Decentralized Finance

Introduction to Smart Contracts

Instructor: Dan Boneh, Arthur Gervais, Andrew Miller, Christine Parlour, Dawn Song

Imperial College UNIVERSITY OF
% S > Loﬁdon ® ILLINOIS

University @& london g EEl s

(S -a}*&@,
g A |
3 ’6«(%y

UNIVERSITY OF CALIFORNIA

Outline

- What are smart contracts?
They’re neither smart nor contracts!
Developer’s perspective: Program objects on the blockchain

- Basics of Solidity programming in Ethereum
Just enough to follow the DeFi examples later

- Case Study: The Dutch Auction from CryptoKitties

- Comparing Legal Contracts and Smart Contracts

Part 1: Smart Contracts from
Programmer Perspective

https://defi-learning.orq

Digital currencies: just one blockchain application

Decentralized Consensus
“Blockchain”

B e e e e e T e e e .

Account Balances

. (Alice: B10
| Bob: B15
_Carol: B120

-
7’
4

__

__

R

Smart Contracts: user-defined programs running on
top of a blockchain

Decentralized Consensus

“Blockchain”

~ Contracts

. 4 Storage \\\
> Code »@

\\\ JJJ

__

R

Example: Domain Name Registry in Ethereum

1 pragma solidity 70.5.0;
2
3- contract MyRegistry {

4

5 mapping (string => address) public registry;

6

A function registerDomain(string memory domain) public {
8 // Can only reserve new unregistered domain names
9 require(registry[domain] == address(0));

10

11 // Update the owner of this domailn

12 registry[domain] = msg.sender;

13 }

14 }

Example: Domain Name Registry in Ethereum

1 pragma solidity ”*0.5.0; Storage

2
3- contract MvRegistry Effj

{
4
5 mapping (string => address) public registry;
6
A function registerDomain(string memory) public {
8 // Can only reserve new unregistered domain names
9 require(registry[domain] == address(0));
10
11 // Update the owner of this domain
12 registry[domain] = msg.sender;
13 }
14 }

Example: Domain Name Registry in Ethereum

1 pragma solidity 70.5.0;

2

3- contract MyRegistry {

Code

mapping (string => address) public registry;

function registerDomain(string memory domain) public {

}

// Can only reserve new unregistered domain names
require(registry[domain] == address(0));

// Update the owner of this domailn
registry[domain] = msg.sender;

Example: Domain Name Registry in Ethereum

1 pragma solidity 70.5.0;
2
3- contract MyRegistry {

4

5 mapping (string => address) public registry;

6

A function registerDomain(string memory) public {
8 // Can only reserve new unregistered domain names
9 require(registry[domain] == address(0));

10

11 // Update the owner of this domailn

12 registry[domain] = msg.sender;

13 }

14 }

Example: Domain Name Registry in Ethereum

INnVOke registerDomain /
with string “defi.io” Registry
> Contract

~

registerDomain

query registry to look up the
current owner

Let’s look at an instance on the Test Network

Kovan Testnet Network Leal b
v i & Contract Source Code Verified (Exact Match)

& Contract 0x12E9d045dD5cF027EEbad8fdC3454A1dcCC5d89D © ¢

Contract Name: MyRegistry
(5] Read Contract Information '= Logs
1. regist : : : :
o Registered (address registrant, string domain)
<input> (string) [topicO]

Oxb3eccf73f39b1c07947c780b2b39df2albbt
https://berkeley-defi.github.io/

Addr v 3 @x1b326ad348el9ecfd1406c4

Query
Text v S @

address
Text ~ =

[registry(string) method Response]

» address : 0x1B326Ad348e19ecFd1406C43D3bF7a95547ACS55¢ Text ~) :

- https://berkeley-defi.git

https://kovan.etherscan.io/address/0x12e9d045dd5cf027eebad8fdc3454a1dccc5d89d#code

Interaction between Contracts

Ny Digital Asset
: Contract

|

LA

{ Joint Account } e —1 transferToken

Contract
Auction
Contract

— placeBid

[signRequest

12

Recap of contract programming model so far...

