝟐
≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐  ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

QED.

Given  three reals, prove that𝑎 , 𝑏, 𝑐
𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

(𝟐𝒂𝟐 + 𝒃𝟐)(𝟐𝒄𝟐 + 𝒃𝟐) ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

:  Proof step :  Neural reasoning :  Symbolic  reasoning

scale AM_GM_2vars

llm_simplify 

scale 
Cauchy_Schwarz_3vars 

Goal filtering & ranking

 …

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ (𝒂 + 𝒃)𝟐 − 𝟐𝒂𝒃 + 𝒄𝟐

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝟑 𝟑 𝒂𝟐𝒃𝟐𝒄𝟐

Symbolic filtering

1.   

2. 

 …

(𝟐𝒂𝟐 + 𝒃𝟐)(𝟐𝒄𝟐 + 𝒃𝟐) ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝟑𝒂𝒃 + 𝟑𝒃𝒄 + 𝟑𝒄𝒂 ≤ (𝒂 + 𝒃 + 𝒄)𝟐

LLM ranking

Tactic generation & pruning

 
… …

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝟑 𝟑 𝒂𝟐𝒃𝟐𝒄𝟐

(𝟐𝒂𝟐 + 𝒃𝟐)(𝟐𝒄𝟐 + 𝒃𝟐) ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

Scalin
g

Symbolic enumerating and pruning



Experimental Results
• Our system LIPS surpasses IMO Gold Medalists in inequality proving

• LIPS achieves SoTA performance across various competition-level datasets

DeepSeek-R1 Gold medalists LIPS
#Solved Olympiad-level Inequalities* 4/20 15/20 16/20

* Problems are collected from IMO competitions, national team selection test, training quizzes.



Some Interesting Findings
• LIPS finds novel proof paths expected to be impossible by human experts 

 

“AM-GM alone is hopeless here...” 

Evan Chen
 (IMO Coach for Team USA)

Generated by LIPS

LIPS succeeds with exactly AM-GM

Source: https://web.evanchen.cc/handouts/Ineq/en.pdf

https://web.evanchen.cc/handouts/Ineq/en.pdf
https://web.evanchen.cc/handouts/Ineq/en.pdf
https://web.evanchen.cc/handouts/Ineq/en.pdf
https://web.evanchen.cc/handouts/Ineq/en.pdf
https://web.evanchen.cc/handouts/Ineq/en.pdf
https://web.evanchen.cc/handouts/Ineq/en.pdf


Takeaway
• Challenge in theorem proving: How to efficiently explore an infinite action space?

• Insights on a specific mathematical domain can be helpful

• Open problem: generalizing across different domains?



Formal Reasoning Meets LLMs: Towards AI for Mathematics and 
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Theorem Proving
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Formal Reasoning Meets LLMs: Towards AI for Mathematics and 
Verification

Autoformalization
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[Wu et al. "Autoformalization with Large Language Models" NeurIPS 
2022]



Autoformalizing Theorems and Proofs
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Informal Formal



• Autoformalizing theorems: informal theorem → formal theorem

Autoformalizing Theorems and Proofs
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Informal Formal



• Autoformalizing theorems: informal theorem → formal theorem
• Autoformalizing proofs: informal theorem & proof + formal theorem → formal proof

Autoformalizing Theorems and Proofs
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Informal Formal



Hard to Evaluate Autoformalized Theorems
No reliable automatic evaluation
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Hard to Evaluate Autoformalized Theorems
No reliable automatic evaluation
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Hard to Evaluate Autoformalized Theorems
No reliable automatic evaluation
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Informal Formal

…

Alternatives



• Equivalence checking is infeasible

Hard to Evaluate Autoformalized Theorems
No reliable automatic evaluation
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…

Informal Formal

Alternatives



• Equivalence checking is infeasible
• Human evaluation is expensive
• Proxy metrics (e.g., BLEU) are inaccurate

Hard to Evaluate Autoformalized Theorems
No reliable automatic evaluation
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…

Informal Formal

Alternatives



Reasoning Gaps in Informal Proofs
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Informal Formal

• Informal proofs have reasoning gaps
• Explicit gaps: “left to the reader”
• Implicit gaps

• Formal proofs must be gap-free



Key Challenges in Autoformalization
• Theorems: No reliable automatic evaluation
• Proofs: Reasoning gaps ubiquitous in informal proofs 
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Key Challenges in Autoformalization
• Theorems: No reliable automatic evaluation
• Proofs: Reasoning gaps ubiquitous in informal proofs 
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Informal Formal

