Decentralized Finance

Privacy on the Blockchain

Instructors: Dan Boneh, Arthur Gervais, Andrew Miller, Christine Parlour, Dawn Song

UNIVERSITY OF

ILLINOIS

AAAAAA -CHAMPAIGN

ot chiro e
{750
g oA A
2 50
i3/ 1
iz 4
W4 g
\ % S)o..._:

s g

UNIVERSITY OF CALIFORNIA

D Stanford Imperial College
% University London

Can we have private transactions
on a public blockchain?

Naive reasoning:
universal verifiability = transaction data must be public.

otherwise, how we can verify Tx ??

Goal for this lecture:
crypto magic = private Tx on a publicly verifiable blockchain

Crypto tools: commitments and zero knowledge proofs

Private Tx with universal verifiability: how?

public blockchain

committed state . .dted -
/ \ anyone can

committed o
veri w
Tx data a fy

(reveals nothing about Tx data or state)

Committed data: short (hiding) commitment on chain

Proof 1t: succinct zero-knowledge proof that
(1) committed Tx data is consistent with committed current state, and
(2) committed new state is correct

The need for privacy in the financial system

= Supply chain privacy:
A car company does not want to reveal
how much it pays its supplier for tires, wipers, etc.

= Payment privacy:

= A company that pays its employees in crypto needs to keep list of
employees and their salaries private.

= Privacy for rent, donations, purchases

= Business logic privacy:
Can the code of a smart contract be private?

Types of Privacy

= Pseudonymity: (weak privacy)
= One consistent pseudonym (e.g. reddit)

= Pros: Reputation
= Cons: Linkable posts: one post linked to you = all posts linked to you

= Full anonymity:
= User’s transactions are unlinkable
= The system cannot tell if two transactions are from the same person

= Maintaining reputation is possible but more complex

= Accounts:

Privacy in Ethereum?

= Every account balance is public

= For Dapps: code and internal state are public

= All account transactions are linked to account

etherscan.io:

Address 0x1654b0c3f62902d7A86237

Balance:

Ether Value:

1.114479450024297906 Ether

$4,286.34 (@ $3,846.05/ETH)

Txn Hash

0x0269eff8b4196558c07...

Oxa3dacb0e7¢579a99cd...

0x73785abcc7ccf030d6a...

0x1463293c495069d61c...

Method (®

Set Approval For...

Cancel Order_

Set Approval For...

Atomic Match_

Block

13426561

13397993

13387834

13387703

Privacy in Bitcoin?

c2561b292ed4878bb28478a8cafd1f99a01Ffaeb9c5a906715Fa595cac0e8d1d8 [

16k4365RzdeCPKGWJDNNBEKXj696 MbChwx 0.53333328 BTC 1JgVBpw5TDMTR0ZXg9XpPDQRRHEND5CsPA 0.01031593 BTC (V)
1Bsh4KD9ZJT4dJcoo7S5uS1jvtmtVmREDb7 1.47877788 BTC 1AFLhD4EtG2uZmFxmFdXCyGUNgCgD5887u 2 BTC (S)
FEE: 0.00179523 BTC \ ? \ ?
from addresses amounts to addresses amounts

Alice can have many addresses (creating address is free)
Transaction data can be used

Inputs: A1:4 A2 5 out: B:6, Ad:3 to link addresses to a single owner
\ Change address and to a physical entity

Alice’s addresses Bob’s address (chainalysis)

Privacy of Digital Payments

Payments publicly Payments only .
visible and linkable visible to bank private payments
L]

VISA

¢ @

Less private More private

Simple blockchain anonymity via mixing

L

<1 ETH to M
from Bob

fresh addr X mixer
from Alice ;s [EllIf=F\Y

<1 ETH to M
from Alice

fresh addr Y S

from Bob -
41 ETHto M fresh addr Z =
from Carol from Carol 3

ueypod Il I B

Observer knows Y belongs to one of {Alice, Bob, Carol} but does not know which one
— anonymity set of size 3.

— Bob can mix again with different parties to increase anonymity set.

