
Abstraction and Discovery with
Large Language Model Agents

Swarat Chaudhuri
Computer Science
The University of Texas at Austin

Mathematical discovery

Modeling

Conjecturing

Reasoning

AI for math: Automate conjecturing and proof

Proofs, counterexamples

Candidate theoremsDefinitions

Scientific discovery

Data

Hypothese
sTheorizing Experimentation

AI for science: Automate hypothesis generation and experiment
design

Key ideas
• Systematically search spaces of hypotheses, conjectures, and proofs

• Use prior knowledge to prioritize directions of search

• Learn, from experience, how and how not to search

• Discover abstract concepts and tools, speeding up both search and learning.

This talk: LLM agents with all four capabilities.

AI for Mathematical Discovery

Are neural networks all you need?

LLM pretrained
on text and code

Base math
LLM

Finetuned
math LLM

Tool-
integrated
math LLM

Math-related
web documents

Problems w/ step-
by-step solutions

Problems w/ tool-
integrated solutions

Problem: Suppose that the sum of the squares of two
complex numbers and is , and the sum of their cubes
is . List all possible values for , separated by
commas.

𝑥 𝑦 7
10 𝑥 + 𝑦

 >>> [-5, -5, 1, 1, 4, 4]

Solution: Let’s use `sympy` to calculate and print all
possible values for .𝑥 + 𝑦

Removing duplicates, the possible values for are
\boxed{-5, 1, 4}

𝑥 + 𝑦

Fleureau et al. “How NuminaMath Won the 1st AIMO Progress Prize”
2024

Are neural networks all you need?

Response from OpenAI o1

Putnam 2024, Problem A2

Weaknesses of the neural-only approach

 Open question: Will scaling solve these problems?

Data scarcity
• Need traces or reward functions that enable rigorous mathematical reasoning
• This is difficult beyond high-school or competition settings.  

Lack of verifiability
• Natural-language reasoning is hard to verify
• In applications like system verification, edge cases are especially critical.

Alternative: Formal representations

“Prove that if a number is
even, its square is even as
well”

Neural
autoformalizer

Informal Problem  
Statement

Formal Problem  
Statement

Formal
proof

assistant

Neural prover

Formal Problem  
Statement

QED!

Example: Formal Representations

theorem mod_arith_2
(x : ℕ) : x % 2 = 0 → (x * x) % 2 = 0 :=
begin
 intro h,
 rw nat.mul_mod,
 rw h,
 rw nat.zero_mul,
 refl,
end

1 goal
x: ℕ
⊢ x % 2 = 0 → x * x % 2 =
0

1 goal
x: ℕ
h: x % 2 = 0
⊢ x * x % 2 = 0

1 goal
x: ℕ
h: x % 2 = 0
⊢ x % 2 * (x % 2) % 2 = 0

1 goal
x: ℕ
h: x % 2 = 0
⊢ 0 * 0 % 2 = 0

1 goal
x: ℕ
h: x % 2 = 0
⊢ 0 % 2 = 0

Goal Accomplished

Autoformalization

[Figure from Formal Mathematical Reasoning: A New Frontier in AI. Yang et al. 2025]

Neural Theorem Proving

n : ℕ
⊢ add 0 n = n

⊢ add 0 0 = 0

n’ : ℕ
ih: add 0 n’ = n’
⊢ add 0 (n’+1) =
n’+1

n : ℕ
⊢ false

⊢ add 0 0 = 0

n’ : ℕ
⊢ add 0 (n’+1) =
n’+1

ind
uc

tio
n n

cases n

exfalso

n’ : ℕ
ih: add 0 n’ = n’
⊢ add 0 (n’+1) =
n’+1

rfl
simp [add, ih

]

n’ : ℕ
ih: add 0 n’ = n’
⊢ add 0 (n’+1) =
n’+1

simp [add, ih]
rw [ih]

linarith

…

…

…

…

…

…

…

…

…

…

Formal math library

Local context +
goal

Tactic
suggestion
s

Language
model

rw [ih]
linarith

Tactic
generation

[Figure from Formal Mathematical Reasoning: A New Frontier in AI. Yang et al. 2025]

Alphaproof: Reinforcement learning for
theorem-proving

Google DeepMind "AI achieves silver-medal standard solving International Mathematical Olympiad problems”,
2024.