- Contract class: Defines the program code and storage variables for a
contract

- Contract object: an instance of the class living on the blockchain
- Storage fields: variables stored by the contract

- Functions/methods: can be invoked to run the given code, updating
the state of the contract

- Access control: Use “require()” to cancel the transaction if it isn’t
authorized. You can inspect the caller that invoked the function

- Composition: interaction between multiple contracts

Question: What's missing from the example?

- What could go wrong here? How could you fix it

- What other functionality would a useful domain name registry
need to have?

1 pragma solidity 70.5.0;

2

3- contract MyRegistry {

4

5 mapping (string => address) public registry;

6

A function registerDomain(string memory) public {
8 // Can only reserve new unregistered domain names
9 require(registry[domain] == address(0));

10

11 // Update the owner of this domain

12 registry[domain] = msg.sender;

13 }

14 }

Introduction to Smart Contracts

Part 2: Ethereum programming basics

Just enough to follow the Defi examples later

15

Part 2: Ethereum programming basics
Just enough to follow the Defi examples

https://defi-learning.orq

Outline and background

No programming experience required, but might help
Focus on the unique parts of Solidity

Outline: Solidity and EVM bytecode
Data types -~unctions and constructors
Visibility/mutability modifiers
Accessing blockchain metadata

Working with the built-in currency
Events and interaction between contracts

.- Saved for next time: Gas

Solidity and Ethereum Bytecode

Solidity program
High level language

Ethereum Virtual

Machine (EVM) Program
Low level bytecode

1
2
3
4

5
6
-
8

pragma solidity *0.5.0;

- contract MyRegistry {

mapping (string => address) publu

v function registerDomain(string memo

// Can only reserve new unregis

REVERT JUMPDEST POP PUSH2 0x303 DUP1 PUSH2
PUSH1 O0x4 CALLDATASIZE LT PUSH2 0x78 JUMPI
9x1000000000000000000000000000000000000000
Ox7D JUMPI DUP1 PUSH4 Ox1DO8O6AE EQ PUSH2
PUSH2 OxDD JUMPI DUP1 PUSH4 0xD3642A88 EQ
DUP1 REVERT JUMPDEST PUSH2 0x85 PUSH2 0x18
DUP1 REVERT JUMPDEST POP PUSH2 0x9C PUSH2

Solidity and Data Types

Solidity is statically typed
Like Java, C, Rust..... unlike python or javascript

Example:
- Integers: uint (unsigned 256-bit integer)

int (signed 256-bit integer)
/* Initialize ten users */

for (uint 1 = 0; 1 < 10; i++) {
users[i].balance = 1;
}

Mapping data types

- Mapping: a key value storage / hash table
- Every key is initially mapped to zero

Key type

N

mapping (string => address) public registry;

e

Value type

- There is no built-in way to query the length of a mapping, or
iterate over its non-zero elements. A separate variable can be used

Function signatures

Name Arguments 'V'“t?'?"'ty
Modifier
\ \ Visibility Modifier
T
function getCurrentPrice(int) public view
returns(int . XNE) £

Return ___ —
types /** Compute the current price using on-chain data

save Y

Constructors

Invoked when initially creating the contract
Used to customize settings or give an initial state

42 » contract BoardAction {

43
44
45
46
47
48
49
50
51
52

CoY

address public president;
address public vicePresident;

constructor(address initialPresident, address initialVvP) public {
/*% 1nitialize the contract **/
president = initialPresident;
vicePresident = initialVP;

Visibility modifiers

For functions:

function calledByAnyone() public { /* anyone can call */ }

function calledInternally() internal { /* only called by another
function in this contract */ }

For instance variables:

int public myPublicField; /* A getter method is
automatically created */

int private myPrivateField; /* No getter method is
provided */

Question: could myPrivateField hold a secret value?

