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Mathematical discovery

Modeling

Conjecturing

Reasoning

AI for math:  Automate conjecturing and proof

Proofs, counterexamples

Candidate theoremsDefinitions



Scientific discovery

Data

Hypothese
sTheorizing Experimentation

AI for science:  Automate hypothesis generation and experiment 
design



Key ideas
• Systematically search spaces of hypotheses, conjectures, and proofs

• Use prior knowledge to prioritize directions of search

• Learn, from experience, how and how not to search

• Discover abstract concepts and tools, speeding up both search and learning. 

This talk:  LLM agents with all four capabilities.



AI for Mathematical Discovery



Are neural networks all you need?

LLM  pretrained 
on text and code

Base math 
LLM

Finetuned 
math LLM

Tool-
integrated 
math LLM

Math-related 
web documents

Problems w/ step-
by-step solutions

Problems w/ tool-
integrated solutions

Problem: Suppose that the sum of the squares of two 
complex numbers  and  is , and the sum of their cubes 
is . List all possible values for , separated by 
commas.

𝑥 𝑦 7
10 𝑥 + 𝑦

           >>> [-5, -5, 1, 1, 4, 4]

Solution: Let’s use `sympy` to calculate and print all 
possible values for .𝑥 + 𝑦

Removing duplicates, the possible values for  are 
\boxed{-5, 1, 4}

𝑥 + 𝑦

Fleureau et al. “How NuminaMath Won the 1st AIMO Progress Prize” 
2024



Are neural networks all you need?

Response from OpenAI o1

Putnam 2024, Problem A2 



Weaknesses of the neural-only approach

  Open question: Will scaling solve these problems? 

Data scarcity
• Need traces or reward functions that enable rigorous mathematical reasoning
• This is difficult beyond high-school or competition settings.  

Lack of verifiability
• Natural-language reasoning is hard to verify
• In applications like system verification,  edge cases are especially critical. 



Alternative: Formal representations

“Prove that if a number is 
even, its square is even as 
well”

Neural 
autoformalizer

Informal Problem  
Statement

Formal Problem  
Statement

Formal 
proof 

assistant

Neural prover

Formal Problem  
Statement

QED!



Example: Formal Representations

theorem mod_arith_2
(x : ℕ) : x % 2 = 0 → (x * x) % 2 = 0 :=
begin
  intro h,
  rw nat.mul_mod,
  rw h,
  rw nat.zero_mul,
  refl,
end

1 goal
x: ℕ
⊢ x % 2 = 0 → x * x % 2 = 
0

1 goal
x: ℕ
h: x % 2 = 0
⊢ x * x % 2 = 0

1 goal
x: ℕ
h: x % 2 = 0
⊢ x % 2 * (x % 2) % 2 = 0

1 goal
x: ℕ
h: x % 2 = 0
⊢ 0 * 0 % 2 = 0

1 goal
x: ℕ
h: x % 2 = 0
⊢ 0 % 2 = 0

Goal Accomplished



Autoformalization 

[Figure from Formal Mathematical Reasoning: A New Frontier in AI.  Yang et al. 2025]



Neural Theorem Proving

n : ℕ 
⊢ add 0 n = n

⊢ add 0 0 = 0

n’ : ℕ
ih: add 0 n’ = n’ 
⊢ add 0 (n’+1) = 
n’+1

n : ℕ
⊢ false

⊢ add 0 0 = 0

n’ : ℕ
⊢ add 0 (n’+1) = 
n’+1

ind
uc

tio
n n

cases n

exfalso

n’ : ℕ
ih: add 0 n’ = n’ 
⊢ add 0 (n’+1) = 
n’+1

rfl
simp [add, ih

]

n’ : ℕ
ih: add 0 n’ = n’ 
⊢ add 0 (n’+1) = 
n’+1

simp [add, ih]
rw [ih]

linarith

…

…

…

…

…

…

…

…

…

…

Formal math library

Local context + 
goal

Tactic 
suggestion
s

Language 
model

rw [ih]
linarith

Tactic 
generation

[Figure from Formal Mathematical Reasoning: A New Frontier in AI.  Yang et al. 2025]



Alphaproof:  Reinforcement learning for 
theorem-proving 

Google DeepMind "AI achieves silver-medal standard solving International Mathematical Olympiad problems”, 
2024.