• Learn from both successes (proofs) and failures (disproofs).
• Misformalized problems are still helpful for learning
• Complement RL training with test-time RL on problem variants.

An In-Context Learning Agent for Formal
Theorem-Proving 
 
Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, Swarat Chaudhuri. 
Conference on Language Models, 2024.

Amitayush

Copra: LLM agents for formal theorem-proving

Thakur, Tsoukalas, Wen, Xin, and Chaudhuri. An In-Context Learning Agent for Formal Theorem-Proving. COLM 2024. 
 https://arxiv.org/pdf/2310.04353.pdf.

Frontier  
LLM

Proof  
assistant

Proof state 𝑠𝑡

Action (tactic) 
 𝑎𝑡

New proof state 𝑠𝑡+1

Error messages, new goals

Answer  
+ Proof

• Immediately leverage advances in LLMs
• Integrate natural-language and formal reasoning
• Applicable even if there is no corpus of training problems.
• In the longer run, source of traces for LLM finetuning.

https://arxiv.org/pdf/2310.04353.pdf

Copra: Theorem-proving via in-context learning

QED

3. “Execute”
the tactic via  

proof
environment

COPRA

Feedback

Formal theorem + informal hints (optional)

1. Prompt
Synthesis

Lemma Database
4. Augment
the prompt;
Backtrack if

needed

2. Tactic
Parsing

5. Query lemma
database

Prompting and action parsing

Copra vs. GPT-4

A Lean theorem and a correct  
Copra-generated proof A wrong “proof” generated by GPT-4

Aggregate
Statistics

Integrating natural-language and formal
reasoning

Idea: Break the problem into subproblems and solve hierarchically.

Prove that the fraction is irreducible for every natural number .21 𝑛 + 4
14𝑛 + 3

𝑛

IMO 1959, Problem 1:

1. Ask for an informal solution

O3-mini

2. Split the theorem into relevant sub-goals

O3-
mini

3. Ask Copra to solve the subproblems one by one.

COPRA

4. Add all relevant lemmas already proved in the system
prompt, along with the informal proof.

COPRA

o3-mini cannot solve the problem after splitting it into subproblems.
• `o3-mini` hallucinated a lemma “Nat.gcd_sub_right” while writing the proof.
• Copra can fix this hallucination lemma using Lean feedback.

Application in Formal Verification

Formal verification:
• Mathematically model a system as a set of definitions

• Model system properties as theorems involving these definitions

• Prove the theorems

Example: Compiler Verification

Language: Syntax + semantics
• Syntax: A grammar defining the form of programs
• Semantics: Rules defining executions of programs,

Compiler: A set of rules translating programs from one language to another.

Verification: Prove that the rules preserve semantics.

1. Define the source language
(*Define the source language first*)
Inductive binop : Set := Plus | Times.

Inductive exp : Set :=
 Const : nat -> exp
 (* Binop is a function which takes exp and exp and gives
exp.*)
| Binop : binop -> exp -> exp -> exp.

Definition binopDenote (b : binop) : nat -> nat -> nat :=
match b with
 | Plus => plus
 | Times => mult
end.
 
Fixpoint expDenote (e: exp) : nat :=
 match e with
 | Const n => n
 | Binop b e1 e2 =>
 (binopDenote b) (expDenote e1) (expDenote e2)
 end.

1. Define the source language
(*Define the source language first*)
Inductive binop : Set := Plus | Times.

Inductive exp : Set :=
 Const : nat -> exp
 (* Binop is a function which takes exp and exp and gives
exp.*)
| Binop : binop -> exp -> exp -> exp.

Definition binopDenote (b : binop) : nat -> nat -> nat :=
match b with
 | Plus => plus
 | Times => mult
end.
 
Fixpoint expDenote (e: exp) : nat :=
 match e with
 | Const n => n
 | Binop b e1 e2 =>
 (binopDenote b) (expDenote e1) (expDenote e2)
 end.

