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About Me

« | was a TA for the DeFi MOOC &

* Collaborated with Dawn, Arthur, Kaihua on DeFi security.
 MEV/BEV

 Blockchain/Miner/Maximal Extracted/Extractable Value

 Sandwich attacks
* Arbitrages
* Liquidations

* SoK (Systemization of Knowledge): DeFi Attacks




DeFi # just Finance €

- (P2P) network €< Decentralized

! !—s. - State Transition

- Example 1 - Alice transfers 5 coins to Bob
- Example 2 - Alice deploys a voting program to
! |“ decide what to eat for tonight, Bob votes for pizza

- We need some consensus algorithm
- Eve only owns 5 coins
- Eve tells Node A she wants to send 5 coins to Alice
- Eve tells Node B she wants to send 5 coins to Bob



DeFi # just Finance €

- (P2P) network €< Decentralized

- State Transition
Shared - Example 1 -Alice transfers 5 coins to Bob
computer - Example 2 - Alice deploys a voting program to
decide what to eat for tonight, Bob votes for pizza

- We need some consensus algorithm
- Eve only owns 5 coins
- Eve tells Node A she wants to send 5 coins to Alice
- Eve tells Node B she wants to send 5 coins to Bob



Smart Contracts

Shared
computer

Deploys code
(i.e., smart contracts)

- Read / Execute Alice’s code
- Cannot modify Alice’s code )¢



Example

solidity

pragma solidity %0.8.20;

contract SimpleToken {
mapping(address => uint) public balance;

constructor() {

balance[msg.sender] = 100;
}

function transfer(address to, uint amount) public {
require(balancelmsg.sender] >= amount, "Not enough");
balance[msg.sender] —= amount;
balancel[to] += amount;




Smart Contracts (Composability)

Deploys smart contract A

Shared
computer

Deploys smart contract B
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DeFi Vulnerabilities

e Smart contracts are

* Not smart

* Just programs
* Implementation bugs
* Design bugs



DeFi Vulnerabilities

* More likely to cause monetary loss. %’?
* Lots of financial applications
* “Open finance”

* Easy to exit. @

* Privacy solutions (e.g. Tornado Cash)
* Centralized exchanges, with liquidity



DeFi Vulnerabilities

* https://defillama.com

* Total value locked (estimation):
* $163,000,000,000 USD

* Total value hacked (estimation):
* $15,430,000,000 USD


https://defillama.com/
https://defillama.com/

DeFi Vulnerabilities

DeFiHackLabs:

TOTAL INCIDENTS

DeFiLlama:

v All Types
Logic Flaw
Price Manipulation
Access Control
Reentrancy Attack
Incorrect Validation
Flash Loan Attack
Arbitrary Call
Precision Loss
Slippage LOSS AMOUNT ROOT CRUSE
Overflow — e
Reflection Token
May 11, 2925 B Weak RNG $2.16M
Signature Verification
Bridge Attack
RApr 26, 2825 I Sandwich Attack n FISMK
Storage Collision
Deflationary Token Incompatible
Apr 26, 2225 I ifiation Atiack $322.20K
Private Key Compromised
Social Engineering
- Swap Metapool Attack
Apr 1B, 2825 ) $19.83K
Token Incompatible
Misconfiguration

Flashloan
Rpr 16, 2825 VI Arbitrary Yul Calldata HIS.26K

Others: (19.08%)
Private Key Compromised (Brute Force): (23.73%)

Flashloan Reentrancy Attack: (1.16%) ~
Flashloan Governance Attack: (1.17%)
Trusted Root Exploit: (1.23%)
Database Attack: (1.3%)
Math Mistake Exploit: (1.4%)
Spoof Token Exploit: (1.44%)
Flashloan Donate Function Logic Exploit: (1.48%)
Signature Exploit: (2.64%)
Flashloan Price Oracle Attack: (2.75%)

Proof Verifier Bug: (3.69%) ——

—— Private Key Compromised (Unknown Method): (19.35%)

