
Hunting Vulnerabilities with AI

Liyi Zhou
The University of Sydney / D23E / UC Berkeley RDI

About Me

• I was a TA for the DeFi MOOC
• Collaborated with Dawn, Arthur, Kaihua on DeFi security.

• MEV / BEV
• Blockchain/Miner/Maximal Extracted/Extractable Value

• Sandwich attacks
• Arbitrages
• Liquidations

• SoK (Systemization of Knowledge): DeFi Attacks

DeFi ≠ just Finance

- (P2P) network  Decentralized

- State Transition
- Example 1 – Alice transfers 5 coins to Bob
- Example 2 – Alice deploys a voting program to

decide what to eat for tonight, Bob votes for pizza

- We need some consensus algorithm
- Eve only owns 5 coins
- Eve tells Node A she wants to send 5 coins to Alice
- Eve tells Node B she wants to send 5 coins to Bob

DeFi ≠ just Finance

Shared
computer

- (P2P) network  Decentralized

- State Transition
- Example 1 – Alice transfers 5 coins to Bob
- Example 2 – Alice deploys a voting program to

decide what to eat for tonight, Bob votes for pizza

- We need some consensus algorithm
- Eve only owns 5 coins
- Eve tells Node A she wants to send 5 coins to Alice
- Eve tells Node B she wants to send 5 coins to Bob

Smart Contracts

Shared
computer

Deploys code
(i.e., smart contracts)

- Read / Execute Alice’s code
- Cannot modify Alice’s code

Example

Smart Contracts (Composability)

Deploys smart contract A

Deploys smart contract B

Shared
computer calls

DeFi Lego (Composability)

Shared Computer (with coins, e.g., ETH, BNB, etc.)

Real World Assets
RWA

Another Blockchain Centralized Exchanges

Coins Oracles

Coin Exchanges

Lending

NFT Market

NFTStable Coins

Auxiliary Services

DeFi Vulnerabilities

• Smart contracts are
• Not smart
• Just programs

• Implementation bugs
• Design bugs

DeFi Vulnerabilities

• More likely to cause monetary loss.
• Lots of financial applications
• “Open finance”

• Easy to exit.
• Privacy solutions (e.g. Tornado Cash)
• Centralized exchanges, with liquidity

DeFi Vulnerabilities

• https://defillama.com

• Total value locked (estimation):
• $163,000,000,000 USD

• Total value hacked (estimation):
• $15,430,000,000 USD 🫣

https://defillama.com/
https://defillama.com/

DeFi Vulnerabilities

DeFiLlama:

DeFiHackLabs:

https://arxiv.org/abs/2208.13035

How to Find Vulnerabilities?

• Manual
• Some of my blockchain success stories:

• Sandwich attacks.
• 3x bug bounty (with my collaborators)
• Many other small bugs …

• I can find zero days, but I am not the best, and I am lazy.

• Problems:
• Extremely time consuming.
• Quality == Individual auditor’s expertise

Traditional Tools?

• Automation?
• Symbolic modeling, Fuzzers, Heuristics, etc.
• Intrusion Detection, Generalized Frontrunning, etc.

• Problem:
• Many restrictions.
• A lot of engineering effort (basically my entire PhD).
• High false positive rates

• Can we replace human hackers with LLMs?

Can AI / LLMs
Replace Security Tools / Engineers?
• Scales easily
• Always on, works 24/7
• Ideally low cost per run

• Can scan each contract multiple times
• More consistent quality

Attempt 1

LLMs

(e.g., GPT5)

Prompt:
Tell me a joke about bananas.

Response:
Why did the banana go to the
doctor? Because it wasn’t
peeling well!

Attempt 1

LLMs

(e.g., GPT5)

Prompt:
You are an AI smart contract
auditor. Review the following
smart contract. Is the following
smart contract vulnerable to
`{vulnerability_type}` attacks?
Reply with YES or No only.

Source code: `{source_code}`

Response:
YES

2023
https://arxiv.org/pdf/2306.12338
• Evaluated the naïve system with GPT-4 and Claude on 52

DeFi attacks
• Binary prompt (Yes/No)
• Non-binary prompt
• Chain of thoughts
• Mutations testing

• Problem:
• Hallucination
• High false positive rate
• Extremely time consuming to validate all findings

• How can we improve?
• Method 1 – Reduce hallucination.
• Method 2 – Have a better (verifiable) oracle.