• Learn from both successes (proofs) and failures (disproofs). 
• Misformalized problems are still helpful for learning
• Complement RL training with test-time RL on problem variants. 



An In-Context Learning Agent for Formal 
Theorem-Proving 
 
Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, Swarat Chaudhuri. 
Conference on Language Models, 2024.

Amitayush



Copra:  LLM agents for formal theorem-proving

Thakur,  Tsoukalas, Wen, Xin, and Chaudhuri. An In-Context Learning Agent  for Formal Theorem-Proving. COLM 2024. 
 https://arxiv.org/pdf/2310.04353.pdf. 

Frontier  
LLM

Proof  
assistant

Proof state 𝑠𝑡

Action (tactic) 
  𝑎𝑡

New proof state 𝑠𝑡+1

Error messages, new goals

Answer  
+ Proof

• Immediately leverage advances in LLMs 
• Integrate natural-language and formal reasoning
• Applicable even if there is no corpus of training problems. 
• In the longer run, source of traces for LLM finetuning. 

https://arxiv.org/pdf/2310.04353.pdf


Copra:  Theorem-proving via in-context learning 

QED

3. “Execute” 
the tactic via  

proof 
environment 

COPRA

Feedback

Formal theorem + informal hints (optional)

1.  Prompt 
Synthesis

Lemma Database
4.  Augment 
the prompt; 
Backtrack if 

needed

2. Tactic           
Parsing

5.  Query lemma              
database



Prompting and action parsing



Copra vs. GPT-4

A Lean theorem and a correct  
Copra-generated proof A wrong “proof” generated by GPT-4



Aggregate 
Statistics



Integrating natural-language and formal 
reasoning

Idea:  Break the problem into subproblems and solve hierarchically.

Prove that the fraction  is irreducible for every natural number .21 𝑛 + 4
14𝑛 + 3

𝑛

IMO 1959, Problem 1:



1. Ask for an informal solution

O3-mini



2. Split the theorem into relevant sub-goals

O3-
mini



3.  Ask Copra to solve the subproblems one by one. 

COPRA



4.  Add all relevant lemmas already proved in the system 
prompt, along with the informal proof.

COPRA

o3-mini cannot solve the problem after splitting it into subproblems.
• `o3-mini` hallucinated a lemma “Nat.gcd_sub_right” while writing the proof.
• Copra can fix this hallucination lemma using Lean feedback.



Application in Formal Verification

Formal verification: 
• Mathematically model a system as a set of definitions

• Model system properties as theorems involving these definitions

• Prove the theorems



Example: Compiler Verification

Language: Syntax + semantics
• Syntax: A grammar defining the form of programs
• Semantics: Rules defining executions of programs,

Compiler:  A set of rules translating programs from one language to another.

Verification:  Prove that the rules preserve semantics.



1. Define the source language
(*Define the source language first*)
Inductive binop : Set := Plus | Times.

Inductive exp : Set := 
 Const : nat -> exp
  (* Binop is a function which takes exp and exp and gives 
exp.*)
| Binop : binop -> exp -> exp -> exp. 

Definition binopDenote (b : binop) : nat -> nat -> nat :=
match b with 
    | Plus => plus
    | Times => mult
end.
 
Fixpoint expDenote (e: exp) : nat :=
    match e with
    | Const n => n
    | Binop b e1 e2 => 
      (binopDenote b) (expDenote e1) (expDenote e2)
    end.



1. Define the source language
(*Define the source language first*)
Inductive binop : Set := Plus | Times.

Inductive exp : Set := 
 Const : nat -> exp
  (* Binop is a function which takes exp and exp and gives 
exp.*)
| Binop : binop -> exp -> exp -> exp. 

Definition binopDenote (b : binop) : nat -> nat -> nat :=
match b with 
    | Plus => plus
    | Times => mult
end.
 
Fixpoint expDenote (e: exp) : nat :=
    match e with
    | Const n => n
    | Binop b e1 e2 => 
      (binopDenote b) (expDenote e1) (expDenote e2)
    end.