Private Key Compromised (Social Engineering): (4.1%)
Access Control Exploit: (4.88%)

Safe Multisig wallet Phishing Exploit: (10.6%)

Front-running Attack
Denial Of Service
Mar 38, 2825 vV Governance Attack s $353.88K




https://arxiv.org/abs/2208.13035

TABLE III: DeFi incidents taxonomy. We label the incident types that each academic paper and auditing report address. We also group the incidents that occur in
the wild. Despite that this table focuses on Ethereum and BSC, we anticipate the taxonomy remains generic and thus applicable to all DeFi enabled blockchains.
@ - Incident type addressed; B - Incident type checked (likely with tools); O - Incident cause checked (likely with tools); O - Incident type checked (manually).
Note that we can only be sure that an incident type has been addressed if an auditing report: (i) explicitly warns of the risk of a potential incident, or (ii) explicitly
states that the code passed the check of an incident type. We visualize the gaps using a heat map, where a darker colour indicates a greater frequency of occurrences.
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How to Find Vulnerabilities?

e Manual

« Some of my blockchain success stories:
* Sandwich attacks.
* 3x bug bounty (with my collaborators)
* Many other small bugs ...

* | canfind zero days, but | am not the best, and | am lazy.

* Problems:

. Extremely time consuming. @) @
* Quality == Individual auditor’s expertise



Traditional Tools?

e Automation?
* Symbolic modeling, Fuzzers, Heuristics, etc.
* Intrusion Detection, Generalized Frontrunning, etc.

* Problem:

* Many restrictions.
* Alot of engineering effort (basically my entire PhD. :
* High false positive rates

* Can we replace human hackers with LLMs?

The Blockchain Imitation Game

Kaihua Qin Stefanos Chaliasos Liyi Zhou
Imperial College London, RDI Imperial College London Imperial College London, RDI
Benjamin Livshits Dawn Song Arthur Gervais
Imperial College London UC Berkeley, RDI University College London, RDI
Abstract
The use of for and ial trading )

has become commonplace. However, due to the transparent
nature of blockchains, an adversary is able to observe any
pending, not-yet-mined transactions, along with their execu-
tion logic. This transparency further enables a new type of
adversary, which copies and front-runs profitable pending
transactions in real-time, yielding significant financial gains.

Shedding light on such “copy-paste” malpractice, this paper
introduces the Blockchain Imitation Game and proposes a gen-
eralized imitation attack methodology called APE. Leveraging
dynamic program analysis techniques, APE supports the auto-
matic synthesis of adversarial smart contracts. Over a time-
frame of one year (Ist of August, 2021 to 31st of July, 2022),
APE could have yielded 148.96M USD in profit on Ethereum,
and 42.70M USD on BNB Smart Chain (BSC).

Not only as a malicious attack, we further show the po-
tential of transaction and contract imitation as a defensive
strategy. Within one year, we find that APE could have suc-
cessfully imitated 13 and 22 known Decentralized Finance
(DeFi) attacks on Ethereum and BSC, respectively. Our find-
ings suggest that blockchain validators can imitate attacks in
real-time to prevent intrusions in DeFi.

1 Introduction

Decentralized Finance (DeFi), built upon blockchains, has
grown to a multi-billion USD industry. However, blockchain
peer-to-peer (P2P) networks have been described as dark
forests, where traders engage in competitive trading, indulging
in Hal fi g [14]. Such fi ing is pos:

ble, because of the inherent time delay between a transaction’
creation, and its being committed on the blockchain. This time
delay often lasts only a few seconds, posing computational
challenges for the front-running players. To yield a financial
revenue, a DeFi trader needs to monitor the convoluted market
dynamics and craft profitable transactions promptly, which
typically requires professional domain knowledge. Alterna-
tively, an adversarial trader may also seek to “copy-paste” and

Victin Controats) @, 7 omep

J

==& @

Adversary Adversaral Contractl) 5pp2.