(*Some examples in Source Language*)
Eval simpl in expDenote (Const 42). (* 42 *)
Eval simpl in expDenote (Binop Plus (Const 2) (Const 2)). (* 4 *)
Eval simpl in expDenote (Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7)). (*
28 *)

1. Define the source language

2. Define the target language
(*Define the target language*)

(*Instructions can be either constants or binary operation*)
Inductive instr: Set :=
| iConst : nat -> instr
| iBinop : binop -> instr.

Definition prog := list instr. (*Program is a list of instructions*)

(*Instruction either pushes a constant to the stack or applies binop
on two elements on the stack*)
Definition stack := list nat.  

Definition instrDenote (i : instr) (s: stack): option stack :=
match i with
 | iConst n => Some (n :: s)
 | iBinop b =>
 match s with
 | arg1 :: arg2 :: s' => Some ((binopDenote b) arg1 arg2 :: s')
 | _ => None
 end
end.

2. Define the target language

Fixpoint progDenote (p : prog) (s: stack) : option stack :=
match p with (*Run instructions one by one*)
 | nil => Some s
 | i::p' =>
 match instrDenote i s with
 | None => None
 | Some s' => progDenote p' s'
 end
end.

(*Check the execution of program once*)
Eval simpl in progDenote (iConst 32:: iConst 42 :: iBinop Plus :: nil)
nil.
(* Some (74 :: nil) *)

3. Define the compiler

(*Translation from source to target language i.e. Compiler*)
Fixpoint compile (e : exp): prog :=
 match e with
 | Const n => iConst n::nil
 | Binop b e1 e2 => compile e2 ++ compile e1 ++ iBinop b :: nil
 end.
 

(*Convert the source language to target assembly language *)
Eval simpl in compile (Binop Plus (Const 2) (Const 3)).  
(* iConst 3 :: iConst 2 :: iBinop Plus :: nil *)

4. Define a correctness theorem

(*Ensure that the compiled program compiles correctly for all possible expr *)

Theorem compile_correct:
 forall e, progDenote (compile e) nil = Some (expDenote e::nil).

 

5. Ask Copra to produce the proof

(*Ensure that the compiled program compiles correctly for all possible expr *)

Theorem compile_correct:
 forall e, progDenote (compile e) nil = Some (expDenote e::nil).

 

Failure! ❌

5(a). Ask the LLM to invent a lemma

5(a). Ask the LLM to invent a lemma

5(b). Sample a proposed lemma

(*Ensure that the compiled program compiles correctly for all possible expr *)
Theorem compile_correct: forall e, progDenote (compile e) nil = Some (expDenote e::nil).

 

 
Auxiliary lemma:

(*Prove if we can compile one instruction correctly first*)
Lemma compile_one_instr: forall e p s, progDenote (compile e ++ p)
s = progDenote p (expDenote e :: s).

 
Target theorem:

5(c). Auto-generate proof of compile_one_instr

Lemma compile_one_instr : forall e p s, progDenote (compile e ++
p) s = progDenote p (expDenote e :: s).
Proof.
 induction e using exp_ind.
 intros p s.
 unfold progDenote, compile, expDenote.
 simpl.
 reflexivity.
 intros p s.
 simpl.
 rewrite app_assoc_reverse.
 rewrite <- app_assoc.
 rewrite IHe2.
 rewrite IHe1.
 reflexivity.
Qed.

5(d). Now auto-generate the proof of compile_correct

Theorem compile_correct : forall e, progDenote (compile e) nil =
Some (expDenote e::nil).
Proof.
 destruct e.
 - simpl. reflexivity.
 - simpl. rewrite compile_one_instr. rewrite compile_one_instr.
reflexivity.
Qed.

Summary: Mathematical Discovery with LLM Agents

Language is an extraordinary powerful tool for mathematical reasoning.

Frontier LLMs can prove nontrivial formal theorems with proof assistant feedback.

Future work should expand these ideas in conjecturing and modeling tasks.

Question: Can prover-LLM interaction be entirely pushed to training
time?
• The prover teaches the LLM student about compositionality, type-safety,…
• Eventually, the teacher “retires”.

