
Decentralized Finance

Instructor: Dan Boneh, Arthur Gervais, Andrew Miller, Christine Parlour, Dawn Song

Introduction to Smart Contracts

- What are smart contracts?
They’re neither smart nor contracts!
Developer’s perspective: Program objects on the blockchain

- Basics of Solidity programming in Ethereum
Just enough to follow the DeFi examples later

- Case Study: The Dutch Auction from CryptoKitties

- Comparing Legal Contracts and Smart Contracts

Outline

Part 1: Smart Contracts from
Programmer Perspective

https://defi-learning.org

4

Account Balances

Decentralized Consensus
“Blockchain”

Alice: ฿10
Bob: ฿15
Carol: ฿120

Digital currencies: just one blockchain application

Users
Money

Contracts

Code
Storage

Data

Users
Money

5

Smart Contracts: user-defined programs running on
top of a blockchain

Decentralized Consensus
“Blockchain”

5

Example: Domain Name Registry in Ethereum

6

Example: Domain Name Registry in Ethereum

7

Storage

Example: Domain Name Registry in Ethereum

8

Code

Example: Domain Name Registry in Ethereum

9

Example: Domain Name Registry in Ethereum

10

Registry
Contract

invoke registerDomain
with string “defi.io”

query registry to look up the
current owner

Let’s look at an instance on the Test Network

11

https://kovan.etherscan.io/address/0x12e9d045dd5cf027eebad8fdc3454a1dccc5d89d#code

Interaction between Contracts

12

Joint Account
Contract

Auction
Contract

Digital Asset
Contract

Recap of contract programming model so far...

- Contract class: Defines the program code and storage variables for a
contract
- Contract object: an instance of the class living on the blockchain
- Storage fields: variables stored by the contract
- Functions/methods: can be invoked to run the given code, updating
the state of the contract
- Access control: Use “require()” to cancel the transaction if it isn’t
authorized. You can inspect the caller that invoked the function
- Composition: interaction between multiple contracts

Question: What’s missing from the example?

- What could go wrong here? How could you fix it

- What other functionality would a useful domain name registry
need to have?

14

Introduction to Smart Contracts

Part 2: Ethereum programming basics

Just enough to follow the Defi examples later

15

Part 2: Ethereum programming basics
Just enough to follow the Defi examples

https://defi-learning.org

Outline and background

No programming experience required, but might help

Focus on the unique parts of Solidity

Outline: Solidity and EVM bytecode

Data types Functions and constructors

Visibility/mutability modifiers

Accessing blockchain metadata

Working with the built-in currency
Events and interaction between contracts

 Saved for next time: Gas17

Solidity and Ethereum Bytecode

Solidity program
High level language

Ethereum Virtual
Machine (EVM) Program

Low level bytecode

Solidity and Data Types

- Integers: uint (unsigned 256-bit integer)

int (signed 256-bit integer)

Solidity is statically typed
Like Java, C, Rust….. unlike python or javascript

Example:

Mapping data types

- Mapping: a key value storage / hash table

- Every key is initially mapped to zero

- There is no built-in way to query the length of a mapping, or
iterate over its non-zero elements. A separate variable can be used

Key type

Value type

Function signatures

Arguments

Return
types

Name

Visibility Modifier

Mutability
Modifier

Constructors

Invoked when initially creating the contract

Used to customize settings or give an initial state

Visibility modifiers

For functions:

For instance variables:

Question: could myPrivateField hold a secret value?

Mutability modifiers

Events

There are two main ways to observe the state of a contract:

- Using view functions, such as getter functions for public fields

- Looking at event logs. Can “subscribe” to events of a contract

Calling methods of other contracts

The interface for an external contract

Address of external
contract instance

Method Call

Working with the native currency

=> 1000000000000000000 wei

Reading the current time

Other metadata about the block are available too

Other Solidity quirks and features

- Storage, memory, calldata
Compiler warnings often give recommendations to follow

- Creating contracts programmatically

- Modifier macros e.g. onlyOwner
- Calling another contract’s code
- Inheritance and interfaces
- …..