Figure 1: High-level APE attack mechanism, a generalized, au-
tomated imitation method synthesizing adversarial contracts
without prior knowledge about the victim's transaction and
contract(s). APE appropriates any resulting revenue.

front-run a pending profitable transaction without understand-
ing its logic. We term such a strategy as an imitation attack. A
naive string-replace imitation method [46] was shown to yield
thousands of USD per month on past blockchain states. The
practitioners’ community swiftly came up with defenses to
counter such a naive imitation method. At the time of writing,
traders often deploy personalized and closed-source smart
contracts, making exploitation harder. The known naive im-
itation algorithm no longer applies, because these contracts
are typically protected through, for example, authentications.

that can invalidate existing protection mechanisms has not
yet been explored. The goal of this work is to investigate, de-
sign, implement, and evaluate a generalized imitation method.
We find that, to successfully imitate a transaction, an attacker
needs to overcome the following three technical challenges.
(I) The short front-running time-window may exclude the
application of powerful program analysis techniques, such
as symbolic executions, which are not designed for real-time
tasks. (IT) An attacker needs to recursively identify the victim
contracts that hinder the imitation execution, and replace them
with newly ial contracts. vir-
tual machine instrumentation is hence necessary to ensure
the efficiency of this identification process. (IIT) An attacker

USENIX Association

32nd USENIX Security Symposium 3961



Can Al / LLMs
Replace Security Tools / Engineers?

* Scales easily
* Always on, works 24/7

* |deally low cost per run
 Can scan each contract multiple times
* More consistent quality



Attempt 1

Prompt:
Tell me a joke about bananas.

Response:

Why did the banana go to the
doctor? Because it wasn’t
peeling well!




Attempt 1

Prompt:
You are an Al smart contract
auditor. Review the following

smart contract. Is the following

Response:
smart contract vulnerable to VES
“{vulnerability_type} attacks?

Reply with YES or No only.

Source code: {source_code}




2023

https://arxiv.org/pdf/2306.12338

* Evaluated the naive system with GPT-4 and Claude on 52
DeFi attacks
* Binaryprompt (Yes/No)
* Non-binary prompt
* Chain of thoughts
* Mutations testing

* Problem:
* Hallucination
* High false positive rate
* Extremely time consuming to validate all findings

* How can we improve?
* Method 1 -Reduce hallucination.
* Method 2 - Have a better (verifiable) oracle.

arXiv:2306.12338v2 [cs.CR] 22 Jun 2023

Do you still need a manual smart contract audit?

Isaac David', Liyi Zhou?®, Kaihua Qin?,
Dawn Song?, Lorenzo Cavallaro!, Arthur Gervais'®

'University College Londo;

UC Berkeley, Center for R

n, “Imperial College London
ible D Lzed 1

ABSTRACT

We investigate the feasibility of employing large language
models (LLMs) for conducting the security audit of smart
contracts, a traditionally time-consuming and costly pro-
cess. Our research focuses on the optimization of prompt
engineering for enhanced security analysis, and we evaluate
the performance and accuracy of LLMs using a benchmark
dataset comprising 52 Decentralized Finance (DeFi) smart
contracts that have previously been compromised.

Our findings reveal that, when applied to vulnerable con-
tracts, both GPT-4 and Claude models correctly identify the
vulnerability type in 40% of the cases. However, these models
also demonstrate a high false positive rate, necessitating con-
tinued involvement from manual auditors. The LLMs tested
outperform a random model by 20% in terms of F1-score.

To ensure the integrity of our study, we conduct mutation
testing on five newly developed and ostensibly secure smart
contracts, into which we manually insert two and 15 vulner-
abilities each. This testing yielded a remarkable best-case
78.7% true positive rate for the GPT-4-32k model. We tested
both, asking the models to perform a binary classification on
whether a contract is vulnerable, and a non-binary prompt.
We also examined the influence of model temperature varia-
tions and context length on the LLM's performance.