Problems: (i) mixer knows all, (ii) mixer can abscond with 3 ETH !!

Mixing without a mixer? on Bitcoin: CoinJoin (e.g., Wasabi), on Ethereum: Tornado cash

Negative aspects of privacy in finance

Criminal activity:

= Tax evasion, ransomware, ...

Can we support positive applications of

private payments,

= Can we ensure lega

out prevent t

compliance w

Ooops, your files have been encrypted! Englch

er?
P ?

Your important files are encrypted.
Many of your documents, photos, videos, databases and other files are no longer
accessible because they have been encrypted. Maybe you are busy looking for a way to
recover your files, but do not waste your time. Nobody can recover your files without
our decryption service.
Payment will be raised on B8 .0 1 Recover My Files?
51612017 00:47:55 Sure. We guarantee that you can recover all your files safely and easily. But you have
not so enough time.

Time Left You can decrypt some of your files for free. Try now by clicking <Decrypt>.
But if you want to decrypt all your files, you need to pay.
You only have 3 days to submit the payment. After that the price will be doubled.
Also, if you don’t pay in 7 days, you won't be able to recover your files forever.
'We will have free events for users who are so poor that they couldn’t pay in 6 months.
Your files will be lost on
How Do I Pay?
Payment is accepted in Bitcoin only. For more information, click <About bitcoi
Please check the current price of Bitcoin and buy some bitcoins. For more information,
click <How to buy bitcoins>,
And send the correct amount to the address specified in this window.
After your payment, click <Check Payment>. Best time to check: 9:00am - 11:00am
~ver <

51202017 00:47:55

Time Left

Send $300 worth of bitcoin to this address:
Abead bicor bitcoin .
st [12t9YDPgwueZ9NyMgw519p7AABISjr6SMw
S [CheckPayment [l Deept |

ne negative ones?

hile preserving privacy?

= Yes! With proper use of zero knowledge proofs

Next segment: commitments

An important tool

-

https://defi-learning.orq/

Cryptographic commitments

Cryptographic commitment: emulates an envelope

82 a

Many applications: e.g., a DAPP for a sealed bid auction

* Every participant commits to its bid,

* Once all bids are in, everyone opens their commitment

Cryptographic Commitments

Syntax: a commitment scheme is two algorithms

= commit(msg, r) — com

I —

. | . .
secret randomness in R ' commitment string

» verify(msg, com, r) — acceptor reject

anyone can verify that commitment was opened correctly

Commitments: security properties

* binding: Bob cannot produce two valid openings for com.

More precisely: no efficient adversary can produce
com, (my, ry), (my, ry)

such that verify(m,, com, r,) = verify(m,, com, r,) = accept
and m; #m,.

* hiding: com reveals nothing about committed data

commit(m, r) =» com, and ris sampled uniformly in R,
then com is statistically independent of m

Example 1: hash-based commitment

Bix a hash function H: M XR — C (e.g., SHA256)

where H is collision resistant, and |R| > |C]

= commit(m € M, r « R): com= H(m,r)

= verify(m, com,r): acceptif com= H(m,r)

binding: follows from collision resistance of H
hiding: follows from a mild assumption on H

Example 2: Pedersen commitment

& = finite cyclicgroup={1, g, g2 ..., g1} where g' - gi=glitimoda)

q= |G| is called the order of G. Assume q is a prime number.

Fix g,hinG and letR={0,1,..., g-1}. For m,r € R define
Him,r)=g™-h" € G
Fact: for a “cryptographic” group G, this H is collision resistant.

= commitment scheme: commit and verify asin example 1

committm €R, r — R) =H(m,r)=gm™-h"

An interesting “homomorphic” property

o commitm €R, r — R) =H(m,r)=gm-h"

Suppose: commit(m, € R, r; + R) — com,
commit(m, € R, r, + R) — com,

Then: com, xcom, = gmM¥*Mm2.h1+2 = commit(m;+m,, r,+r,)

= anyone cah sum committed value

Next segment: zero knowledge proofs

An important privacy tool

What is a zk-SNARK?