Mutability modifiers

function ordinary() public { /* can modify state and
call other functions */ }

function viewOnly() public view { /* can't modify any storage or
call another non-view function */ }

function localOnly() public pure { /* doesn't even read any
state either */ }

Events

There are two main ways to observe the state of a contract:
- Using view functions, such as getter functions for public fields
- Looking at event logs. Can “subscribe” to events of a contract

event Registered(address registrant, string domain);

function registerDomain(string memory) public {
// Can only reserve new unregistered domain names
require(registry[domain] == address(0));

// Update the owner of this domain = Logs
registry[domain] = msqg.sender;

: ; X Registered (address registrant, string domain)
emit Registered(msg.sender, domain); : N

Text v 3 https://berkeley-defi.github.io/

Calling methods of other contracts

The interface for an external contract

abstract contract Token {

function transferFrom(address from, address fo, uint) public virtual;
}

contract Exchanger {
Token tokenA = Token(address(0x000 /* Hardcoded address of existing token */));
Token tokenB = Token(address(0x000 /* Hardcoded address of existing token */));

function swapl(address , address) public {
tokenA.transferFrom(Alice, Bob, 1);
tokenB.transferFrom(Bob, Alice, 1);

} Address of external
contract instance

Method Call

Working with the native currency

function acceptExactlvTwoEther() public payable returns(uint) {
require(msg.v 1 ue >= 2.0 ether);

uint refund = msg.value - 2.0 ether;
payable(msg.sender).transfer(refund);

return address(this).balance;

1.0 ether =>1000000000000000000 wei

Reading the current time

function placeBid(int) public {
require(block.timestamp <= deadline);

/** rest of the code for placing a bid **/

Other metadata about the block are available too

Other Solidity quirks and features

- Storage, memory, calldata
Compiler warnings often give recommendations to follow

- Creating contracts programmatically

- Modifier macros e.g. onlyOwner
- Calling another contract’s code
- Inheritance and interfaces

Next time: Hands on writing and deploying a smart contract

Quiz:

What does this Solidity code do?
What’s wrong with it?

Smart Contract Case Study: Dutch Auction

31

Part 3a: Smart Contract Case Study
Dutch Auction

https://defi-learning.orq

CryptoKitties is the Ethereum cat collecting
game that's seen over $1m in user spending

This 1s definitely what blockchain was invented for

http://www.alphr.com/technology/1007854/cryptokitties-is-the-ethereum-cat-collecting-game-that-s-seen-over-1m-in-user

Cryptokitties is based on Dutch Auctions

The “Buy it Now” price is initially set at a largest value
As time goes on, the “Buy it Now” price is lowered

As soon as someone is ready to buy it, they announce their bid and
win

Buy now price

0.0028

3.5/4 purrfect

t = 0.005 ri 0.002

N b b o b ok fd ok fed ek e
OV~ UELEUWNEREODOLDVWOO~NTOOUDLEWN =

N
—

Dutch Auction in a few lines of Solidity

» contract DutchAuction {

1

/| Parameters

uint public initialPrice; uint public biddingPeriod;
uint public offerPriceDecrement; uint public startTime;
KittyToken public kitty; address payable public seller;
address payable winnerAddress;

function buyNow() public payable {
uint timeElapsed = block.timestamp - startTime;
uint currPrice = initialPrice - (timeElapsed * offerPriceDecrement);
uint userBid = msg.value;
require (winnerAddress == address(0)); // Auction hasn’t ended early
require (timeElapsed < biddingPeriod); // Auction hasn't ended by time
require (userBid >= currPrice); // Bid is big enough

winnerAddress = payable(msg.sender);

winnerAddress.transfer(userBid - currPrice); // Refund the difference
seller.transfer(currPrice);

kitty.transferOwnership(winnerAddress);

Introduction to Smart Contracts

Part 3: Demonstration of Coding and Deploying
Smart Contracts with Remix

36

Part 3b: Demo of Coding and Deploying
Smart Contracts with Remix

https://defi-learning.orq

SCANSE I L o, 0 rpare b T4 N

< o . L a
~ browset/ heboworkt sot ® » X ’
AN
~er
e .
I'w

Tracaxctioos vecondad

Th g Z 2 ve o

» Tow 0 Oaw N 18 vea—yy r =
- o o bady rewdi Llemas T b »
Coinind e | _

38

http://www.youtube.com/watch?v=MY9LRnzJ05g

Part4: Gas in Ethereum

https://defi-learning.orq

Each transaction has to pay a gas fee

More complicated
transactions
consume more gas,
so they cost more.