Open Challenges and Future Directions

https://arxiv.org/abs/2412.16075

Dawn Song Gabriel  
Poesia

Wenda Li Kristin  
Lauter

Jingxuan HeKaiyu Yang

https://arxiv.org/abs/2412.16075

Open Challenges and Future Directions
Overcoming the shortage of high-quality proof data

• Strategies: Synthetic data, multilingual data, crowdsourcing

[Trinh et al., Alphageometry] [Thakur et al., Proofwala]

Open Challenges and Future Directions
Autoformalization, which is hard due to insufficient high-quality paired data

• Strategies: Formalization with proof assistant feedback

[Lu et al., Process-Driven Autoformalization]

Open Challenges and Future Directions

[Poesia et al., Minimo]

Conjeturing and open-ended exploration

Strategy: Self-play between a conjecturer and a prover

AI for Scientific Discovery

Lifecycle of a scientific process

Lifecycle of a scientific process

Problem: Apparent Retrograde Planetary Motion  
Theory: Heliocentric Model

c. The Astronomical Revolution: Copernicus- Kepler-Borelli

Lifecycle of a scientific process

c. The Astronomical Revolution: Copernicus- Kepler-Borelli

Data Collection: Sample data in regime of
interest.

Tycho Brahe’s observations of the planet Mars
(1582-1600)

Lifecycle of a scientific process

c. The Astronomical Revolution: Copernicus- Kepler-Borelli

Analysis: Kepler’s Third
Law

Lifecycle of a scientific process

c. The Astronomical Revolution: Copernicus- Kepler-Borelli

Analysis: Kepler’s Third
Law

Interpretation: Newton’s Law of Gravitation

Symbolic regression

Kepler’s Third Law

c. The Astronomical Revolution: Copernicus- Kepler-Borelli

Symbolic regression algorithms

c. PySR. Miles Cranmer

Symbolic Regression with PySR

Credit: Miles Cranmer

Symbolic Regression’s impact

Credit: Miles Cranmer

Sketch of PySR’s Exploration Space

Insight: LLMs can increase exploration in relevant parts of the search
space.

Independent “islands” of
expressions, each

undergoing evolution

LaSR: Symbolic Regression with a
Learned Concept Library  
 
Arya Grayeli*, Atharva Sehgal*, Omar Costilla-Reyes, Miles Cranmer, Swarat Chaudhuri. 
Neural Information Processing Systems, 2024.

https://trishullab.github.io/lasr-web

AtharvaArya

https://trishullab.github.io/lasr-web

What is a Concept? 
Desiderata 1: Symbolic Abstraction

Zipf’s Law Moore’s Law Arrhenius’ Equation

⬄“Power Law Trend”

What is a Concept? 
Desiderata II : Symbolic Guidance

“Wave strain diminishes as
distance increases”

“Wave strain has extraordinarily
small magnitude”

Guide the
search for

Concepts (by Physicist or LLM)

h: strain
r: distance between the poles
Q: dipole moment

Joint concept and program learning

A universe of concepts
• “Wave strain diminishes as distance increases” , “power laws”, “sinusoidal functions”
A dataset

A space of programmatic hypotheses

𝐶

𝐷

𝜋

Given

Solve

Hypothesis Evolution

Concept AbstractionConcept Evolution

Concept Library

Hypothesis
Evolution

Concept
Abstraction

Concept
Evolution

LaSR

Hypothesis Evolution

Symbolic 
Evolution or

Hypothesis
Populations Dataset

Best
Hypothesis per

Population

Concept AbstractionConcept Evolution

LLM 
Evolution

Concept
Library

For 106 operations

Concept Library

Hypothesis
Evolution

Concept
Abstraction

Concept
Evolution

LaSR LLM Evolution
provides neural

guidance (over a
language prior)