Succinct Non-interactive ARgument of Knowledge

https://defi-learning.orq/

zk-SNARK: Blockchain Applications

Scalability:
= SNARK Rollup (zk-SNARK for privacy from pubilic)

Privacy: Private Tx on a public blockchain
» Confidential transactions
= Tornado cash
» Private Dapps: Aleo

Compliance:
= Proving solvency in zero-knowledge
= Zero-knowledge taxes

(1) arithmetic circuits

= Fix a finite field F =1{0,..,p —1} forsome prime p>2.

= Arithmeticcircuit: C: F* = F
= directed acyclic graph (DAG) where x1(x1 + 2+ 1)(x; — 1)
= internal nodes are labeled +, —, or x
" inputs are labeled 1, x4, ..., x,,

= defines an n-variate polynomial b
with an evaluation recipe
" |C| =#gatesinC

Interesting arithmetic circuits

Examples:

= C_.(h,m): outputs0if SHA256(m)=h, and #0 otherwise

C _..(h,m)= (h — SHA256(m)) , |C, .. | =20K gates

o Csig(pk, m, 0): outputs O if Ois a valid ECDSA signature
on m with respect to pk

(2) Argument systems (worne)
Public arithmetic circuit: C(x, w) — F

public statement in F" secret witness in F™

P’s goal: “convince” Vthataw s.t. C(x,w) =0

>
-
>
-
- accept or

reject

Two types of argument systems:
Interactive vs. non-interactive

Interactive: proof takes multiple P—V rounds of interaction
= Useful when there is a single verifier, e.g. a compliance auditor
= Example: zero-knowledge proof of taxes to tax authority

Non-interactive: prover sends a single message (proof) to verifier

= Used when many verifiers need to verify proof, e.g., Rollup systems
= SNARK: short proof that is fast to verify

(non-interactive) Preprocessing argument system
Public arithmetic circuit: C(x, w) — T

public statement in F" secret witness in F™

Preprocessing (setup): S(C) — public parameters (S, S,)

S, X, W Svs X

p?

proof i

accept or
reject

Preprocessing argument System
A non-interactive argument system is a triple (S, P, V):
= $(C) — public parameters (S,, S,) for prover and verifier
" P(S,, x,w) — proof

" V(S,, x, ™) = accept or reject

Argument system: requirements (informal)

Prover P(S,, x, w) Verifier V (S, x, m)

proof 1

_d
accept or reject

Complete: Vx,w: C(x,w) =0 = Pr[V(S, x, P(S,, x, w)) = accept | =1
Argument of knowledge: V accepts = P “knows” ws.t. C(x,w) =0

P* does not “know” w = Pr[V(S, x,) = accept] < negligible

Optional: Zero knowledge: (s.,x, ™) “reveals nothing” about w

Preprocessing SNARK

A succinct non-interactive argument system is a triple (S, P, V):

= $(C) — public parameters (S, S,) for prover and verifier

= P(S,, x,w) = shortproof = ; || = 0(log(|C|), 2)

= V(S,, x,t) = acceptorreject ; time(V)=0(|x|, log(|C|), A)

N)

short “summary” of circuit Why preprocess C??

Preprocessing SNARK

A succinct non-interactive argument system is a triple (S, P, V):

= $(C) — public parameters (S, S,) for prover and verifier

= P(S,, x,w) = shortproof = ; || = 0(log(|C|), 2)

= V(S,, x,t) = acceptorreject ; time(V)=0(|x|, log(|C|), A)

If (S, P, V) is succinct and zero-knowledge then we say that it is a zk-SNARK

The trivial argument system

fa) Prover sends w to verifier,
(b) Verifier checks if C(x,w) = 0 and accepts if so.

Problems with this:

(1) w might be secret: prover does not want to reveal w to verifier
(2) w might be long: we want a “short” proof

(3) computing C(x,w) may be hard: we want a “fast” verifier

An example

Prover: | know (x4, ..,Xx,) € X suchthat H(xy ..,x,) =y

SNARK: size(rr) and VerifyTime(mr) is O(logn) !!

statement: y statement: y
witness: x,,...,x,]

A

@ Proof 7T @ accept or reject

Prover Verifier

An example

How is this possible ??7?