Things intractable in general can be made tractable 
in a specific domain



Euclidean Geometry
An arena for human and machine intelligence
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Euclid (Εὐκλείδης), 300 BC [Trinh et al., AlphaGeometry, Nature 2024]



• LeanEuclid: Benchmark for autoformalizing Euclidean geometry
• 48 from Euclid’s Elements; 125 from UniGeo    [Chen et al., UniGeo, EMNLP 2022]

Autoformalizing Euclidean Geometry

81



• LeanEuclid: Benchmark for autoformalizing Euclidean geometry
• 48 from Euclid’s Elements; 125 from UniGeo    [Chen et al., UniGeo, EMNLP 2022]

Autoformalizing Euclidean Geometry
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Informal theorem, proof, diagram



• LeanEuclid: Benchmark for autoformalizing Euclidean geometry
• 48 from Euclid’s Elements; 125 from UniGeo    [Chen et al., UniGeo, EMNLP 2022]

Autoformalizing Euclidean Geometry
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Informal theorem, proof, diagram Formal theorem & proof in Lean



• LeanEuclid: Benchmark for autoformalizing Euclidean geometry
• 48 from Euclid’s Elements; 125 from UniGeo    [Chen et al., UniGeo, EMNLP 2022]

Autoformalizing Euclidean Geometry

84

Informal theorem, proof, diagram Formal theorem & proof in Lean

First to faithfully formalize proofs in  
Euclid’s Elements



Logical Gaps in Euclid’s Proofs
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|𝐴𝐶 | = |𝐷𝐹 |
|𝐴𝐵 | = |𝐷𝐸 |

∠𝐵𝐴𝐶 > ∠𝐸𝐷𝐹

|𝐵𝐶 | > |𝐸𝐹 |⟹

Elements, Book I, Proposition 24



Logical Gaps in Euclid’s Proofs

86

|𝐴𝐶 | = |𝐷𝐹 |
|𝐴𝐵 | = |𝐷𝐸 |

∠𝐵𝐴𝐶 > ∠𝐸𝐷𝐹

|𝐵𝐶 | > |𝐸𝐹 |⟹
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|𝐴𝐶 | = |𝐷𝐹 |
|𝐴𝐵 | = |𝐷𝐸 |

∠𝐵𝐴𝐶 > ∠𝐸𝐷𝐹

|𝐵𝐶 | > |𝐸𝐹 |⟹

Only need to prove∠𝐸𝐹𝐺 > ∠𝐸𝐺𝐹Elements, Book I, Proposition 24



Logical Gaps in Euclid’s Proofs
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|𝐴𝐶 | = |𝐷𝐹 |
|𝐴𝐵 | = |𝐷𝐸 |

∠𝐵𝐴𝐶 > ∠𝐸𝐷𝐹

|𝐵𝐶 | > |𝐸𝐹 |⟹

Only need to prove∠𝐸𝐹𝐺 > ∠𝐸𝐺𝐹

△ 𝐷𝐺𝐹 is isosceles!
∠𝐷𝐺𝐹 = ∠𝐷𝐹𝐺

Elements, Book I, Proposition 24
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Logical Gaps in Euclid’s Proofs
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|𝐴𝐶 | = |𝐷𝐹 |
|𝐴𝐵 | = |𝐷𝐸 |