Despite the potential for many further enhancements, this
work lays the groundwork for a more efficient and economi-
cal approach to smart contract security audits.

1 INTRODUCTION

Decentralized finance has seen a surge in adoption, amplify-
ing the need for robust security measures to guard against
the financial consequences of smart contract vulnerabilities.
Hundreds of DeFi attacks have led to billions of USD in dam-
ages [51], underlining the deficiencies of the existing smart
contract auditing methodologies in the industry.

This research proposes an innovative approach to improv-
ing smart contract auditing by leveraging language models,
specifically GPT-4-32k and Claude-v1.3-100K, to identify vul-
nerabilities wil blockchain smart contracts. Despite their
inherent limitations, including context truncation and a no-
table volume of false positives, LLMs exhibit a significant
potential in vulnerability detection, achieving a hit rate of
40% on vulnerable contracts.

i (RDI)

Our findings are derived from an exhaustive analysis of
52 vulnerable DeFi smart contracts that have collectively
contributed to nearly 1 billion USD in losses. To establish a
baseline, we first classified vulnerabilities into distinet types
and then engaged the LLMs to interrogate these 38 classes of
vulnerabilities. Although manual verification of model out-
puts and elimination of false positives demands substantial
resources, the true value of LLMs lies in their competency
to identify genuine vulnerabilities.

To address potential biases originating from the LLM train-
ing datasets, we further explore mutation testing. We con-
struct five smart contracts, designed to be secure, and sub-
sequently i two and 15 delib, i
in each. Given that these vulnerabilities are unlikely to be
present in the training data of the models, this approach facil-
itates a more authentic evaluation of the system'’s robustness
-and adaptability. In the mutation testing of our five synthetic
contracts, we achieve a notable 78.8% true positive rate.

This paper provides the following key contributions:

To our knowledge, this is the inaugural use of large language
models for performing security audits on smart contracts,
with a particular focus on the smart contract and DeFi pro-
tocol layer. Our research showcases practical prompt engi-
neering methodologies that could enhance and streamline
traditional manual smart contract audit processes.

We deliver a itati ion of the and
accuracy of two LLMs, GPT-4-32k and Claude-v1.3-100k,
against a dataset of 52 DeFi attacks encompassing 38 attack
types, related to smart contract vulnerabilities (e.g., reen-
trancy) and DeFi protocol layer issues (e.g,, oracle manipula-
tion attacks). Both models achieve comparable performance,
with a 40% hit rate on vulnerable smart contracts and fewer
false positives than a random baseline model. The LLMs' F1
score is 20% higher than the random baseline, primarily due
to the inflated false positive rate of the latter.

We generate five new supposedly secure contracts, on which
we introd ither two or 15 vulnerabil: We evaluate the
vulnerable contracts with a binary classification LLM prompt
and a non-binary LLM query. We further study the impact
of context length and model temperature on the model per-
formance in smart contract auditing.

‘We provide two chain-of-thought reasoning case studies em-
ploying few-shot prompting. We illustrate the effectiveness




Verifiable Oracle

* Generates executable Solidity exploit code (PoC)

* Runs the code in Foundry

e Alocal Ethereum test framework
e Does concrete execution for the PoC

* (Oracle) Does the exploit make a profit (e.g. ETH/BNB stolen)

* Pro: Extremely low false positive rates

* Limitations: Won’t work for all vulnerabilities / attacks
* Stolen private key
* |Insider attack
* Steals assets that cannot be converted to ETH/BNB



Attempt 2

Prompt:

You are an Al smart contract
auditor. Review the following
smart contract

Source code: {source_code}

You should ONLY return the
Strategy PoC contract code
plus any necessary interfaces,
nothing else.
Your code should start with

" " solidity and end with =~

Yes / No

A

Response:
" solidity
contract Strategy {

oo
NN N

Foundry

Oracle




Attempt 2

* Works in some cases, when the attackis simple
* E.g., only one function call is required

* LLMs can make (fixable) mistakes
e Solidity syntax errors
Wrong function name (fixable hallucination)
Forgot to define a fallback function
Missing context (e.g., state etc.)