Hypothesis Evolution

Crossover
Symbolic
Crossover

Mutation
Symbolic
Mutation

Initialization 

Symbolic Initialize

Other Symbolic Operations
 

Simplify TreeOptimize
Constants

Replace Oldest

Program
Population

x300 times

Evaluate

Best Program

Hypothesis Evolution

Crossover

LLM CrossoverSymbolic
Crossover

Mutation

LLM MutationSymbolic
Mutation

Initialization 

LLM InitializeSymbolic Initialize

Other Symbolic Operations
 

Simplify TreeOptimize
Constants

Replace Oldest

Program
Population

or

or

or

x300 times

Evaluate

Best Program

Hypothesis Evolution

Crossover

LLM CrossoverSymbolic
Crossover

Mutation

LLM MutationSymbolic
Mutation

Initialization 

LLM InitializeSymbolic Initialize

Other Symbolic Operations
 

Simplify TreeOptimize
Constants

Replace Oldest

Program
Population

or

or

or

x300 times

Evaluate

Concept Library

Best Program

Hypothesis Evolution

Crossover

LLM CrossoverSymbolic
Crossover

Mutation

LLM MutationSymbolic
Mutation

Initialization 

LLM InitializeSymbolic Initialize

Other Symbolic Operations
 

Simplify TreeOptimize
Constants

Replace Oldest

Program
Population

or

or

or

x300 times

Evaluate

Concept Library

Best Program

import random

def crossover(
	 expr1: SymTree,
	 expr2: SymTree) -> SymTree:
Randomly choose a node in expr1 to
remove
...
Randomly choose a node in expr2
which will be added to eq1
...
Return new tree
new_expr = ...
return new_expr

Hypothesis Evolution

Crossover

LLM CrossoverSymbolic
Crossover

Mutation

LLM MutationSymbolic
Mutation

Initialization 

LLM InitializeSymbolic Initialize

Other Symbolic Operations
 

Simplify TreeOptimize
Constants

Replace Oldest

Program
Population

or

or

or

x300 times

Evaluate

Concept Library

Best Program

Hypothesis Evolution

Symbolic 
Evolution or

Hypothesis
Populations Dataset

Best
Hypothesis per

Population

Concept AbstractionConcept Evolution

LLM Abstraction

“exponential growth/
decay”

LLM 
Evolution

Concept
Library

For 106 operations

Concept Library

Hypothesis
Evolution

Concept
Abstraction

Concept
Evolution

LaSR
LLM Abstraction
induces useful*

abstractions.

Hypothesis Evolution

Symbolic 
Evolution or

Hypothesis
Populations Dataset

Best
Hypothesis per

Population

Concept AbstractionConcept Evolution

LLM Abstraction

“exponential growth/
decay”

“exponential growth/
decay”

LLM Concept Crossover

“Depends on
temperature”

“Boltzmann
Distribution”

LLM 
Evolution

Concept
Library

For 106 operations

Concept Library

Hypothesis
Evolution

Concept
Abstraction

Concept
Evolution

LLM Concept
Crossover
evolves all
concepts.

LaSR

Sketch of Search Space After Phase 1:  
“Islands” of expressions

Sketch of Search Space

Sinusoidal
Trends

Power Law
Trends

Linear
Trends

Exponential
Trends

After Phase 2:  
Concepts for each “Island”

Sketch of Search Space

Sinusoidal
Trends

Power Law
Trends

Linear
Trends

Exponential
Trends

After Phase 2:  
Concepts expose unknown

islands

Trignometric
Trends

Sketch of Search Space

Sinusoidal
Trends

Power Law
Trends

Linear
Trends

Exponential
Trends

After Phase 3:  
Concepts expose new

concepts.

LaSR: Overall Performance

• Concept Guidance  
accelerates discovery.

• LaSR outperforms PySR even
with local language models
(llama-3-7b, 1%)

Human-provided hints

User-provided
hints accelerate
hypothesis search

Example: Coulomb’s Law

Eq 10: Coulomb's Law
• Inverse Square Law
• Directly proportional to

charges
• Force symmetric w.r.t

charges

PySR’s Solution
• Reduces to ground truth after 10 steps of

simplification.
• Unwieldly
• Fitting more constants => more optimization

errors

Coulomb’s Law

Eq 10: Coulomb's Law
• Inverse Square Law
• Directly proportional to

charges
• Force symmetric w.r.t

charges

LaSR’s Solution
• Reduces to ground truth after 4 steps of

simplification
• Smaller models synthesize simpler equations!