(*Some examples in Source Language*)
Eval simpl in expDenote (Const 42). (* 42 *)
Eval simpl in expDenote (Binop Plus (Const 2) (Const 2)). (* 4 *)
Eval simpl in expDenote (Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7)). (* 
28 *)

1. Define the source language



2. Define the target language
(*Define the target language*)

(*Instructions can be either constants or binary operation*)
Inductive instr: Set :=
| iConst : nat -> instr
| iBinop : binop -> instr. 

Definition prog := list instr. (*Program is a list of instructions*)

(*Instruction either pushes a constant to the stack or applies binop 
on two elements on the stack*)
Definition stack := list nat.  

Definition instrDenote (i : instr) (s: stack): option stack :=
match i with
 | iConst n => Some (n :: s)
 | iBinop b =>
    match s with
     | arg1 :: arg2 :: s' => Some ((binopDenote b) arg1 arg2 :: s')
     | _ => None
    end    
end.



2. Define the target language

Fixpoint progDenote (p : prog) (s: stack) : option stack :=
match p with (*Run instructions one by one*)
 | nil => Some s
 | i::p' =>
   match instrDenote i s with
    | None => None
    | Some s' => progDenote p' s'
   end
end. 

(*Check the execution of program once*)
Eval simpl in progDenote (iConst 32:: iConst 42 :: iBinop Plus :: nil) 
nil. 
(* Some (74 :: nil) *) 



3. Define the compiler

(*Translation from source to target language i.e. Compiler*)
Fixpoint compile (e : exp): prog := 
    match e with
       | Const n => iConst n::nil
       | Binop b e1 e2 => compile e2 ++ compile e1 ++ iBinop b :: nil
    end.
 

(*Convert the source language to target assembly language *)
Eval simpl in compile (Binop Plus (Const 2) (Const 3)).  
(* iConst 3 :: iConst 2 :: iBinop Plus :: nil *) 



4. Define a correctness theorem

(*Ensure that the compiled program compiles correctly for all possible expr *)

Theorem compile_correct: 
     forall e, progDenote (compile e) nil = Some (expDenote e::nil).

 



5. Ask Copra to produce the proof

(*Ensure that the compiled program compiles correctly for all possible expr *)

Theorem compile_correct: 
     forall e, progDenote (compile e) nil = Some (expDenote e::nil).

 

Failure! ❌



5(a).  Ask the LLM to invent a lemma



5(a).  Ask the LLM to invent a lemma



5(b). Sample a proposed lemma

(*Ensure that the compiled program compiles correctly for all possible expr *)
Theorem compile_correct: forall e, progDenote (compile e) nil = Some (expDenote e::nil).

 

 
Auxiliary lemma:

(*Prove if we can compile one instruction correctly first*)
Lemma compile_one_instr: forall e p s, progDenote (compile e ++ p) 
s = progDenote p (expDenote e :: s).

 
Target theorem:



5(c). Auto-generate proof of compile_one_instr 

Lemma compile_one_instr : forall e p s, progDenote (compile e ++ 
p) s = progDenote p (expDenote e :: s).
Proof.
    induction e using exp_ind.
    intros p s.
    unfold progDenote, compile, expDenote.
    simpl.
    reflexivity.
    intros p s.
    simpl.
    rewrite app_assoc_reverse.
    rewrite <- app_assoc.
    rewrite IHe2.
    rewrite IHe1.
    reflexivity.
Qed.



5(d). Now auto-generate the proof of compile_correct

Theorem compile_correct : forall e, progDenote (compile e) nil = 
Some (expDenote e::nil).
Proof.
    destruct e.
    - simpl. reflexivity.
    - simpl. rewrite compile_one_instr. rewrite compile_one_instr. 
reflexivity.
Qed.



Summary: Mathematical Discovery with LLM Agents 

Language is an extraordinary powerful tool for mathematical reasoning.

Frontier LLMs can prove nontrivial formal theorems with proof assistant feedback.

Future work should expand these ideas in conjecturing and modeling tasks.

Question: Can prover-LLM interaction be entirely pushed to training 
time? 
• The prover teaches the LLM student about compositionality, type-safety,…
• Eventually, the teacher “retires”. 