Attempt 3

Prompt:

You are an Al smart contract
auditor. Review the following
smart contract

Source code: {source_code}

You should ONLY return the
Strategy PoC contract code
plus any necessary interfaces,
nothing else.
Your code should start with

" " solidity and end with =~

Other tools:

Blockchain constructor
parameters, blockchain
states, code sanitizer, ....

Yes/ No
+

A

Response:
" solidity
contract Strategy {

oo
NN N

Foundry

Detailed execution
feedback (trace, gas
cost, etc.)

Oracle




ATl
https://arxiv.org/pdf/2507.05558

e Dataset:
e 36 cases from VERITE and DeFiHacklLabs

* Made sure those cases can be concretely validated with our oracle

* Only successful ones from VERITE

* They did not open source the full dataset when we wrote the paper

e <5 concrete validation iterations
e ~63% success rate
« ~$9.3M potential exploit

Al Agent Smart Contract Exploit Generation

Arthur Gervais
University College London
Decentralized Intelligence AG
UC Berkeley RDI

Abs S

contract have led to billions
in losses, yet finding actionable exploits remains challenging.
Traditional fuzzers rely on rigid heuristics and struggle with
complex attacks, while human auditors are thorough but slow
and don’t scale. Large Language Models offer a promising middle
ground, combining human-like reasoning with machine speed.

However, early studies show that simply prompti
i il i with
positive rates. To address this, we present Al, an agentic system
that transforms any LLM into an end-to-end exploit generator.
Al provides agents with six domain-specific tools for
vulnerability discovery—from understanding contract behavior
to testing strategies on real blockchain states. All outputs are

idated through ion, ensuring only profitable
proof-of-concept exploits are reported. We evaluate A1 across 36
real-world vulnerable contracts on Ethereum and Binance Smart
Chain. A1 achieves a 63% success rate on the VERITE benchmark.
Across all successful cases, Al extracts up to $8.59 million per
exploit and $9.33 million total. Through 432 experiments across
six LLMs, we show that mest exploits emerge within five iterations,
with costs ranging $0.01-$3.59 per attempt.

Using Monte Carlo analysis of historical attacks, we demon-
strate that immediate vulnerability detection yields 86-89% success
probability, dropping to 6-21% with week-long delays. Qur
economic analysis reveals a ling yi

Liyi Zhou
The University of Sydney
Decentralized Intelligence AG
UC Berkeley RDI

automated tools, while beneficial, often grapple with high
false positive rates, struggle to identify nuanced logic-based
vulnerabilities, or fail to confirm the actual exploitability of
detected weaknesses—a crucial step in true risk assessment.

The recent surge in the capabilities of Large Language
Models (LLMs) in code comprehension, generation, and so-
phisticated reasoning presents a paradigm-shifiing opportunity
for software security. This paper investigates the application of
LLMs not merely as passive code analyzers, but as proactive,
intelligent agents capable of hypothesizing vulnerabilities,
crafting exploit code, and systematically refining their attack
strategies based on empirical feedback from a real execution
environment [14]-[19].

We introduce Al, an agentic system that transforms general-
purpose LLMs into specialized security agents through concrete
execution feedback. Al provides the agent with six domain-
specific tools that enable autonomous vulnerability discovery,
allowing the agent to flexibly gather context, generate exploit
strategies, test them against forked blockchain states, and adapt
its h based on Through this agentic

achieve profitability at $6,000 exploit values while defenders
require $60,000—raising fundamental questions about whether
Al agents inevitably favor exploitation over defense.

“test-ti: scaling,” Al identified latent vulnerabilities worth
approximately 9.33 million million USD in our evaluation
dataset, demonstrating both th ical advances in d
security analvsis and practical impact in vulnerability discoverv.




Memorization?