Coulomb’s law

Eq 10: Coulomb's Law
• Inverse Square Law
• Directly proportional to

charges
• Force symmetric w.r.t

charges

LaSR’s Concepts (Limitations)
• Cannot guarantee factuality or correctness.
• Good concepts depend on LLM training.

Concepts can mislead scientists.

Iteration Discovered Concept
2 The good mathematical expressions exhibit […] with a

focus on power functions and trigonometric functions
[…]

6 The good mathematical expressions exhibit […]
symmetry or regularity […]

24 The good mathematical expressions have […] with a
specific pattern of division and multiplication

Finding LLM Scaling Laws

Training Compute-Optimal Large Language Models, Hoffman et. al

Step 1: Postulate Scaling
Law

Step 2: Measure model
loss w.r.t hyper
parameters.
Step 3: Fit scaling law to
dataset.

Google DeepMind MassiveText

Finding LLM Scaling Laws with LaSR

Training Compute-Optimal Large Language Models, Hoffman
et. al

Step 1: Measure model loss
w.r.t hyper parameters.

Step 2: Use symbolic regression
to postulate and fit scaling laws

Step 3: Choose the scaling law
that fits the data the best while
using the least parameters.

Google DeepMind BIG-Bench
(204 tasks, 55 LLMs,)

LaSR

LLM Scaling Law

• A large number of shots gives poor results for low-capability models

• Once the models pass a capability threshold, having more shots helps

Qualitative Traits
• Interaction between training hyper params (#steps) and testing hyper params

(#shots)

• We can modify Chinchilla using empirical insights

Self-Evolving Visual Concept Library
Using Vision-Language Critics  
 
Atharva Sehgal, Patrick Yuan, Ziniu Hu, Yisong Yue, Jennifer J Sun, Swarat Chaudhuri. 
Computer Vision and Pattern Recognition, 2025.

Atharva

Zero-shot transfer learning with VLMs

Identify the adult bald eagle

Identify the ever given. [Menon & Vondrick, ICLR 2023]

VLM

VLM

?

?

Classification with visual concept descriptors

Identify the ever given.

LLM

LLM

VLM

VLM

Large wings
Large beak
White head
Black body

Container ship
Evergreen
Stacked containers

[Menon & Vondrick, ICLR 2023]

Identify the adult bald eagle

Concept descriptors can be used to write code

Is this an image of an adult
bald eagle?

def is_eagle(image):

 image_patch = ImagePatch(image)

 if not image_patch.exists('bird'):

 return 'no'

 eagle_patch = image_patch.find('bird')[0]

 eagle_features = [

"large wings",

"large beak",

"white head",

"black body"

]

 p_eagle = 0.0

 for feature in eagle_features:

 p_eagle += eagle_patch.exists(feature)

 p_eagle /= len(eagle_features)

 return 'yes' if p_eagle >= 0.75 else 'no'

GPT

Concept Refinement with Evolution

Concept Refinement with Evolution

• VLM evaluates the similarity
between each image and its
associated concepts
compared to other images,
and computes a contrastive
score. 

• This score is used to refine the
library of visual concepts.

Sample Result

Summary: LLM Agents for Empirical Discovery

LLM-directed evolution is a powerful tool for empirical scientific discovery.

Frontier LLMs inject prior world knowledge into mutation/crossover
operators.

LLMs can be used to learn abstract concepts that accelerate evolution.

All this can be applied to settings with visual inputs as well.

Open Challenges

Hypothesis and concept verification

Concept representations beyond natural language

Scaling to larger search spaces and input dimensions

Going beyond hypothesis generation to experiment design

Scientific discovery

Data

Hypothese
sTheorizing Experimentation

LLM agents are extraordinarily powerful tools for scientific discovery.

Mathematical discovery

Modeling

Conjecturing

Reasoning

AI for math: Automate conjecturing and proof

Proofs, counterexamples

Candidate theoremsDefinitions

Collaborators and Funders