Transaction Count by Gas Confirmation Time by Gas Real Time Gas Use
Price Price

, 100 . 05
= 04
& 0.3

au | >
= 0.2
D Q Q QO I
AN . 5 0
: 1 20 21 >40

(Gas price cateqory Gas price (gwei)

of transaction
[B O &
o O O O O
<« I
(N
Time to Confirm (min)

Recommended Gas Prices in Gwel

36 TRADER 36 FAST 241 STANDARD

source: ethgasstation.info

Miners limited by a global limit on gas per block

Ethereum Average Gas Limit Chart

Source: Etherscan.io
Click and drag in the plot area to zoom in

175M

125M

10M

Average Gas Limit

5M

2016 2017 2018 2019 2020 2021

Every instruction costs a fixed amount of gas

A counter of gas used is tracked when executing the transaction

K

3~ contract MyRegistry {

4
5
6

7~

8
9
10
11
12
13

14
15

mapping (string => address) public registry;

function registerDomain(string memory) public {
// Can only reserve new unregistered domain names
require(registry[domain] == address(0));

// Update the owner of this domain
registry[domain] = msg.sender;

Remaining gas: 9500

42

Every instruction costs a fixed amount of gas

A counter of gas used is tracked when executing the transaction

K

3+ contract MyRegistry {

4
5
6

7~

8
9
10
11
12
13

14
18

}

mapping (string => address) public registry;

function registerDomain(string memory) public {
// Can only reserve new unregistered domain names
require(registry[domain] == address(0));

// Update the owner of this domailn
registry[domain] = msg.sender;

Remaining gas: 8000

43

Gas limits and refunds

e Each transaction specifies a gas limit and a price for the
gas, in units of Ether

e Ether value to pay for the gas must be reserved up front

e At end of contract execution, unused gas is refunded

Transaction: &
Gas Limit: 4500 gas = [Auction }
Gas Price: 15.0e-6 per gas Contract

> — placeBid

44

There’s a big table for gas prices per opcode

This is based on the compiled
opcodes for Ethereum Virtual
Machine (EVM), not high level code

P

“FORMULA” means the gas for this
opcode depends on the arguments
(for example on the size of the

argument).

https://qgithub.com/djrtwo/evm-opcode-gas-costs

Value

0x00
Ox01
0x02
0x03
Ox04
0x05
Ox06
Ox07
0x08
0x09
Ox0a
Ox0b
0x10

.

Mnemonic

STOP
ADD
MUL
SUB

DIV

SDIV
MOD
SMOD
ADDMOD
MULMOD
EXP
SIGNEXTEND
LT

Gas Used

FORMULA

o o O 0 ;g " W O W O

Si

45

https://github.com/djrtwo/evm-opcode-gas-costs

What happens when gas runs out?

- An Out-Of-Gas exception is thrown

- Any changes made to storage variables, any account transfers, are
reverted to their state before this method call

- You are still charged the gas fee for every instruction leading up to
the exception

- Like other exceptions, it can be caught by a handler function

- Methods can be invoked with just a portion of available gas

46

Overview State Changes

(?) Transaction Hash:

(?) Block:

(@ Timestamp:

) From:

® To:

(?) Value:

(?) Transaction Fee:

Click to see More ¥

Comments

0x679d887dd23623c5477bffb62f854215b97

3910317 5926643 Block Confirmations

® 1022 days 9 hrs ago (Jun-21-2017 11:16:46 PM +UTC)

Ox7ed1e469fcb3ee19c0366d829e29

Contract 0x12444b6ec62e616ebc8a23e5

Warning! Error encountered during contract execution [Out of gas] @

1.5651901706057287 Ether

0.00126 Ether ($0.22)

($269.82) - [CANCELLED] @

| ¥ MetaMask Notification

” Account 3

| WITHDRAW |

$0

$0.00

-
l;‘

A
A

()

DETAILS

= O X

@ WMain Ethereum Network

> @ oxero3.Fs.

