
Decentralized Finance

Instructors: Dan Boneh, Arthur Gervais, Andrew Miller, Christine Parlour, Dawn Song

Privacy on the Blockchain

Can we have private transactions
on a public blockchain?

Naïve reasoning:

universal verifiability ⇒ transaction data must be public.

otherwise, how we can verify Tx ??

Goal for this lecture:
crypto magic ⇒ private Tx on a publicly verifiable blockchain

Crypto tools: commitments and zero knowledge proofs

Private Tx with universal verifiability: how?

public blockchain

committed state Tx updated
committed state

(reveals nothing about Tx data or state)

committed
Tx data

The need for privacy in the financial system

▪ Supply chain privacy:
A car company does not want to reveal
how much it pays its supplier for tires, wipers, etc.

▪ Payment privacy:
▪ A company that pays its employees in crypto needs to keep list of

employees and their salaries private.

▪ Privacy for rent, donations, purchases

▪ Business logic privacy:
Can the code of a smart contract be private?

Types of Privacy

▪ Pseudonymity: (weak privacy)
▪ One consistent pseudonym (e.g. reddit)
▪ Pros: Reputation

▪ Cons: Linkable posts: one post linked to you ⟹ all posts linked to you

▪ Full anonymity:
▪ User’s transactions are unlinkable
▪ The system cannot tell if two transactions are from the same person

▪ Maintaining reputation is possible but more complex

Privacy in Ethereum?

▪ Accounts:

▪ Every account balance is public

▪ For Dapps: code and internal state are public

▪ All account transactions are linked to account

Address 0x1654b0c3f62902d7A86237
…

etherscan.io:

Privacy in Bitcoin?

from addresses amounts to addresses amounts

Transaction data can be used
to link addresses to a single owner
and to a physical entity

(chainalysis)

Inputs: A1:4 A2: 5 out: B:6, A3:3

Alice can have many addresses (creating address is free)

Alice’s addresses

Change address

Bob’s address

Privacy of Digital Payments

More privateLess private

Payments publicly
visible and linkable

Payments only
visible to bank private payments

mixer
address: M

Simple blockchain anonymity via mixing

fresh addr X
from Alice TLS

1 ETH to M
from Alice

1 ETH to M
from Bob

1 ETH to M
from Carol

b
lo

ckch
ain

fresh addr Y
from Bob TLS

fresh addr Z
from Carol TLS

Send:
1 ETH to X
1 ETH to Y
1 ETH to Z

Observer knows Y belongs to one of {Alice, Bob, Carol} but does not know which one
⟹ anonymity set of size 3.
⟹ Bob can mix again with different parties to increase anonymity set.

Problems: (i) mixer knows all, (ii) mixer can abscond with 3 ETH !!

Mixing without a mixer? on Bitcoin: CoinJoin (e.g., Wasabi), on Ethereum: Tornado cash

has 3 ETH

Negative aspects of privacy in finance

Criminal activity:

▪ Tax evasion, ransomware, …

Can we support positive applications of
private payments, but prevent the negative ones?

▪ Can we ensure legal compliance while preserving privacy?

▪ Yes! With proper use of zero knowledge proofs

Next segment: commitments

An important tool

Cryptographic
Commitments

https://defi-learning.org/

Cryptographic commitments

Cryptographic commitment: emulates an envelope

Many applications: e.g., a DAPP for a sealed bid auction

• Every participant commits to its bid,

• Once all bids are in, everyone opens their commitment

data data

Cryptographic Commitments

Syntax: a commitment scheme is two algorithms

▪ commit(msg, r) ⇾ com

▪ verify(msg, com, r) ⇾ accept or reject

anyone can verify that commitment was opened correctly

commitment string

Commitments: security properties

Example 1: hash-based commitment

▪

Example 2: Pedersen commitment

▪

An interesting “homomorphic” property

▪

Next segment: zero knowledge proofs

An important privacy tool

What is a zk-SNARK?

https://defi-learning.org/

Succinct Non-interactive ARgument of Knowledge

zk-SNARK: Blockchain Applications

Scalability:
▪ SNARK Rollup (zk-SNARK for privacy from public)

Privacy: Private Tx on a public blockchain
▪ Confidential transactions

▪ Tornado cash

▪ Private Dapps: Aleo

Compliance:
▪ Proving solvency in zero-knowledge

▪ Zero-knowledge taxes

(1) arithmetic circuits

▪

Interesting arithmetic circuits

Examples:

▪ C
hash

(h, m): outputs 0 if SHA256(m) = h , and ≠0 otherwise

C
hash

(h, m) = (h – SHA256(m)) , |C
hash

| ≈ 20K gates

▪ C
sig

(pk, m, σ): outputs 0 if σ is a valid ECDSA signature
on m with respect to pk

(2) Argument systems (for NP)

▪

Prover Verifier

accept or
reject

Two types of argument systems:
interactive vs. non-interactive

Interactive: proof takes multiple P↔V rounds of interaction
▪ Useful when there is a single verifier, e.g. a compliance auditor

▪ Example: zero-knowledge proof of taxes to tax authority

Non-interactive: prover sends a single message (proof) to verifier
▪ Used when many verifiers need to verify proof, e.g., Rollup systems

▪ SNARK: short proof that is fast to verify

(non-interactive) Preprocessing argument system

Prover Verifier

accept or
reject

Preprocessing argument System

▪

Argument system: requirements (informal)

accept or reject

Preprocessing SNARK

▪

 short “summary” of circuit

Preprocessing SNARK

▪

If (S, P, V) is succinct and zero-knowledge then we say that it is a zk-SNARK

The trivial argument system

▪

An example

▪

Prover Verifier

 accept or reject

An example

 accept or reject

How is this possible ???

Prover Verifier

Types of preprocessing Setup

▪

one-time no secret data

be
tte

r

Significant progress in recent years

▪

Types of SNARKs (partial list)

size of
Sp

verifier
time

trusted
setup?

Groth’16 O(1) O(1) yes/per
circuit

Plonk/Marlin O(1) O(1) yes/universal

Bulletproofs O(1) no

STARK O(1) no

DARK O(1) no

⋮ ⋮ ⋮

A SNARK software system

DSL
program

Circom,
ZoKrates,

Leo,
Zinc,
Cairo,

Snarky,
…

compiler

SNARK
friendly
format

R1CS,
AIR,

Plonk-CG

SNARK
backend

x, witness

(S
p
, S

v
)

setup

CPU heavy

verifier accept/
rejectx

ZoKrates Example

def main(field x[2], private field w) -> (field):

 h = sha256packed(w)

 h[0] == x[0] // check top 128 bits
 h[1] == x[1] // check bottom 128 bits

 return 1

How to define “argument of knowledge”
and “zero knowledge”?

Definitions: (1) argument of knowledge

▪

P

Definitions: (1) argument of knowledge

▪

Definitions: (2) Zero knowledge (against an honest verifier)

▪

Definitions: (2) Zero knowledge (against an honest verifier)

▪

How to build a zk-SNARK?

Recall: A zero knowledge preprocessing argument system.

Prover generates a short proof that is fast to verify

How to build a zk-SNARK ??

Not in this course …

(see, e.g., cs251)

Next segment: confidential transactions

Private Tx Warmup:
Confidential
Transactions

https://defi-learning.org/

Confidential Transactions (CT)

Goal: hide amounts in Bitcoin transactions.

⟹ Businesses cannot use Bitcoin for supply chain payments, salaries, etc.

will not hide Tx fee

Current Bitcoin Tx expose full payment details:

Confidential Tx: how?

Bitcoin Tx today:AcmeCo: 30 ⇾ Alice: 1, AcmeCO: 29

8 bytes

The plan: replace amounts by commitments to amounts

AcmeCo: com1 ⇾ Alice: com2, AcmeCo: com3

32 bytes

where com
1
 = commit(30, r

1
), com

2
 = commit(1, r

2
), com

3
 = commit(29, r

3
)

Now blockchain hides amounts

3bd6e25fqd

8c528ad9fa

ae23b452d8

187b6cf54a8

How much was transferred ???

The problem: how can miners verify Tx?

▪

AcmeCo: com1 ⇾ Alice: com2, AcmeCo: com3

com
1
 = commit(m

1
=30, r

1
), com

2
 = commit(m

2
=1, r

2
), com

3
 = commit(m

3
=29, r

3
)

CT arithmetic
circuit

The problem: how can miners verify Tx?

▪

 Tx:

(need short proof! ⇒
zk-SNARK)

Optimized proof?