SNARK: size(rr) and VerifyTime(mr) is O(logn) !!

statement: y statement: y
witness: x,,...,x, —

A

@ Proof TT @ accept or reject

Types of preprocessing Setup

Recall setup for circuit C: S(C) — public parameters (S,,S,)

Types of setup:

trusted setup per circuit: S(C) uses data that must be kept secret

compromised trusted setup = can prove false statements

trusted but universal (updatable) setup: secrets in S(C) are independent of C

S = (Sinitr Spre): Sinit(4) = U'. Spre(U, C) = (Sp, Sv)
one-time no secret data

Y transparent setup: S(C) does not use secret data (no trusted setup)

better

Significant progress in recent years

» Kilian’92, Micali’94: succinct transparent arguments from PCP
= impractical prover time

= GGPR’13, Groth’16, ...: linear prover time, constant size proof o,
= trusted setup per circuit (setup alg. uses secret randomness)
= compromised setup = proofs of false statements

= Sonic’19, Marlin’19, Plonk’19, ... : universal trusted setup

= DARK’19, Halo’19, STARK, ... : no trusted setup (transparent)

Groth’16

Plonk/Marlin
Bulletproofs
STARK

DARK

Types of SNARKS (partial list)

size of
SP
0o(1)
o(1)
0(1)
O(1)

verifier trusted
time setup?
o Gt
O(1) yes/universal
no
no
no

DSL
program

Circom,
/oKrates,

Leo,
Zinc,
Cairo,
Snarky,

A SNARK software system

compiler

SNARK
friendly
format

R1CS,
AIR,
Plonk-CG

setup

SNARK
backend

*

X, withess
verifier
X
(S, S,

CPU heavy

Proof m

accept/
reject

/ZoKrates Example

Goal: prove knowledge of a hash (SHA256) preimage for a given x € {0,1}*°°

* Forapublicx, prover knows w € [, such that SHA256(w) = x

e [, isa 254-bit prime field

p Compiled into an arithmetic circuits

(R1CS) over IF,,

def main(field x[2], private field w) -> (field):
h = sha256packed(w)

h[0] ==x[0] // check top 128 bits
h[1] ==x[1] // check bottom 128 bits

return 1

How to define “argument of knowledge”
and “zero knowledge”?

Definitions: (1) argument of knowledge

6oal: if V accepts then P “knows”"ws.t. C(x,w) =0
What does it mean to "know” w ??

informal def: P knows w, if w can be “extracted” from P

n oo
Q v @

2

= 2

» s -
N e
& ——
qJ

| ‘, /”r\—\-»\%

Definitions: (1) argument of knowledge

Formally: (S, P, V) is an argument of knowledge for a circuit C if
for every poly. time adversary A = (A, A,) such that

S(C) = (S, Sy), (x,st) = A(Sp), 1+ Aqy(S,, x, st):
Pr[V(S,, x, m) = accept] > 1/10° (non-negligible)

there is an efficient extractor E (that uses A, as a black box) s.t.

S(C) = (S, Sy), (x, st) & A(Sy), | w e EAGexsU (S x).

Pr[C(x, w) = 0] > 1/10° (hon-negligible)

If holds for all A, then (S, P, V) is a proof of knowledge.

Definitions: (2) Zero knowledge (gsinst anhonest verifien

65, P, V) is zero knowledge if for every x € F"
proof T “reveals nothing” about w, other than its existence

What does it mean to “reveal nothing” ??

Informal def: © “reveals nothing” about w if the verifier can
generate w by itself — it learned nothing new from

= (S, P, V) is zero knowledge if there is an efficient alg. Sim
s.t. (S,, S,, ™) < Sim(C, x) “look like” thereal S, S, and .