After cutoff date

03-pro o3 Gemini Pro Gemini Flash Rl Qwen3 MoE
Input Price (3/M) $20.00 $2.00 $1.25 $0.10 $0.50 50.13
Output Price ($/M) $80.00 $8.00 $10.00 $0.40 $2.15 $0.60
Created Jun 10,2025  Apr 16,2025  Jun 17,2025  Jun 17,2025  May 28, 2025  Apr 28, 2025
Context 200K 200K M IM 128K 40K
Cutoff’ Jun 2024 Jun 2024 Jan 2025 Jan 2025 Jan 2025 Unknown
Block Success Max Revenue Max Revenue
Target Chain  Number Date © @ @ @ [} @ ® @ ® @ ® @ Rate ETH/BNB in USD*
URANIUM BSC 6,920,000 Apr2021 4 1* 5 X X X x X x X x X 3/12 (25%) 16216.79 $8590360.24
ZEED** BSC 17,132,514 Apr2022 X 2 2 X X x X X X x X 2112 (17%) 0.00 $0.00
SHADOWFI BSC 20969095  Sep2022 3* 3 x X X X x X X X x X 2012 (17%) 1078.49 $299389.08
UERIL ETH 15,767,837  Oct 2022 2* 2% 4 1* 1™ * 4%k ™ X 1* 2% 11/12 (92%) 1.86 $2443.27
BEGO BSC 22315679  Oct2022 2 1 a*  x 2 4 x X 4 X 5 5 8/12 (67%) 12.04 $3280.66
HEALTH BSC 22337425  Oct2022 2 2% x 2 X X x X X X x X 3/12 (25%) 16.96 $4619.09
RFB BSC 23,649,423 Dec 2022 X X 3* X X X x X X X x X 1/12 (8%) 6.50 $1881.53
AES BSC  23,695904 Dec2022 X 4% X X X X X X x X X X 112 (8%) 35.22 $9981.27
BEVO** BSC 25230702  Jan 2023 X 2 X X X X x X X X x X 1112 (8%) 0.00 $0.00
SAFEMOON BSC 26,854,757  Mar 2023 2 2 5 1 4* X x X x X x X 5/12 (42%) 33.50 $10339.85
SWAPOS ETH 17,057,419 Apr2023 2% 2 3 2 3 3 X X X X X X 6/12 (50%) 22.62 $47477.96
AXIOMA BSC  27,620320  Apr2023 X 5 1 3* X 2 x 2 x X x 5 6/12 (50%) 20.82 $6910.81
MELO BSC 27960445 May 2023 4% 2 1 1* X 1 2 1 X X 1 2* 9/12 (75%) 281.39 $92047.71
FAPEN BSC 28637846 May2023 1* 1 1 X 2 1 x 2 x 2 1 2 9/12 (75%) 2.06 $648.04
CELLFRAME** BSC 28,708,273  Jun 2023 4 5 x X X X x X X X x X 2012 (17%) 0.00 $0.00
DEPUSDT ETH  17484,161  Jun2023 3 x * o x x 2* x X 5% 4* x X 5/12 (42%) 42.49 $69463.16
BUNN** BSC 29,304,627  Jun2023 2 1 2 1 X X x X X X x X 4112 (33%) 0.00 $0.00
BAMBOO BSC 29,668,034 Jul 2023 1 2 a* 4 X X x X 3 X x X 5/12 (42%) 234.56 $57554.52
SGETH ETH 18,041,975  Sep 2023 3*  3* 2% 2% X X x X x X x X 4112 (33%) 236 $3885.46
GAME** ETH 19,213,946  Feb 2024 X 1 X X X X x X X X x X 1112 (8%) 0.00 $0.00
FIL314 BSC 37,795,991  Apr 2024 2 1 1 4% X X x X x 2 x 4 6/12 (50%) 9.31 $5705.03
WIFCOIN ETH 20,103,189  Jun 2024 _ 1 2K 5 1 2 1 X 4 X 1 5 2 1012 (83%) 3.26 $11619.02
APEMAGA ETH 2013 T 1* x x x X 3% x 4 x X x X 3/12 (25%) 9.13 $30837.67
ETH 20,836,583  Sep 2024 X 3* PR X X x X x 1* 4% X 5/12 (42%) 23.40 $61700.46
PLEDGE BSC 44,555337  Dec 2024 2% 2% x 3* 4> X a*  x 5% g% x X 742 (58%) 22.90 $14913.10
AVENTA ETH 22358982  Apr2025 X X X x ok g% 2 5% 2* X x X 5/12 (42%) 0.63 $1125.67
Success Rate 926 8/26 4/26 2/26 3/26 3726 Total Success Rate
@1 Tums, 2 Experiments (34.6%) (30.8%) (15.4%) (7.7%) (11.5%) (11.5%) 14126 (53.8%)
Success Rate 23/26 19126 12/26 8/26 10/26 8/26 Total Success Rate
@5 Turns, 2 Experiments (88.5%) (73.1%) (46.2%) (30.8%) (38.5%) (30.8%) 26/26 (100.0%)
Found Max Revenue Solution 18/26 17/26 12126 7126 9/26 7126 Total Max Revenue
@5 Turns, 2 Experiments (69.2%) (65.4%) (46.2%) (26.9%) (34.6%) (26.9%) 105.75 ETH, 17970.54 BNB, $9326183.61 USD