Easy to check with Pedersen commitment:
 set com ⇽ com

1
/com

2
⋅com

3
⋅gFees

(a commitment to m
1
−m

2
−m

3
−Fees)

prove that com = commit(0, r)

remaining proof is ≈400 bytes

(CT is the beginning of MimbleWimble implemented in the Grin blockchain)

Next segment: anonymous payments

Anonymous Payments:
Tornado Cash and Zcash / IronFish

https://defi-learning.org/

TORNADO CASH: A ZK-BASED MIXER

Launched on the Ethereum blockchain on May 2020 (v2)

Tornado Cash: a ZK-mixer

account

MIX

Tornado.cash
contract

fresh
address

(3000 DAI)

???
1000 DAI

1000 DAI

1000 DAI NFT
market

buy NFT
privately

1000 DAI

1000 DAI

1000 DAI

A common denomination (1000 DAI) is needed to prevent linking
Alice to her fresh address using the deposit/withdrawal amount

The tornado cash contract (simplified)

nf
1

nullifiers

explicit list:
one entry per spent coin

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
 each coin = 100 DAI

nf
2

(32 bytes)
Currently:
• three coins in pool
• contract has 300 DAI
• two nullifiers stored contract state

next = 4
MerkleProof(4)

H
1
, H

2
: R ⇾ {0,1}256

C
1
 C

2
 C

3
 0 0 …

0
public list of coins

tree of
height 20

(220 leaves)

Coins
Merkle

root

Tornado cash: deposit (simplified)

nf
1

nullifiers

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
 each coin = 100 DAI

nf
2

(32 bytes)

C
1
 C

2
 C

3
 0 0 …

0

Coins
Merkle

root

tree of
height 20

(220 leaves)

Alice deposits 100 DAI:

explicit list:
one entry per spent coin

public list of coins

H
1
, H

2
: R ⇾ {0,1}256

contract state

next = 4
MerkleProof(4)

Tornado cash: deposit (simplified)

nf
1

nullifiers

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
 each coin = 100 DAI

nf
2

(32 bytes)

C
1
 C

2
 C

3
 C

4
 0 …

0

updated
Merkle

root

tree of
height 20

(220 leaves)

explicit list:
one entry per spent coin

public list of coins

Alice deposits 100 DAI:

H
1
, H

2
: R ⇾ {0,1}256

contract state

next = 4
MerkleProof(4)

Tornado cash: deposit (simplified)

nf
1

nullifiers

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
 each coin = 100 DAI

nf
2

(32 bytes)

C
1
 C

2
 C

3
 C

4
 0 …

0

updated
Merkle

root

tree of
height 20

(220 leaves)
 100 DAI
 C

4
 , MerkleProof(5)

explicit list:
one entry per spent coin

public list of coins

Alice deposits 100 DAI:

contract state

next = 4
MerkleProof(4)

H
1
, H

2
: R ⇾ {0,1}256

Tornado cash: deposit (simplified)

coins
Merkle

root
(32 bytes)

C
1
 C

2
 C

3
 C

4
 0 …

0

updated
Merkle

root

tree of
height 20

(220 leaves)

public list of coins

next = 4

MerkleProof(4)

H
1
, H

2
: R ⇾ {0,1}256

Tornado contract

Tornado cash: deposit (simplified)

nf
1

nullifiers

updated
Merkle

root

Treasury: 400 DAI100 DAI pool:
 each coin = 100 DAI

nf
2

(32 bytes)

 100 DAI
C

4
 , MerkleProof(5)

C
1
 C

2
 C

3
 C

4
 0 …

0

updated
Merkle

root

tree of
height 20

(220 leaves)

public list of coins
note: (k, r)
Alice keeps secret
(one note per coin)

Every deposit: new Coin
added sequentially to tree

an observer sees who
owns which coins

Alice deposits 100 DAI:

updated contract state

next = 5
MerkleProof(5)

Tornado cash: withdrawal (simplified)

nf
1

nullifiers

coins
Merkle

root

Treasury: 400 DAI100 DAI pool:
 each coin = 100 DAI

nf
2

(32 bytes)
Withdraw coin #3
to addr A:

C
1
 C

2
 C

3
 C

4
 0 …

0

Merkle
root

tree of
height 20

(220 leaves)

public list of coins

has note= (k’, r’)

set nf = H
2
(k’)

H
1
, H

2
: R ⇾ {0,1}256

next = 5
MerkleProof(5)

contract state

Bob proves “I have a note for some leaf in the coins tree, and its nullifier is nf”

(without revealing which coin)

Tornado cash: withdrawal (simplified)

Withdraw coin #3 to addr A:

C
1
 C

2
 C

3
 C

4
 0 …

0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H
2
(k’)

H
1
, H

2
: R ⇾ {0,1}256

(address A not used in Circuit)

Tornado cash: withdrawal (simplified)