Main point: Sim(C,x) simulates m without knowledge of w

Definitions: (2) Zero knowledge (gsinst anhonest verifien

Formally: (S, P, V) is (honest verifier) Zero knowledge for a circuit C

if there is an efficient simulator Sim such that

forallx € F" s.t. 3w:C(x,w) = 0 the distribution:

(Sp, Sy, X, TT): where (S,,S,) < S(C), m<+ P(S,,x, w)

is indistinguishable from the distribution:

(Sp, Sy, X, TT): where (S, S,,) < Sim(C, x)

How to build a zk-SNARK?

Recall: A zero knowledge preprocessing argument system.

Prover generates a short proof that is fast to verify

How to build a zk-SNARK ?7?

Not in this course ...

(see, e.g., cs251)

Next segment: confidential transactions

Private Tx Warmup:
Confidential
Transactions

https://defi-learning.orq/

Confidential Transactions (CT)

Current Bitcoin Tx expose full payment details:

— Businesses cannot use Bitcoin for supply chain payments, salaries, etc.

D c2561b292ed4878bb28478a8cafd1F99a01Faeb9c5a906715Fa595cac0e8d1ds [

16k4365RzdeCPKGWJDNNBEKXj696 MbChwx 0.53333328 BTC 4 1JgVBpw5TDMTR0ZXg9XpPDQRRHLtNb5CsPA 0.01031593 BTC (U)
1Bsh4KD9ZJT4dJcoo7S5uS1jvtmtVmRED7 1.47877788 BTC 1AFLhD4EtG2uZmFxmfdXCyGUNQCqD5887u

(FEE:0.00WQSZB BTD<— will not hide Tx fee

Goal: hide amounts in Bitcoin transactions.

Confidential Tx;: how?

Bitcoin Tx today:AcmeCo: 30 — Alice: 1, AcmeCO: 29
\

%

—\C

8 bytes

The plan: replace amounts by commitments to amounts

‘\ ‘

AcmeCo: com, - Alice: com,, AcmeCo: com,

—

32 bytes

where com, = commit(30, r,), com, = commit(1, r), com,=commit(29,r,)

Now blockchain hides amounts

© c2561b292ed4878bb28478a8cafd1f99a01faeb9c5a906715Fa595cac0e8d1d8 [mined Apr 10,2017 12:38:00 AM
16k4365Rzde CPKGwWJDNNBEKXj696MbChwx 3bd6925f€|d 1JgVBpw5TDMTR0ZXg9XpPDQRRHENbB5CSPA ae23b452d8
1Bsh4KD9ZJT4dJcoo7S5uS1jvtmtVmRED7 8c528ad9fa 1AFLhD4EtG2uZmFxmFdXCyGUNQCqD5887u 187b6¢cf54a8

(FEE: 0.00179523 BTC) 1 CONFIRMATIONS

How much was transferred ???

The problem: how can miners verify Tx?

AcmeCo: com, - Alice: com,, AcmeCo: com,

com, = commit(m1=30, rl), com, = commit(m2=1, r,), com, = commit(m3=29, r

solution: zk-SNARK (special purpose, optimized for this problem)
= AcmeCo: (1) privately send r, to Alice

(2) construct a proof m for | statement =x=(com,;, com,, com;, Fees)
witness =w =(m,, r;,, m,, r,, m, r)

where circuit C(x,w) outputs O iff:
(i) com. = commit(m, r;) fori=1,2,3,
CT arithmetic (i)

S m,; = m, + m; + Fees,
circuit

(iii) my,20 and m;20

The problem: how can miners verify Tx?

AcmeCo: (1) privately send r, to Alice
(2) construct a ZK proof w that Tx is valid

(3) embed m in Tx (need short proof! =
zk-SNARK)

Tx: proofw, AcmeCo:com; — Alice:com,, AcmeCo: com;,

Miners: accept Tx if proof m is valid (need fast verification)
= learn Tx is valid, but amounts are hidden

Optimized proof?