Next time: Hands on writing and deploying a smart contract

Quiz:

What does this Solidity code do?

What’s wrong with it?

Smart Contract Case Study: Dutch Auction

31

Part 3a: Smart Contract Case Study
Dutch Auction

https://defi-learning.org

The first

big NFT

http://www.alphr.com/technology/1007854/cryptokitties-is-the-ethereum-cat-collecting-game-that-s-seen-over-1m-in-user

Cryptokitties is based on Dutch Auctions

The “Buy it Now” price is initially set at a largest value

As time goes on, the “Buy it Now” price is lowered

As soon as someone is ready to buy it, they announce their bid and
win

Dutch Auction in a few lines of Solidity

Part 3: Demonstration of Coding and Deploying
Smart Contracts with Remix

Introduction to Smart Contracts

36

Part 3b: Demo of Coding and Deploying
Smart Contracts with Remix

https://defi-learning.org

38

http://www.youtube.com/watch?v=MY9LRnzJ05g

Part 4: Gas in Ethereum

https://defi-learning.org

Each transaction has to pay a gas fee

source: ethgasstation.info

More complicated
transactions
consume more gas,
so they cost more.

Miners limited by a global limit on gas per block

Every instruction costs a fixed amount of gas

A counter of gas used is tracked when executing the transaction

42

Remaining gas: 9500

Every instruction costs a fixed amount of gas

A counter of gas used is tracked when executing the transaction

43

Remaining gas: 8000

● Each transaction specifies a gas limit and a price for the
gas, in units of Ether

● Ether value to pay for the gas must be reserved up front
● At end of contract execution, unused gas is refunded

Transaction:
 Gas Limit: 4500 gas
 Gas Price: 15.0e-6 per gas
 …….

Gas limits and refunds

44

Auction
Contract

There’s a big table for gas prices per opcode

45

This is based on the compiled
opcodes for Ethereum Virtual
Machine (EVM), not high level code

“FORMULA” means the gas for this
opcode depends on the arguments
(for example on the size of the
argument).

https://github.com/djrtwo/evm-opcode-gas-costs

https://github.com/djrtwo/evm-opcode-gas-costs

What happens when gas runs out?

- An Out-Of-Gas exception is thrown

- Any changes made to storage variables, any account transfers, are
reverted to their state before this method call

- You are still charged the gas fee for every instruction leading up to
the exception

- Like other exceptions, it can be caught by a handler function

- Methods can be invoked with just a portion of available gas

46

47

48

Recap: Gas in Ethereum

Pay for the computation you use with gas

Gives a good reason to optimize your code

Next time: a case study comparing smart contracts with legal
contracts

49

Part 5: Smart contracts vs real world
contracts

https://defi-learning.org

Traditional contracts: the basic elements

51

If Bob pays Alice
1.0 ETH by Feb 21,

then Alice will transfer
1.0 CAT tokens to Bob.

- Offer and acceptance
- Consideration
- Mutual agreement
- Legality and Capacity

How could we make a smart contract that models this contract?

Alice

Example: Offering a token for sale

52

Example: Offering a token for sale

- Offer and acceptance

To accept an offer, have to digitally sign the transaction.
 Alice would have to transfer asset to the contract ahead of time

- Consideration

Payment is collected in the blockchain’s native currency

- Mutuality

The high level code for the contract is typically published

- Capacity / Legality

The execution of the contract code automatically carry out the
transfer of the digital asset in the same transaction as the payment. 53

“Smart contracts” conceptualized by Szabo in 1994

A smart contract is a computerized transaction protocol
that executes the terms of a contract.
The general objectives are to satisfy common contractual
conditions (such as payment terms, liens, confidentiality, and
even enforcement), minimize exceptions both malicious and
accidental, and minimize the need for trusted
intermediaries. Related economic goals include lowering
fraud loss, arbitrations and enforcement costs, and other
transaction costs.