EDIT

EDIT

GAS FEE $0.19602

$77.39

AMOUNT + GAS FEE

TOTAL QO-I 9602

$77.39

ALERT: Transaction Error. Exception thrown in
contract code.

Reject

48

Recap: Gas in Ethereum

Pay for the computation you use with gas

Gives a good reason to optimize your code

Next time: a case study comparing smart contracts with legal
contracts

49

Part 5: Smart contracts vs real world
contracts

https://defi-learning.orq

Traditional contracts: the basic elements

(2

)

If Bob pays Alice
1.0 ETH by Feb 21,
then Alice will transfer
1.0 CAT tokens to Bob.

Alice

/

- Offer and acceptance
- Consideration

- Mutual agreement

- Legality and Capacity

How could we make a smart contract that models this contract?

51

Example: Offering a token for sale

3~ contract ContractOffer {

address payable public Alice = address(0x0 /**/);
address payable public Bob = address(0x0 /**/;

/* Hardcoded address of the CAT token */

Token public CatToken = Token(address(Ox0 /**/));

- function bobAcceptsOffer() public payable {
require(msg.sender == Bob); /* Only offered to Bob */
require(msg.value == 1.0 ether); /* Payment must be 1 ETH */
require(now <= 1613937837); /* Offer good through Feb 21 */

/] Transfer the payment to Alice
Alice.transfer(1.0 ether);

// Transfer the CAT token to Bob
CatToken.transferFrom(Alice, Bob, 1.0);

e S S = I G SO Sy S Y
OCWVWOO~NOT UMM BAEBWNEFEROOLVOONNOYOL B

52

Example: Offering a token for sale

- Offer and acceptance

To accept an offer, have to digitally sign the transaction.
Alice would have to transfer asset to the contract ahead of time

- Consideration

Payment is collected in the blockchain’s native currency
- Mutuality

The high level code for the contract is typically published
- Capacity / Legality

The execution of the contract code automatically carry out the
transfer of the digital asset in the same transaction as the payment.

“Smart contracts” conceptualized by Szabo in 1994

A smart contract is a computerized transaction protocol
that executes the terms of a contract.

The general objectives are to satisfy common contractual
conditions (such as payment terms, liens, confidentiality, and
even enforcement), minimize exceptions both malicious and
accidental, and minimize the need for trusted
intermediaries. Related economic goals include lowering
fraud loss, arbitrations and enforcement costs, and other
transaction costs.

-Nick Szabo “The Idea of Smart Contracts”

Questions

Consider the Dutch Auction smart contract.

How could we describe it based on the four
elements of a legal contract?

How could we describe it based on Szabo’s smart
contract objectives?

95

Part 6: Fungible and
Non-Fungible Tokens on Ethereum

https://defi-learning.orq

What are tokens?

{1
Al
\\

-~ Transfer
= transaction
-« P
- { Contract }

1 methods

Tokens are smart
Token contracts that function
as digital assets

[transfer
checkbalance

' l l 4 DmUl’ﬁuml Lan L LB B LA S . WL CEE %S S WFY TV WNANST vt ¢ §-IN0

Eth: §3,267.71 (+0.48%) | &) 43 Gwei Home Blockchain ~

£: Token CryptoKitties

CryptoKitties NFT ® Collectibles ®

Overview [ERC-721] Profile Summary [Edit]

Max Total Supply: 2,007,928 CK (O Contract: 0x06
Holders: 104,893 (0.00%) Official Site: https
Transfers: 5,507,348 Social Profiles: =t
Transfers Holders Inventory Info DEX Trades Contract Comments ®

Latest 10,000 active tokens (From a total of 2,008,006 tokens)

#1 #2 #3
Owner 0x88207b431510dbeladdbdae... Owner Oxcd2c66fe27f8c6e08a5bd42b. .. Owner 0x88207b431510dbeladdbd:

Following a standard means some functionality can be
completely generic

Non-Fungible Token Tracker Eerca

Non-Fungible Tokens (NFT)

A total of 15.282 ERC-721 Token Contracts found

> Last
Token v Transfers (24H) Transfers (3D)
1 Template 10,452 11,174
2 ¥¥ Art Blocks 5,133 12,872
3 Gauntlets 4 317 5718