Easy to check with Pedersen commitment:

. oF
circuit C(x,w) outputs 0 if: set com - CC)ml/COm2 com, g™
(i) com,=commit(m, r), (a commitment to ml—mz—m3—Fees)
— (A=A o5~ prove that com = commit(O, r)

(iii) m,20 and m;20

remaining proof is =400 bytes

(CT is the beginning of MimbleWimble implemented in the Grin blockchain)

Next segment: anonymous payments

Anonymous Payments:
Tornado Cash and Zcash / lIronFish

https://defi-learning.orq/

TORNADO CASH: A ZK-BASED MIXER

Launched on the Ethereum blockchain on May 2020 (v2)

Tornado Cash: a ZK-mixer

A

A common denomination (1000 DAI) is heeded to prevent linking

ice to her fresh address using the deposit/withdrawal amount

account

oA (3000 DAI)
Mado.cash

W‘
MIX < bqv NFT » | NFT
privately market
/fresh
address

contract

The tornado cash contract (simplified)

. 256
100 DAI pool: Treasury: 300 DAI H, Hy R~ {0,1)
in=1 D , Coins
each coin = 100 DAI coins nfl Coins
Merkle root
root nfz
Currently: (32 bytes)
* three coins in pool next = 4
 contract has 300 DAI MerkleProof{4) " C oo
. - nullifiers 1 S Yy
two nullifiers stored contract state s \—

public list of coins

explicit list:
one entry per spent coin

Tornado cash: deposit (simplified)

) 256
100 DAI pool: Treasury: 300 DAI H,H,: R~ {0,1}
each coin = 100 DAI : Coins
coins nfl Merkle
Merkle root
Alice deposits 100 DAI: root nfz
(32 bytes) |
next=4
MerkleProof(4)
, nullifiers C,C CO0O..
choose random k, r in R contract state N ‘—
set C,=H,(k, r) public list of coins
write C, in leaf #4 in tree L
1T = MerkleProof(5) explicit list:

one entry per spent coin

Tornado cash: deposit (simplified)

) 256
100 DAI pool: Treasury: 300 DAI H,H,: R~ {0,1}
each coin = 100 DAI ; updated
coins nfl Merkle
Merkle root
Alice deposits 100 DAI: root nfz
(32 bytes) |
next=4
MerkleProof(4)
, nullifiers ¢, G GCO0...
choose random k,r in R contract state N 5 .
set C,=H,(k, r) public list of coins
write C, in leaf #4 in tree L
1T = MerkleProof(5) explicit list:

one entry per spent coin

Tornado cash: deposit (simplified)

. 256
100 DAI pool: Treasury: 300 DAI H,H,: R~ {0,1}
N = dated
each coin = 100 DAI coins nfl ul\?le?klee
Merkle root
Alice deposits 100 DAI: root nfz

(32 bytes)

100 DAI
- next =4
C, , MerkleProof(5) (| merkleProof(a)

nullifiers ¢ 6 GCo..
choose random k, r in R contract state A 9 | '
set C,=H,(k, r) public list of coins
write C, in leaf #4 in tree L
1t = MerkleProof(5) explicit list:

one entry per spent coin

Tornado cash: deposit

100 DAI

(simplified)

>
C,, m = MerkleProof(5)

Tornado contract does:

(1) use C, and MerkleProof(4) to
compute updated Merkle root

(2) verify m = MerkleProof(5)
(3) if valid: update state

coins
Merkle
root

(32 bytes)

next=4
MerkleProof(4)

H,H,: R — {0,1}"°

updated
Merkle
root

Tornado contract

C CCCO...
1 2 3 4
L — '

public list of coins

Tornado cash: deposit (simplified)

100 DAI pool: Treasury: 400 DAI
each coin = 100 DA updated
updated nf1 Merkle
Merkle root
Alice deposits 100 DAI: root nfz
(32 bytes) |
100 DA [
C, , MerkleProof(5) (| merkleProof(s)
nullifiers C,CCCO..
l updated contract state ‘D Y '

public list of coins

note: (k, r)

Alice keeps secret Z‘;erc\j' deposit: r;le"" Coin an observer sees who
- added sequentia r : :

(one note per coin) d yto tree owns which coins

Tornado cash: withdrawal

100 DAI pool:
each coin = 100 DAI

Withdraw coin #3
to addr A:

Q has note= (k’, r’)
set nf=H_(k')

Treasury: 400 DAI

coins nf
Merkle :
root nfz
(32 bytes) |
next =5
MerkleProof(5)
nullifiers

contract state

(simplified)

H,H,: R — {0,1}"°

Merkle
root

C CCC O...
1 2 3 4
o — '

public list of coins

Bob proves “I have a note for some leaf in the coins tree, and its nullifier is nf”

(without revealing which coin)

Tornado cash: withdrawal (simplified)

H,H,: R — {0,1}"°

Withdraw coin #3 to addr A:
Merkle

@ has note= (k’, r’) set nf=H_(k') root

Bob builds zk-SNARK proof m for
public statement x = (root, nf, A)

secret witness w = (K’, r’, C;, MerkleProof(C;)) C1 C2 C3 C4 0...
where Circuit(x,w)=0 iff: 0

(i) C;=(leaf #3 of root), i.e. MerkleProof(C;) is valid,
(ii) C3=Hq(k’, r’), and

(iii) nf =H,(k’). (address A not used in Circuit)

Tornado cash: withdrawal (simplified)

The address A is part of the statement to ensure that a miner cannot change A to
its own address and steal funds

Assumes the SNARK is non-malleable:

adversary cannot use proof i for x to build a proof i’ for some “related” x’
(e.g., where in x’ the address A is replaced by some A’)

Bob builds zk-SNARK proof m for
public statement x = (root, nf, A)

secret withess w = (k', r’, C3, MerkleProof(C;))

Tornado cash: withdrawal

100 DAI pool:
each coin = 100 DAI

Withdraw coin #3
to addr A:

nf, proof r, A

(over Tor)

Bob’s ID and coin C3
are not revealed

3

>

Treasury: 400 DAI

coins nf
Merkle :
root nfz
(32 bytes)
next =5
MerkleProof(5)
nullifiers

contract state

(simplified)

H,H,: R — {0,1}"°

Merkle
root

C CCC O...
1 2 3 4
o — '

public list of coins

Contract checks (i) proof m is valid for (root, nf, A), and
(ii) nf is not in the list of nullifiers

Tornado cash: withdrawal

(simplified)

H,H,: R — {0,1}"°

100 DAI pool: Treasury: 300 DAI

. Merkle

each coin = 100 DAI coins nfl oot
Withdraw coin #3 Merkle o
to addr A: root 2
nf, proofm, A (32 bytes) nf
(over Tor) next =5
MerkleProof(5) Cl C2 C3 C4'O
<« 100DAI nullifiers o m—

to address A

contract state

public list of coins

... but observer does not
know which are spent

nf and i reveal nothing about which coin was spent.

But, coin #3 cannot be spent again, because nf = H,(k’) is now nullified.

Who pays the withdrawal gas fee?

Problem: how does Bob pay for gas for the withdrawal Tx?
= |f paid from Bob’s address, then fresh address is linkable to Bob

Tornado’s solution: Bob uses a relay

nf, proof m, A
nf, proof m, A and gas (100-gas) DAL,
(over Tor) to address
rela
y tornado
contract

Note: relay and Tornado also charge a fee

Tornado Cash: the Ul

Note

Token

DAI enter note here

Amount

— OO

100 DAI 1K DAI 10K DAI 100K DAI

Recipient Address

address

After deposit: get a note Later, use note to withdraw

(wait before withdrawing)

Anonymity set

38,036 $3,798,916,834

Total deposits Total USD deposited

leaves occupied
over all pools

Oct. 2021

Compliance tool

Tornado.cash compliance tool

Maintaining financial privacy is essential to preserving our freedoms.

However, it should not come at the cost of non-compliance. With Tornado.cash, you can always
provide cryptographically verified proof of transactional history using the Ethereum address you
used to deposit or withdraw funds. This might be necessary to show the origin of assets held in

your withdrawal address.
To generate a compliance report, please enter your Tornado.Cash Note below.