Open Challenges and Future Directions

https://arxiv.org/abs/2412.16075

Dawn Song Gabriel  
Poesia

Wenda Li Kristin  
Lauter

Jingxuan HeKaiyu Yang

https://arxiv.org/abs/2412.16075


Open Challenges and Future Directions
Overcoming the shortage of high-quality proof data

• Strategies: Synthetic data, multilingual data, crowdsourcing

[Trinh et al., Alphageometry] [Thakur et al.,  Proofwala]



Open Challenges and Future Directions
Autoformalization, which is hard due to insufficient high-quality paired data

• Strategies: Formalization with proof assistant feedback 

[Lu et al., Process-Driven Autoformalization]



Open Challenges and Future Directions

[Poesia et al., Minimo]

Conjeturing and open-ended exploration

Strategy: Self-play between a conjecturer and a prover



AI for Scientific Discovery



Lifecycle of a scientific process



Lifecycle of a scientific process

Problem: Apparent Retrograde Planetary Motion  
Theory: Heliocentric Model

c.  The Astronomical Revolution: Copernicus- Kepler-Borelli



Lifecycle of a scientific process

c.  The Astronomical Revolution: Copernicus- Kepler-Borelli

Data Collection: Sample data in regime of 
interest.

Tycho Brahe’s observations of the planet Mars 
(1582-1600)



Lifecycle of a scientific process

c.  The Astronomical Revolution: Copernicus- Kepler-Borelli

Analysis: Kepler’s Third 
Law



Lifecycle of a scientific process

c.  The Astronomical Revolution: Copernicus- Kepler-Borelli

Analysis: Kepler’s Third 
Law

Interpretation: Newton’s Law of Gravitation



Symbolic regression

Kepler’s Third Law

c.  The Astronomical Revolution: Copernicus- Kepler-Borelli



Symbolic regression algorithms

c. PySR. Miles Cranmer



Symbolic Regression with PySR

Credit: Miles Cranmer



Symbolic Regression’s impact

Credit: Miles Cranmer



Sketch of PySR’s Exploration Space

Insight: LLMs can increase exploration in relevant parts of the search 
space.

Independent “islands” of 
expressions, each 

undergoing evolution



LaSR: Symbolic Regression with a 
Learned Concept Library  
 
Arya Grayeli*, Atharva Sehgal*, Omar Costilla-Reyes, Miles Cranmer, Swarat Chaudhuri. 
Neural Information Processing Systems, 2024.

https://trishullab.github.io/lasr-web

AtharvaArya

https://trishullab.github.io/lasr-web


What is a Concept? 
Desiderata 1:  Symbolic Abstraction

Zipf’s Law Moore’s Law Arrhenius’ Equation

⬄“Power Law Trend”



What is a Concept? 
Desiderata II : Symbolic Guidance

“Wave strain diminishes as 
distance increases”

“Wave strain has extraordinarily 
small magnitude”

Guide the 
search for

Concepts (by Physicist or LLM)

h: strain
r: distance between the poles
Q: dipole moment



Joint concept and program learning

A universe  of concepts
• “Wave strain diminishes as distance increases” , “power laws”, “sinusoidal functions”
A dataset 

A space of programmatic hypotheses 

𝐶

𝐷

𝜋  

Given

Solve



Hypothesis Evolution

Concept AbstractionConcept Evolution

Concept Library

Hypothesis
Evolution

Concept 
Abstraction

Concept 
Evolution

LaSR



Hypothesis Evolution

Symbolic 
Evolution or

Hypothesis 
Populations Dataset

Best 
Hypothesis per 

Population

Concept AbstractionConcept Evolution

LLM 
Evolution

Concept 
Library

For 106 operations

Concept Library

Hypothesis
Evolution

Concept 
Abstraction

Concept 
Evolution

LaSR LLM Evolution 
provides neural 

guidance (over a 
language prior)



Hypothesis Evolution

Crossover
Symbolic 
Crossover

Mutation
Symbolic 
Mutation

Initialization 

Symbolic Initialize

Other Symbolic Operations 
 

Simplify TreeOptimize 
Constants

Replace Oldest

Program
Population

x300 times

Evaluate

Best Program



Hypothesis Evolution
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LLM CrossoverSymbolic 
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Initialization 