59

v contract NonFungibleToken {
struct Record {

¥

string description; // This could be a url that points to a jpeg, or anything else

address owner;
bool exists;

mapping (uint => Record) public table; //maps
uint public nextid = @;

function ownerOf(uint id) view public

1
J

return table[id].owner;

address public administrator;
constructor () public { administrator = msg.sender; }

// True if this record exists (asse

/

has been minted)

1ds to records

returns(address) {

function mint(string memory description) public {

¥

require(msg.sender == administrator);

require(table[nextid].exists == false);
table[nextid].exists = true;
table[nextid].owner = msg.sender;
table[nextid].description = description;
nextid += 1;

function transfer(uint id, address to) public

require(table[id].exists);
require(owner0Of(id) == msg.sender);
table][id] .owner = to;

I

L

ECE398SC test token 1 Top 100 Token Holders

Source: Etherscan.io

0x8b555001540cd526d045a240eaceab20898cade5
0x69e6e6e46619976cd72ed720a35784c179feelfd
0x98ac233f79e69535dbcecfd78f35dc42fdf07cc3
0xaadd6909dbbh92b57630fbd9735c5¢929c8429907
0x10f00a9¢3373d13c93660ca5d50110467d230144
Oxce76cffbfa6f51c800a78da75b7700b7e6d19f84
0x0dc264fd73f1138fe76522c8cd13dbh41053a43c5
0x06bc47ad950d6460bf7f8f51d7bc8bfa50edb74b
0x8627b976df7a20b838b54a434fc8b293a4fcOed5
0x5ea910e5b6af06779beala5h19c55fc83199a922 //
Oxfe43ef441f5b009850c4393a7e59fdcf42ed074d
0x2af2493e4215f728f6ad71f33c75c7571e734ch0
0x0b4fbbe6f4313729cc027dea6f0f86b59bh940ed
0x7a9f70870d35772ec4511e3944a3360f9588156¢
0xe0c863e843780dac4b045427ac5197a0b4fa318f
0x7d6f63062eb5h73a480876c7107a61f05ch67ffd
0x9f07016c7a5da525c1a6922091daea89a615571f
0xc355dfe7ebed7aadbad5906ad35463aa081b77ce
0x35a3f8d2c7cedled7aa0117e5959%ecf3ed18dcaa
Oxda81229edaf4c30c57c28c79b424ded2ac607294
0xc713150b17¢563a6987d53fa00cbebae225a5e19

e

b 0x1b326ad348e19ecfd1406c43d3bf7a95547ac55¢

ERC20 defines interfaces for basic token behavior

Basic functionality: https://qithub.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

function totalSupply() constant returns (uint256 totalSupply)
function balanceOf(address _owner) constant returns (uint256 balance)

function transfer(address _to, uint256 _value) returns (bool success)

Delegating control:
function transferFrom(address _from, address _to, uint256 _value) returns (bool success)
function approve(address _spender, uint256 _value) returns (bool success)

function allowance(address _owner, address _spender) constant returns (uint256 remaining)

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

To summarize

- Tokens are contracts that function like digital assets

- Difference between fungible and non-fungible
Non-fungible: each asset in a series has a distinct ID, attributes
Fungible: the assets are interchangeable, can be summed up

- Using standard interfaces for tokens help enable interoperability

- ERC20/721 feature many additional features, approval
mechanism for composing with other contracts

63

There are plenty ERC20 templates on the internet

This is a widely adopted standard, and so tons of tools/service will “just work” if
you adhere to ERC20 standard

http://Imgtfy.com/?q=erc20+token+template

https://github.com/bitfwdcommunity/Issue-vour-own-ERC20-token/blob/mast
er/contracts/erc20 tutorial.sol

https://github.com/OpenZeppelin/openzeppelin-solidity/tree/master/contracts
/token/ERC20

http://lmgtfy.com/?q=erc20+token+template
https://github.com/bitfwdcommunity/Issue-your-own-ERC20-token/blob/master/contracts/erc20_tutorial.sol
https://github.com/bitfwdcommunity/Issue-your-own-ERC20-token/blob/master/contracts/erc20_tutorial.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/tree/master/contracts/token/ERC20
https://github.com/OpenZeppelin/openzeppelin-solidity/tree/master/contracts/token/ERC20