-Nick Szabo “The Idea of Smart Contracts”

Questions

Consider the Dutch Auction smart contract.

How could we describe it based on the four
elements of a legal contract?

How could we describe it based on Szabo’s smart
contract objectives?

55

Part 6: Fungible and
Non-Fungible Tokens on Ethereum

https://defi-learning.org

What are tokens?

57

Contract

methods

Token

transfer
checkbalance
...

Transfer
transaction

Tokens are smart
contracts that function
as digital assets

58

59

Following a standard means some functionality can be
completely generic

60

ERC20 defines interfaces for basic token behavior
Basic functionality:

function totalSupply() constant returns (uint256 totalSupply)

function balanceOf(address _owner) constant returns (uint256 balance)

function transfer(address _to, uint256 _value) returns (bool success)

Delegating control:

function transferFrom(address _from, address _to, uint256 _value) returns (bool success)

function approve(address _spender, uint256 _value) returns (bool success)

function allowance(address _owner, address _spender) constant returns (uint256 remaining)

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

To summarize

- Tokens are contracts that function like digital assets

- Difference between fungible and non-fungible

Non-fungible: each asset in a series has a distinct ID, attributes

Fungible: the assets are interchangeable, can be summed up

- Using standard interfaces for tokens help enable interoperability

- ERC20/721 feature many additional features, approval
mechanism for composing with other contracts

63

There are plenty ERC20 templates on the internet

This is a widely adopted standard, and so tons of tools/service will “just work” if
you adhere to ERC20 standard

http://lmgtfy.com/?q=erc20+token+template

https://github.com/bitfwdcommunity/Issue-your-own-ERC20-token/blob/mast
er/contracts/erc20_tutorial.sol

https://github.com/OpenZeppelin/openzeppelin-solidity/tree/master/contracts
/token/ERC20

http://lmgtfy.com/?q=erc20+token+template
https://github.com/bitfwdcommunity/Issue-your-own-ERC20-token/blob/master/contracts/erc20_tutorial.sol
https://github.com/bitfwdcommunity/Issue-your-own-ERC20-token/blob/master/contracts/erc20_tutorial.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/tree/master/contracts/token/ERC20
https://github.com/OpenZeppelin/openzeppelin-solidity/tree/master/contracts/token/ERC20

Bonus: Ropsten / Metamask Run-through

Ropsten / Metamask Run-Through

Beforehand - install Metamask

In this demo:

1. Create a new Ropsten (testnet) account in Metamask, copy the
address

2. Visit the ropsten faucet, request Ether

3. View the transaction in Etherscan

4. Send a transaction to the instructor to complete the first
challenge

https://etherscan.io/

https://etherscan.io/

Send some tETH (any amount) the instructor:
 0x0974d3A22bDB7f73dCAb552a71896A2150DD2346

Several links for creating a ropsten wallet

Get testnet Ether from the faucet

https://metamask.io/
https://myetherwallet.com/
https://ropsten.etherscan.io/address/0x1B326Ad348e19ecFd1406C43D3bF7a95547AC55c
https://faucet.ropsten.be/
https://iancoleman.io/bip39/
https://iancoleman.io/bip39/
https://faucet.metamask.io/

Basic datatypes available in Solidity

Integers:

int, int8, int16, …, int256

uint, uint8, uint16, …, uint256

Solidity is statically typed, like C or Java,
but unlike python and javascript

Integer Conversions in Solidity

- Syntax most similar to python, but the behavior is like C

- Some restrictions on integer conversions, only change sign or
size in one conversion

Question: what value will y take?

Arrays and lists in Solidity

Statically sized array:

Dynamic length array:
(more expensive,
 still can’t change once created)

Array in storage:
(persists across

 transactions)

Basic datatypes available in Solidity

Strings and Bytes:

bytes32: fixed size, returned by hash functions

bytes memory: array of bytes

string memory: array of characters

abi.encode(): flattens multiple arguments to a bytes

Fancier string libraries

are available too