Withdraw coin #3 to addr A:

C
1
 C

2
 C

3
 C

4
 0 …

0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H
2
(k’)

H
1
, H

2
: R ⇾ {0,1}256

Tornado cash: withdrawal (simplified)

nf
1

nullifiers

coins
Merkle

root

Treasury: 400 DAI100 DAI pool:
 each coin = 100 DAI

nf
2

(32 bytes)

C
1
 C

2
 C

3
 C

4
 0 …

0

tree of
height 20

(220 leaves)

public list of coins

Bob’s ID and coin C
3

are not revealed

Merkle
root

H
1
, H

2
: R ⇾ {0,1}256

contract state

next = 5
MerkleProof(5)

Withdraw coin #3
to addr A:

Tornado cash: withdrawal (simplified)

nf
1

nullifiers

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
 each coin = 100 DAI

nf
2

(32 bytes)

C
1
 C

2
 C

3
 C

4
 0 …

0

tree of
height 20

(220 leaves)

public list of coins

 nf

… but observer does not
know which are spent

100 DAI
to address A

Merkle
root

H
1
, H

2
: R ⇾ {0,1}256

next = 5
MerkleProof(5)

contract state

Withdraw coin #3
to addr A:

Who pays the withdrawal gas fee?

Problem: how does Bob pay for gas for the withdrawal Tx?

▪ If paid from Bob’s address, then fresh address is linkable to Bob

Tornado’s solution: Bob uses a relay

 (100-gas) DAI
to address
Arelay

tornado
contract

gas

Note: relay and Tornado also charge a fee

Tornado Cash: the UI

After deposit: get a note Later, use note to withdraw

enter note here

address

(wait before withdrawing)

Anonymity set

leaves occupied
over all pools

Oct. 2021

Compliance tool

enter note here

Compliance tool

Reveals source address and destination address of funds

ZCASH / IRONFISH

Two L1 blockchains that extend Bitcoin.

Sapling (Zcash v2) launched in Aug. 2018.

More complicated, but similar use of Nullifiers

Zcash / IronFish (simplified)

Goal: fully private payments … like cash, but across the Internet

Includes mechanisms to let parties abide by financial regulation

Zcash / IronFish supports two types of TXOs:

▪ transparent (as in Bitcoin)

▪ shielded (anonymized)

a Tx can have both types of inputs, both types of outputs

Addresses and coins (notes)

H
1
, H

2
, H

3
: cryptographic hash functions.

(1) shielded address: random sk ⇽ X, pk = H
1
(sk)

(2) shielded coin owned by address pk:

- coin owner has (from payer): value v and r ⇽ R

- on blockchain: coin = H
2
((pk, v) , r) (commitment to pk, v)

pk: addr. of owner, v: value of coin, r: random chosen by payer

sk needed to spend note
for address pk

The blockchain

coin
1

coin
2

coin
3

⋮

nf
1

nf
2

⋮

coins nullifiers transparent-TXOs

similar
to Bitcoin
UTXO set

just Merkle root … append only
tree
(coins are never removed)

explicit list:
one entry per spent coin

The blockchain

coins
Merkle

root

nf
1

nf
2

⋮

coins nullifiers transparent-TXOs

similar
to Bitcoin
UTXO set

append only tree
(coins are never removed)

explicit list:
one entry per spent coin

(32 bytes)

Transactions: an example

owner of coin = H
2
((pk, v) , r)

wants to send coin value v to: shielded pk’, v’

 transp. pk’’, v’’

step 1: construct new coin: coin’ = H
2
((pk’, v’) , r’)

by choosing random r’ ⇽ R (and send (v’, r’) to owner of pk’)

step 2: compute nullifier for spent coin nf = H
3
(sk,)

nullifier nf is used to “cancel” coin (no double spends)

key point: miners learn that some coin was spent, but not which one!

(v = v’ + v’’)

index of coin
in Merkle tree

Transactions: an example

▪

The Zcash
circuit

from
Merkle
proof

What is sent to miners

▪

Summary

▪ Tx hides which coin was spent

⇒ coin is never removed from Merkle tree,
 but cannot be double spent thanks to nullifer

note: prior to spending coin, only owner knows nf:

nf = H
3
(sk,)

▪ Tx hides address of coin’ owner

▪ Miners can verify Tx is valid, but learns nothing about Tx details

index of coin
in Merkle tree

End of lecture. Let’s do a quick review.

▪

Further topics (see, e.g., cs251)

▪

END OF TOPIC

https://defi-learning.org/