Bonus: Ropsten / Metamask Run-through

Ropsten / Metamask Run-Through

Beforehand - install Metamask

In this demo:

1. Create a new Ropsten (testnet) account in Metamask, copy the
address

2. Visit the ropsten faucet, request Ether
3. View the transaction in Etherscan

4. Send a transaction to the instructor to complete the first
challenge

MARKET CAP OF $23.803 BILLION
$232.71 @ 0.0352 BTC/ETH

LAST BLOCK

6428950 (13.9s)

Hash Rate
263,624.79 GH/s

& Blocks

Block 6428949

>16 secs ago

Block 6428948

>19 secs ago

Block 6428947

>44 secs ago

Block 6428946

Mined By SparkPool
21 Txns in 3 sec

Block Reward 3.25126 Ether

Mined By Ethermine
117 Txns in 25 sec
Block Reward 3.30499 Ether

Mined By MiningPoolHub_1
48 Txns in 4 sec

Block Reward 3.08219 Ether

Mined By MinerallPool

A B b s N mimma

TRANSACTIONS
317.87 M (5.4 TPS)

Network Difficulty
3,245.89 TH

View All

The Ethereum Block Explorer

Etherscan
o

https://etherscan.io/

Transactions View All

£ TX# 0XBC94FCB81410B4BF1FB165A... >32 secs ago
From 0x6493b38836f508¢... To 0xb5226ba66c3180...

Amount 0.02230033 Ether

£ TX# 0XB4F450150F58EE3ADES97FFE... >32 secs ago
From 0x73adf951edc455c... To 0x5799d73e4c6020...

Amount 0.01 Ether

— TX# OXFOB6A32A7C2B6E70D19FA47... >32 secs ago
From 0xle63a6146c¢8fala... To 0x06012c8cf97head...

https://etherscan.io/

Several links for creating a ropsten wallet

@X\) MyEtherWallet

Mnemonic Code Converter

Get testnet Ether from the faucet

MetaMask Ether Faucet gipqram Ropsten Faucet

Send some tETH (any amount) the instructor:
0x0974d3A22bDB7f73dCAb552a71896A2150DD2346

https://metamask.io/
https://myetherwallet.com/
https://ropsten.etherscan.io/address/0x1B326Ad348e19ecFd1406C43D3bF7a95547AC55c
https://faucet.ropsten.be/
https://iancoleman.io/bip39/
https://iancoleman.io/bip39/
https://faucet.metamask.io/

Basic datatypes available in Solidity

|ntegers- Solidity is statically typed, like C or Java,

, , , . but unlike python and javascript
Int, Int8, Intl6, ..., Int256

uint, uint8, uintle, ..., uint256
uint8 x = 15;
uLnt8 .y = 255;
return X+y;

Integer Conversions in Solidity

- Syntax most similar to python, but the behavior is like C

- Some restrictions on integer conversions, only change sign or
Size in one conversion

Question: what value will y take?

IR X =.=23
uint y = uint(uint8(int8(x)));

Arrays and lists in Solidity

int32[10] memory fixSizeArray;

. :) fixSizeArray[2] = 15;
Statically sized array: fixSizeArray[5] = 38:
Dynamic |ength array: int32[] memory varSizeArray = new int32[](x);
_ varSizeArray[2] = 15;
(more expensive, varSizeArray[5] = 30;

still can’t change once created)

address[] listOfCallers;

Array in storage: | , |
] function append() public returns(uint) {
(pe rsists across listOfCallers.push(msg.sender);

] return listOfCallers.length;
transactions) }

Basic datatypes available in Solidity

Strings and Bytes:
bytes32: fixed size, returned by hash functions
bytes memory: array of bytes
string memory: array of characters
abi.encode(): flattens multiple arguments to a bytes

string memory s = "hello world";
bytes memory X = abi.encode(s);
Fancier string libraries bytes32 y = sha256(x);
: bytes32 z sha256(abi.encode -
are available too ! ((¥))

