
How TEE is used in DeFi

DeFi MOOC ‘24 - Andrew Miller

Privacy in smart contracts is an innovation bottleneck

The toolbox of ZK has done a great job of expanding what’s

possible, MPC, FHE, and TEE are coming along as well.

These all turn out to be complementary. You will eventually
want TEE plus {ZK, MPC, FHE} in your dApp.

TEEs continue to be underappreciated, which I’m trying to fix

This talk: interventions to help blockchain industry overcome
this bottleneck by using TEE as appropriate tech

The web3 TEE-in-blockchains Redemption Arc

Phala

Avalanche

Enclave Markets
Taiko
Marlin
Flashbots Builder
Scroll ZK+TEE

How TEEs disintermediate app developers and clouds

TEE Manufacturer

TEE operators Developers

Inspect evidence
and attestations

Contribute
sensitive data

TEE

TEE Prover

I have a document D that’s signed
by Admin and contains “1234”

Document
owner

Relying parties

Attestation

Service
Provider

I believe
it!

Let’s make a useful self-contained TEE application

Self-contained example:
 Trusted Setup using a TEE

TEE

Samples p and q
Computes N = pq
Throw away p,q
Output N

N, att
Inspect the source code
CheckAtt(att, policy, N)

Relying parties

TEE Manufacturer

Certificate
chain

https://github.com/amiller/gramine-rsademo
/blob/master/rsademo.py

https://github.com/amiller/gramine-rsademo/blob/master/rsademo.py
https://github.com/amiller/gramine-rsademo/blob/master/rsademo.py

del(p)
del(q)
print(‘RSA modulus:’, N)

Rapid prototyping with Python in Gramine

Gramine is suitable for running python, so a “TEE-vm”

Check it out in CI-Examples/python

Where does it come from? Browse the manifest and see lib files

Comes with everything in the system python libs… but we could point it to a virtual
env too.

Remote Attestation in Gramine

Gramine can produce remote attestations, that connect the root of trust (Intel’s
published certificate) to:

● An app-defined message (user report data)
● Summary of the app program (MRENCLAVE)
● and the configuration of the machine.

Accessed from /dev/attestation. Write to /dev/attestation/user_report_data.

We can parse and verify them with tools on a separate host

Remote Attestation verification in a Smart Contract

Often useful to post these to a public record. On-chain is good for this.

“Attestation Transparency” analogous to Certificate Transparency.

- Automata DCAP. Also implementations using ZK, from Phala and from Clique

https://github.com/automata-network/automata-on-chain-pccs

https://github.com/automata-network/automata-on-chain-pccs

SGX remote attestation on-chain contest

https://github.com/amiller/sgx-epid-contest/blob/master/README.md#good-riddance-to-epid-pre-de
precation-memorial-contest

Starts from Intel hardcoded public key
Parses certificate chain and verifies each signature.
Determines if the configuration is acceptable:

- in this case we allow all of them,
- but only 1 entry per configuration

Smart Contract
Attestation Checker

TEE Kettles

https://github.com/amiller/sgx-epid-contest/blob/master/README.md#good-riddance-to-epid-pre-deprecation-memorial-contest
https://github.com/amiller/sgx-epid-contest/blob/master/README.md#good-riddance-to-epid-pre-deprecation-memorial-contest

SGX remote attestation on-chain contest
https://optimistic.etherscan.io/address/0x490a428b0301d61db6ed45eddc55d615f2ea9f75#readContract

https://optimistic.etherscan.io/address/0x490a428b0301d61db6ed45eddc55d615f2ea9f75#readContract

Tagging a release / Reproducible build

Here’s a recipe for reliably producing the same MRENCLAVE:

Start from the Gramine dockerhub image

We can use the fixed version of python already present in the base image

The manifest will traverse library files in the base image

Anything tracked in this repo will be stable using git

Further dependencies will need to be tracked (e.g., with nix)

Example: https://github.com/amiller/gramine-rsademo

https://github.com/amiller/gramine-rsademo

Using TEE for DeFi

Example: an auction that conceals all the losing bids

Winner:
$10

The Residual Bids problem

I still want to
spend my $9!

Today’s unmet demand is tomorrow’s bids!
This is strategic information to protect

$9
$10

Sufficient Motivating Application: Batch auctions

Bid $X, Bid $Y
Updated ledger
or state root

View of updated
account

Sirrah: speedrunning a TEE Coprocessor

Smart Contract Off-chain &
confidential
functionsOn-chain

functions

TEE KettlesValidators

Users Ciphertexts xPriv

Attested results

https://writings.flashbots.net/suave-tee-coprocessor

 xPriv, xPub

xPub, att
xPub

xPub

Confidential queries run on off-chain
EVM coprocessor

ciphertexts
ciphertexts

secondPrice secondPrice

Ordinary EVM functions run
on-chain

Auction end

1

att

2

4

Sealed bid Auction using TEE Coprocessor

3

Patching the auction using Sirrah (Before, plaintext)

Patching the auction using Sirrah (After, encrypted)

Untrusted
Host

On-chain:
- Validates attestation
- Stores validated kettle
addresses and public key

light client

stdin/out
revm-andromeda/

witness-revm

/dev/attestation
/dev/urandom

Light client
proofs

Kettle Enclave

KeyManager.sol
Andromeda.sol

Gramine

Off-chain:
- Generate private key
- Retrieve private key
- Generate attestation

Public
Blockchain suave-geth

kettle.py

If you put a Smart Contract in a TEE,
 it gets upgraded with programmable privacy

TEE framework

Smart Contract VMs

AMM
 DeFi Lending

Programmable Privacy

DarkPool AMM
 Snipe-resistant Lending

TEE for web3 vs web2

Many sub-areas of Blockchain+TEE

Middleware
- Consensus (CCF,..)
- Mobilecoin Fog (Mobilecoin,
 monero)
- BITE (bitcoin)
- Oblivious Msg Retrieval (zcash)

- Automata

- Phala
- Oasis Privacy
Layer

Private Smart Contracts

- Oasis
- Secret
- Obscuro

Applications
- SafeTrace
- Flashbots SGX-based block builder
….