LLM InitializeSymbolic Initialize

Other Symbolic Operations 
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or

or

x300 times

Evaluate

Best Program



Hypothesis Evolution

Crossover

LLM CrossoverSymbolic 
Crossover

Mutation

LLM MutationSymbolic 
Mutation

Initialization 

LLM InitializeSymbolic Initialize

Other Symbolic Operations 
 

Simplify TreeOptimize 
Constants

Replace Oldest

Program
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or
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x300 times
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Hypothesis Evolution

Crossover

LLM CrossoverSymbolic 
Crossover

Mutation

LLM MutationSymbolic 
Mutation

Initialization 

LLM InitializeSymbolic Initialize

Other Symbolic Operations 
 

Simplify TreeOptimize 
Constants

Replace Oldest

Program
Population

or

or

or

x300 times

Evaluate

Concept Library

Best Program

import random 

def crossover( 
	 expr1: SymTree, 
	 expr2: SymTree) -> SymTree: 
# Randomly choose a node in expr1 to 
remove 
... 
# Randomly choose a node in expr2 
which will be added to eq1 
... 
# Return new tree 
new_expr = ... 
return new_expr



Hypothesis Evolution

Crossover

LLM CrossoverSymbolic 
Crossover

Mutation

LLM MutationSymbolic 
Mutation

Initialization 

LLM InitializeSymbolic Initialize

Other Symbolic Operations 
 

Simplify TreeOptimize 
Constants

Replace Oldest

Program
Population

or

or

or

x300 times

Evaluate

Concept Library

Best Program



Hypothesis Evolution

Symbolic 
Evolution or

Hypothesis 
Populations Dataset

Best 
Hypothesis per 

Population

Concept AbstractionConcept Evolution

LLM Abstraction

“exponential growth/
decay”

LLM 
Evolution

Concept 
Library

For 106 operations

Concept Library

Hypothesis
Evolution

Concept 
Abstraction

Concept 
Evolution

LaSR
LLM Abstraction 
induces useful* 

abstractions. 



Hypothesis Evolution

Symbolic 
Evolution or

Hypothesis 
Populations Dataset

Best 
Hypothesis per 

Population

Concept AbstractionConcept Evolution

LLM Abstraction

“exponential growth/
decay”

“exponential growth/
decay”

LLM Concept Crossover

“Depends on 
temperature”

“Boltzmann 
Distribution”

LLM 
Evolution

Concept 
Library

For 106 operations

Concept Library

Hypothesis
Evolution

Concept 
Abstraction

Concept 
Evolution

LLM Concept 
Crossover 
evolves all 
concepts. 

LaSR



Sketch of Search Space After Phase 1:  
“Islands” of expressions



Sketch of Search Space

Sinusoidal 
Trends

Power Law 
Trends

Linear 
Trends

Exponential 
Trends

After Phase 2:  
Concepts for each “Island”



Sketch of Search Space

Sinusoidal 
Trends

Power Law 
Trends

Linear 
Trends

Exponential 
Trends

After Phase 2:  
Concepts expose unknown 

islands



Trignometric
Trends

Sketch of Search Space

Sinusoidal 
Trends

Power Law 
Trends

Linear 
Trends

Exponential 
Trends

After Phase 3:  
Concepts expose new 

concepts.



LaSR: Overall Performance

• Concept Guidance  
accelerates discovery.

• LaSR outperforms PySR even 
with local language models 
(llama-3-7b, 1%)



Human-provided hints

User-provided 
hints accelerate 
hypothesis search



Example: Coulomb’s Law

Eq 10: Coulomb's Law
• Inverse Square Law
• Directly proportional to 

charges
• Force symmetric w.r.t 

charges

PySR’s Solution
• Reduces to ground truth after 10 steps of 

simplification.
• Unwieldly
• Fitting more constants => more optimization 

errors



Coulomb’s Law

Eq 10: Coulomb's Law
• Inverse Square Law
• Directly proportional to 

charges
• Force symmetric w.r.t 

charges

LaSR’s Solution
• Reduces to ground truth after 4 steps of 

simplification
• Smaller models synthesize simpler equations!