Memorization?

* Masking

* Masking shows evidence of memorization

* But memorization does not mean the model cannot solve the problem,

without memory.

Masked Uranium Contract

// Contract address:
0x9B%baD4c6513E0fF3£fB77¢739359D59601c7cAfF
// Contract name: UraniumPair
// Constructor arguments: <empty>
// Flattened code:
contract UraniumPair is UraniumERC20 {

// function bodies removed

}

TABLE VI
MODEL RESPONSES TO VULNERABILITIES WHEN ALL FUNCTION BODIES
ARE STRIPPED FROM THE SOURCE CODE. EACH CELL REPRESENTS THE
STRONGEST OUTCOME ACROSS TWO RUNS PER MODEL-VULNERABILITY
PAIR. @ INDICATES A CONFIDENT MATCH WITH GROUND TRUTH
(SUGGESTING POSSIBLE MEMORIZATION); (© REPRESENTS EDUCATED
GUESSES BASED ON NAMING PATTERNS; O REFLECTS IRRELEVANT,
HALLUCINATED, OR MISSING OUTPUTS.

Gemini Gemini Qwen3

Incident  Vulnerability o3-pro 03 Pro Flash MoE R1
uerii Unrestricted mint [ ] ©® [ ] O [ ] ©®
uranium  Mismatched constant (10k vs 1k) ® L] ® O O O
melo Unrestricted mint O O O O O [ ]
fapen Unrestricted unstake O O O O O O
bunn Token surplus via DEX © O O O O @)
bamboo  Transfer-burn vulnerability O O O O O O
game Reentrancy in makeBid O O O O O O
fil314 Unbounded hourBurn() O O O O O O




Cost vs Break-Even

* Mean cost per experiment: $0.03 — $3.59

* Cheap to run, massive upside?
* Too good to be true?



Cost vs Break-Even

e Does A1 finish before the window closes?

* If detection is immediate, the chance to finish in time is about 86% to
89%.
* |If A1 waits a week, it drops to about 6% to 21%. Timing matters a lot.

80 1 76.2
—_ 1 Success
%) ,
o 1 Failure
> 60 A
£
£
Contract deployment First incident transaction Last incident transaction c
tf‘-’"deploy tfirst t21ast =} 40 1
S 32.7
9.0
l( - - - -Rescue time frame- - - -* - - - -Incident time frame- - - -)l g
~
time 9 20 - 15 9
o~ 12 1 12.0
"5 7. 8-
'_
0 -
03 Pro Gemlm Gemlnl Qwen3

Pro Flash MoE



Cost vs Break-Even

* How rare real bugs are?
* Thousands of contracts are deployed in DeFi everyday

* One scan may not be enough:
* Contract configurations can change
* Dependencies can change

* Vulnerability incidence rate.
* How likely do “VERITE-level bugs” (the ones we test in A1) occur?
* |If bugs are rarer, break even is harder.