- hbcl?
- suave?

What all of these have in
common:
 Disintermediation.

By design, you shouldn’t have to trust
the operators OR developers

Cloud/Enterprise use case Blockchain use case

- Relying party: any user

- Verifying an attestation should
be non-interactive, like verifying a
certificate.

- TCB Recovery should be
managed using through an
trust-minimized process

- Relying party: the VM owner

- Verifying an attestation
requires interacting with the
enclave, e.g. over TLS

- TCB Recovery can be
managed by the datacenter
admin

Cloud/Enterprise use case Blockchain use case

Relying party:
Application Developer / VM Owner

Relying party:
Anyone/everyone in the public

Cloud / VM Host
Cloud

Attestation

Developer

AFAICT, requirements are being
driven by Cloud/Enterprise side!
TDX, Nvidia, SEV

Attestation

Security Time: Introducing
“Controlled Channel Attacks”

https://github.com/amiller/gramine/commit/4763624

https://github.com/amiller/gramine/commit/4763624

It’s not enough to “Run in the TEE”

- Characterize and mitigate memory access pattern channels

- Prevent replay/grinding attacks and side channel amplification

- Avoid code-signing backdoors in the software upgrade process

- Rotate keys periodically for forward secrecy (prepare for vuln disclosures)

- Promptly reject vulnerable configurations after disclosures

- Make sure builds are reproducible

- Use “proof of cloud” to exclude TEEs in side channel labs

Proof of Cloud - a complement to hardware attestation

Thinking like a kernel/hypervisor attacker
Our threat model is a host that wants to learn more than they should about the
enclave. There’s a gap between the default behavior (act like an ordinary OS) and
what you can get away with (act like a “debugging tool”).

Between “running in SGX” and “is secure”

Untrusted Host

Enclave

Channels controlled by
untrusted OS:
- Interrupts
- System calls
- Page table entries
- …

Requests for service
“ocalls”

Events,
untrusted inputs

enclave_ocalls.c
ocall_open()
….
ocall_pwrite()

host_ocalls.c
sgx_ocall_open()
….
sgx_ocall_pwrite()

How Gramine implements an encrypted filesystem

Untrusted Host
Enclave Application

libos enclavelibos ocall

encryption sealing key

host syscall

“Spicy PrintF” demonstration

Sometimes, you can undermine an application just by monitoring an obvious
“controlled channel” interface.

For example, with encrypted files we can modify the Gramine “ocall” to show the
4KB block being accessed.

Populating a user database

Making a data-dependent access

Controlled Channel Attacks - references

Shout out to this 2015 paper "Controlled Channel attacks" for explaining how
page-fault oracles undermine legacy apps run in a TEE.

They can reconstruct a document in Word Processor from font renderer, or from
spellcheck https://youtube.com/watch?v=fwUaN5ik8zE

https://ieeexplore.ieee.org/document/7163052
https://www.youtube.com/watch?v=fwUaN5ik8zE

These are still applicable today!

See also: https://github.com/jovanbulck/sgx-pte SGXonerated paper
https://www.comp.nus.edu.sg/~prateeks/papers/PigeonHole.pdf

https://ieeexplore.ieee.org/document/7163052
https://www.youtube.com/watch?v=fwUaN5ik8zE
https://github.com/jovanbulck/sgx-pte
https://eprint.iacr.org/2023/378
https://www.comp.nus.edu.sg/~prateeks/papers/PigeonHole.pdf

Takeaways: Gramine and controlled channel attacks

Legacy applications that automatically “run in Gramine/ SGX”
are not automatically secure against controlled-channel attacks.

These aren’t even side-channels, they are documented you just have to choose to
look at them.

Possible mitigations:
1. Design your application in a data-independent way
2. Automatically apply “ORAM” to make the queries data-independent
3. Abort if a page fault is detected during a transaction when it’s unexpected

Open Research challenges

- End to end software chain for attestation. Not yet fully implemented. Techdebt

- Root of trust remains unsolved. Decentralized open hardware?

- Governance and upgrades. Yet to define a best practice

- Integrating ORAM and characterizing side channels remains open

Thank you!

ZK

Where ZKP falls short - sequencer has to see everything

Encrypted bids,
ZK proofs

But, the auctioneer must be able to
decrypt the transactions in order
to apply the auction computation.

ZK proof of
Auction
function

ZK
ZK

MPC tolerates faults, but does nothing about collusion

Encrypted bids,
ZK proofs

A “multisig” of key
holder nodesIf a quorum of key holders collude,

they could decrypt everything.
Difficult to disincentivize, as it
produces no evidence

ZK proof of
Auction
function

ZK
ZK

ZK

FHE turns I/O bottleneck of MPC into compute tradeoff

Encrypted bids,
ZK proofs

ZK proof of
Auction
function

No change regarding collusion

Multisig only shows up to
decrypt

Untrusted compute
does the work

Untrusted
compute

ZK
ZK

ZK

Use TEE

Use ZK

Use MPC

ZK,MPC,TEE
Design Space