∠𝐵𝐴𝐶 > ∠𝐸𝐷𝐹

|𝐵𝐶 | > |𝐸𝐹 |⟹

△ 𝐷𝐺𝐹 is isosceles
∠𝐷𝐺𝐹 = ∠𝐷𝐹𝐺 = 𝛼

Elements, Book I, Proposition 24



Logical Gaps in Euclid’s Proofs

94

|𝐴𝐶 | = |𝐷𝐹 |
|𝐴𝐵 | = |𝐷𝐸 |

∠𝐵𝐴𝐶 > ∠𝐸𝐷𝐹

|𝐵𝐶 | > |𝐸𝐹 |⟹

Need to prove𝑥 > 𝑦

△ 𝐷𝐺𝐹 is isosceles
∠𝐷𝐺𝐹 = ∠𝐷𝐹𝐺 = 𝛼

Elements, Book I, Proposition 24



Logical Gaps in Euclid’s Proofs

95

|𝐴𝐶 | = |𝐷𝐹 |
|𝐴𝐵 | = |𝐷𝐸 |

∠𝐵𝐴𝐶 > ∠𝐸𝐷𝐹

|𝐵𝐶 | > |𝐸𝐹 |⟹

Need to prove𝑥 > 𝑦

△ 𝐷𝐺𝐹 is isosceles
∠𝐷𝐺𝐹 = ∠𝐷𝐹𝐺 = 𝛼

∠𝐷𝐺𝐸 = 𝛼 + 𝑦 < 𝜋

Elements, Book I, Proposition 24



Logical Gaps in Euclid’s Proofs
Elements, Book I, Proposition 24
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|𝐴𝐶 | = |𝐷𝐹 |
|𝐴𝐵 | = |𝐷𝐸 |

∠𝐵𝐴𝐶 > ∠𝐸𝐷𝐹

|𝐵𝐶 | > |𝐸𝐹 |⟹

Need to prove𝑥 > 𝑦

△ 𝐷𝐺𝐹 is isosceles
∠𝐷𝐺𝐹 = ∠𝐷𝐹𝐺 = 𝛼

∠𝐷𝐺𝐸 = 𝛼 + 𝑦 < 𝜋

∠𝐷𝐹𝐸 = 2𝜋 − 𝛼 − 𝑥 < 𝜋



Logical Gaps in Euclid’s Proofs
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|𝐴𝐶 | = |𝐷𝐹 |
|𝐴𝐵 | = |𝐷𝐸 |

∠𝐵𝐴𝐶 > ∠𝐸𝐷𝐹

|𝐵𝐶 | > |𝐸𝐹 |⟹

Need to prove𝑥 > 𝑦

△ 𝐷𝐺𝐹 is isosceles
∠𝐷𝐺𝐹 = ∠𝐷𝐹𝐺 = 𝛼

∠𝐷𝐺𝐸 = 𝛼 + 𝑦 < 𝜋

∠𝐷𝐹𝐸 = 2𝜋 − 𝛼 − 𝑥 < 𝜋

2𝜋 − 𝑥 + 𝑦 < 2𝜋

⟹

Q.E.D.

Elements, Book I, Proposition 24



Equivalence Checking Between Theorems
• Two theorems  and  are equivalent iff we can prove 
• Symbolic reasoning engine based on SMT solvers

𝑇1 𝑇2 𝑇1 ⟺ 𝑇2

98



Diagrammatic Reasoning
Ubiquitous reasoning gaps in Euclidean geometry

• Geometry proofs rely on diagrams that are hard to formalize
• Example: Euclid’s Elements, Book I, Proposition 1
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One can construct a equilateral triangle given two distinct points
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• Geometry proofs rely on diagrams that are hard to formalize
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101

One can construct a equilateral triangle given two distinct points



Diagrammatic Reasoning
Ubiquitous reasoning gaps in Euclidean geometry

• Geometry proofs rely on diagrams that are hard to formalize
• Example: Euclid’s Elements, Book I, Proposition 1
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One can construct a equilateral triangle given two distinct points



Diagrammatic Reasoning
Ubiquitous reasoning gaps in Euclidean geometry
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One can construct a equilateral triangle given two distinct points

• Geometry proofs rely on diagrams that are hard to formalize
• Example: Euclid’s Elements, Book I, Proposition 1



Diagrammatic Reasoning
Ubiquitous reasoning gaps in Euclidean geometry

• Geometry proofs rely on diagrams that are hard to formalize
• Example: Euclid’s Elements, Book I, Proposition 1
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One can construct a equilateral triangle given two distinct points

Did we prove C exists?



Modeling Diagrammatic Reasoning
The Formal System E

• Diagrammatic reasoning are logical consequences of "diagrammatic rules”

• We implement E in Lean and automate diagrammatic reasoning using SMT 
solvers

105

[Avigad et al., "A formal system for Euclid's Elements", 2008]



Putting It Together
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Putting It Together
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Putting It Together
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Putting It Together
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Putting It Together
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Putting It Together

111



Experiments: Autoformalizing Theorems
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Takeaways
• Two challenges in autoformalization

• Autoformalized theorems are difficult to evaluate
• Autoformalizing proofs require filling in reasoning gaps

• They can be addresses leveraging knowledge in specific domains

• Open problem: How to generalize across domains?
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Formal Reasoning Meets LLMs: Towards AI for Mathematics and 
Verification

AI Meets Formal Mathematics
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