Note

enter note here

Compliance tool

S

Deposit Withdrawal 0.942 ETH

Verified Verified

Date) Date
Transaction Transaction

From To

Commitment Nullifier Hash

Generate PDF report

Reveals source address and destination address of funds

ZCASH / IRONFISH

Two L1 blockchains that extend Bitcoin.

Sapling (Zcash v2) launched in Aug. 2018.

More complicated, but similar use of Nullifiers

Zcash / IronFish (simplified)

Goal: fully private payments ... like cash, but across the Internet
Includes mechanisms to let parties abide by financial regulation

Zcash / IronFish supports two types of TXOs:
= transparent (asin Bitcoin)
= shielded (anonymized)

a Tx can have both types of inputs, both types of outputs

Addresses and coins (notes)

H.,H_,H_: cryptographic hash functions. sk needed to spend note
el for address pk

(1) shielded address: random sk — X, pk=H,(sk)

(2) shielded coin owned by address pk:

- coin owner has (from payer): valuev and r — R

- on blockchain: coin = Hz((pk, v), r) (commitment to pk, v)

pk: addr. of owner, v:value of coin, r:random chosen by payer

The blockchain

coins nullifiers transparent-TXOs
coin, nf,
coin, nf,

c0|n3

just Merkle root ... append only
tree

(coins are never removed)

explicit list:
one entry per spent coin

The blockchain

coins nullifiers transparent-TXOs
coins nf,
Merkle nf
root
(32 bytes)
append only tree explicit list:

(coins are never removed) one entry per spent coin

Transactions: an example

owner of coin =H_((pk, v), r)
wants to send coin value v to: shielded pk’, Vv’

(v=Vv +vtjansp. pk”, v”

step 1: construct new coin: coin” = H_((pk’, v’), r’)

by choosing random r’ — R (and send (V/, r’) to owner of pk’)

index of opin

step 2: compute nullifier for spent coin nf =H_(sk, NP0 PN

III

nullifier nf is used to “cancel” coin (no double spends)

key point: miners learn that some coin was spent, but not which one!

Transactions: an example

step 3: construct a zk-SNARK proof m for

statement = x = (current Merkle root, coin’, nf, v'’)
witness=w = (sk, (v, r), (pk’,V,r’), MerkleProof(coin))
C(x, w) outputs O if: compute coin := Hz((pk=H,(sk), v), r) and check

(1) MerkleProof(coin) is valid,

] from
The Zcash (2) coin’ = Hz((pk', V') , I") Merkle
circuit
(3) v=v'+Vv’” and v'20 and v’ >0 proof

(4) nf = H;(sk, index-of-coin-in-Merkle-tree)

What is sent to miners

step 4: send (coin’, nf, transparent-TXO, proof m) to miners,

send (V', r’) to owner of pk’

step 5: miners verify

(i) proof t and transparent-TXO
(ii) verify that nf is not in nullifier list (prevent double spending)

if so, add coin’ to Merkle tree, | add nf to nullifier list,

add transparent-TXO to UTXO set.

Summary

= Tx hides which coin was spent

= coin is never removed from Merkle tree,
but cannot be double spent thanks to nullifer

note: prior to spending coin, only owner knows nf:
_ index of coin
nf=H_(sk,

in Merkle tree

» T hides address of coin’ owner

= Miners can verify Tx is valid, but learns nothing about Tx details

End of lecture. Let’s do a quick review.

A zk-SNARK for a circuit C:

= Given a public statement x, prover P outputs a proof it that “convinces”
verifier IV that prover knows w s.t. C(x,w) = 0.

= Proof i is short and fast to verify

What is it good for?

" Private payments and private Dapp business logic (Aleo)
" Private compliance and L2 scalability with privacy

More to think about:

= private DAO participation? private governance?

F U rt h e r tO p i CS (see, e.g., cs251)

= How to build a zk-SNARK?

= Recursive SNARKS:

" Proving knowledge of a SNARK proof
1-level recursive statement: “l know a proof that Iw: C(x,w) = 0”

= Used in systems that keep business logic private

" Privately communicating with the blockchain: Nym

= And (privately) compensating proxies for relaying traffic

END OF TOPIC