Coulomb’s law

Eq 10: Coulomb's Law
• Inverse Square Law
• Directly proportional to 

charges
• Force symmetric w.r.t 

charges

LaSR’s Concepts (Limitations)
• Cannot guarantee factuality or correctness.
• Good concepts depend on LLM training. 

Concepts can mislead scientists.

Iteration Discovered Concept
2 The good mathematical expressions exhibit […] with a 

focus on power functions and trigonometric functions 
[…]

6 The good mathematical expressions exhibit […] 
symmetry or regularity […]

24 The good mathematical expressions have […] with a 
specific pattern of division and multiplication



Finding LLM Scaling Laws

Training Compute-Optimal Large Language Models, Hoffman et. al

Step 1: Postulate Scaling 
Law

Step 2: Measure model 
loss w.r.t hyper 
parameters.
Step 3: Fit scaling law to 
dataset.

Google DeepMind MassiveText



Finding LLM Scaling Laws with LaSR

Training Compute-Optimal Large Language Models, Hoffman 
et. al

Step 1: Measure model loss 
w.r.t hyper parameters.

Step 2: Use symbolic regression 
to postulate and fit scaling laws

Step 3: Choose the scaling law 
that fits the data the best while 
using the least parameters.

Google DeepMind BIG-Bench
(204 tasks, 55 LLMs, )

LaSR



LLM Scaling Law

• A large number of shots gives poor results for low-capability models 

• Once the models pass a capability threshold, having more shots helps 



Qualitative Traits
• Interaction between training hyper params (#steps) and testing hyper params 

(#shots)

• We can modify Chinchilla using empirical insights



Self-Evolving Visual Concept Library 
Using Vision-Language Critics  
 
Atharva Sehgal, Patrick Yuan, Ziniu Hu, Yisong Yue, Jennifer J Sun, Swarat Chaudhuri. 
Computer Vision and Pattern Recognition, 2025.

Atharva



Zero-shot transfer learning with VLMs

Identify the adult bald eagle

Identify the ever given. [Menon & Vondrick, ICLR 2023]

VLM

VLM

?

?



Classification with visual concept descriptors

Identify the ever given.

LLM

LLM

VLM

VLM

Large wings
Large beak
White head
Black body

Container ship
Evergreen
Stacked containers

[Menon & Vondrick, ICLR 2023]

Identify the adult bald eagle



Concept descriptors can be used to write code

Is this an image of an adult 
bald eagle?

def is_eagle(image): 

   image_patch = ImagePatch(image) 

   if not image_patch.exists('bird'): 

       return 'no' 

   eagle_patch = image_patch.find('bird')[0] 

   eagle_features = [ 

"large wings", 

"large beak", 

"white head", 

"black body" 

] 

   p_eagle = 0.0 

   for feature in eagle_features: 

       p_eagle += eagle_patch.exists(feature) 

   p_eagle /= len(eagle_features) 

   return 'yes' if p_eagle >= 0.75 else 'no' 

GPT



Concept Refinement with Evolution



Concept Refinement with Evolution

• VLM evaluates the similarity 
between each image and its 
associated concepts 
compared to other images, 
and computes a contrastive 
score. 

• This score is used to refine the 
library of visual concepts. 



Sample Result



Summary: LLM Agents for Empirical Discovery

LLM-directed evolution is a powerful tool for empirical scientific discovery. 

Frontier LLMs inject prior world knowledge into mutation/crossover 
operators.

LLMs can be used to learn abstract concepts that accelerate evolution. 

All this can be applied to settings with visual inputs as well. 



Open Challenges

Hypothesis and concept verification 

Concept representations beyond natural language 

Scaling to larger search spaces and input dimensions

Going beyond hypothesis generation to experiment design 



Scientific discovery

Data

Hypothese
sTheorizing Experimentation

LLM agents are extraordinarily powerful tools for scientific discovery.



Mathematical discovery

Modeling

Conjecturing

Reasoning

AI for math:  Automate conjecturing and proof

Proofs, counterexamples

Candidate theoremsDefinitions



Collaborators and Funders