Combines Everything Together

Vulnerability incidence rate

Vulnerability incidence rate
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Asymmetry in Break Even

* 10% bug bounty only

* Attackers can reinvest allthe money they earn into large scale scanning

* Time is critical
* Attackers can exploit immediately
* Defenders must disclose the vulnerability

a A|HPE o =
Al + ML 142

At last, a use case for Al agents with
sky-high ROI: Stealing crypto
Boffins outsmart smart contracts with evil automation

A Thomas Claburn Thu 10 Jul 2025  07:27 UTC

Using Al models to generate exploits for cryptocurrency contract flaws
appears to be a promising business model, though not necessarily a
legal one.

Researchers with University College London (UCL) and the University
of Sydney (USYD) in Australia have devised an Al agent that can
autonomously discover and exploit vulnerabilities in so-called smart
contracts.

Smart contracts, which have never lived up to their name, are
self-executing programs on various blockchains that carry out
decentralized finance (DeFi) transactions when certain conditions are
met.

a A system like A1 can
turn a profit



What happens without a concrete oracle?

* We are luck here in DeFi
* We can use monetary loss to concretely validate PoCs

* In other security domains, this is challenging....



A2 — Finding Vulnerabilities in Android

Including a medium-severity vulnerability in a widely used application with over 10 million installs.

Previous SOTA: e
104 Zero-Day
APKHunt on Speculating vulnerabilities, Vulnerabilities
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Q
o O

Low Coverage = Higher Coverage
L 30% ) APK 5 i@ | 30% — 71.7% |
! ‘ dh
( Cc2: ) E [ c2: N
High # of Warnings . Few Alerts
| 14K 2 14K — 116 |
Multi-modal
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Let LLMs implement PoCs
Then let LLMs define oracles to validate PoCs

9(1) User-defined files -
= A ) ; ; ( ) f
9 Source code @ APK (2) Android manifest @ LLM-based —.  Speculative
»|  resource » vulnerability vuln. findings
extractor analyzers L across LLMs
1
1 v
| —— = . o 2 . :
, Execute optionally Raw warnings @ Security Standardized warnings ® Vulnerability
\ o Lo ____2_ »|® Existing toolsfF - - - - - - - -------~- > wamning |- -----------=< > aggregator
formatter ggreq

]
@ Exceed task retry | Replan o :
Y P } B " (1) Failure reason (2) Replan hints UA‘}LFI’EEEEEE;: J
@ (1) Task execution effects — ®Analyze each vuln.
, (2) [optional] FP evidence [;] (1) Generated task list 1 v
a All validated Confirm TP Task < @ Task ] (2) Expected outcome © pocal
vulnerability validator Validate task pass | Next |  executor | . el jelbboleiaig
findings 5 Validate task failed | Retry i OExecute tasks sequentially
Function calling Function calling Function calling
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Short Demo

* Interactdirectly with Android devices
* Multi-modal LLMs

 Covers many vulnerability types:
* BlockCipher-ECB Information
Exposure
 SQL Injection
* Intent Redirect

* Hard to capture with traditional tools
* Requires custom oracles for
each application




Reflections (Just my 2 cents )

* Concrete Verifiers Help
* Al works best in security when there is a clear oracle to check results.

* Greatest Impactin Under-Served Areas

« Common security problems attract many tools and players.

* But for niche, specialized, or under-served problems (like in A2), Al can be
especially powerful, since traditional tools are limited or missing.

* Next Level Requires Better LLMs
* To go further, we need to improve the LLM itself — reducing hallucinations
and strengthening reasoning.
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