Verifiable Oracle

• Generates executable Solidity exploit code (PoC)
• Runs the code in Foundry

• A local Ethereum test framework
• Does concrete execution for the PoC

• (Oracle) Does the exploit make a profit (e.g. ETH/BNB stolen)
• Pro: Extremely low false positive rates
• Limitations: Won’t work for all vulnerabilities / attacks

• Stolen private key
• Insider attack
• Steals assets that cannot be converted to ETH/BNB

Attempt 2

LLMs

(e.g., GPT5)

Prompt:
You are an AI smart contract
auditor. Review the following
smart contract
Source code: `{source_code}`

You should ONLY return the
Strategy PoC contract code
plus any necessary interfaces,
nothing else.
Your code should start with
```solidity and end with ```

Response:
```solidity
contract Strategy {
…
}
```

Foundry
Oracle

Yes / No



Attempt 2

• Works in some cases, when the attack is simple
• E.g., only one function call is required

• LLMs can make (fixable) mistakes
• Solidity syntax errors
• Wrong function name (fixable hallucination)
• Forgot to define a fallback function
• Missing context (e.g., state etc.)
• …



Attempt 3

LLMs

(e.g., GPT5)

Prompt:
You are an AI smart contract 
auditor. Review the following 
smart contract
Source code: `{source_code}`

You should ONLY return the 
Strategy PoC contract code 
plus any necessary interfaces, 
nothing else.
Your code should start with 
```solidity and end with ```

Response:
```solidity
contract Strategy {
…
}
```

Foundry
Oracle

Yes / No
+
Detailed execution
feedback (trace, gas
cost, etc.)

Other tools:
Blockchain constructor
parameters, blockchain
states, code sanitizer, ….

A1
https://arxiv.org/pdf/2507.05558
• Dataset:

• 36 cases from VERITE and DeFiHackLabs
• Made sure those cases can be concretely validated with our oracle
• Only successful ones from VERITE

• They did not open source the full dataset when we wrote the paper

• ≤5 concrete validation iterations
• ~63% success rate
• ~$9.3M potential exploit

Memorization?

After cutoff date

Memorization?

• Masking
• Masking shows evidence of memorization

• But memorization does not mean the model cannot solve the problem,
without memory.

Cost vs Break-Even

• Mean cost per experiment: $0.03 – $3.59

• Cheap to run, massive upside?
• Too good to be true?

Cost vs Break-Even

• Does A1 finish before the window closes?
• If detection is immediate, the chance to finish in time is about 86% to

89%.
• If A1 waits a week, it drops to about 6% to 21%. Timing matters a lot.

Cost vs Break-Even

• How rare real bugs are?
• Thousands of contracts are deployed in DeFi everyday
• One scan may not be enough:

• Contract configurations can change
• Dependencies can change

• Vulnerability incidence rate.
• How likely do “VERITE-level bugs” (the ones we test in A1) occur?
• If bugs are rarer, break even is harder.

Combines Everything Together

Asymmetry in Break Even

• 10% bug bounty only
• Attackers can reinvest all the money they earn into large scale scanning

• Time is critical
• Attackers can exploit immediately
• Defenders must disclose the vulnerability

What happens without a concrete oracle?

• We are luck here in DeFi
• We can use monetary loss to concretely validate PoCs

• In other security domains, this is challenging….

A2 – Finding Vulnerabilities in Android
Including a medium-severity vulnerability in a widely used application with over 10 million installs.

Let LLMs implement PoCs
Then let LLMs define oracles to validate PoCs

Short Demo

• Interact directly with Android devices
• Multi-modal LLMs

• Covers many vulnerability types:
• BlockCipher-ECB Information

Exposure
• SQL Injection
• Intent Redirect

• Hard to capture with traditional tools
• Requires custom oracles for

each application

Reflections (Just my 2 cents)

• Concrete Verifiers Help
• AI works best in security when there is a clear oracle to check results.

• Greatest Impact in Under-Served Areas
• Common security problems attract many tools and players.
• But for niche, specialized, or under-served problems (like in A2), AI can be

especially powerful, since traditional tools are limited or missing.

• Next Level Requires Better LLMs
• To go further, we need to improve the LLM itself — reducing hallucinations

and strengthening reasoning.

	Slide 1: Hunting Vulnerabilities with AI
	Slide 2: About Me
	Slide 3: DeFi ≠ just Finance 🥴
	Slide 4: DeFi ≠ just Finance 🥴
	Slide 5: Smart Contracts
	Slide 6: Example
	Slide 7: Smart Contracts (Composability)
	Slide 8: DeFi Lego (Composability)
	Slide 9: DeFi Vulnerabilities
	Slide 10: DeFi Vulnerabilities
	Slide 11: DeFi Vulnerabilities
	Slide 12: DeFi Vulnerabilities
	Slide 13: https://arxiv.org/abs/2208.13035
	Slide 14: How to Find Vulnerabilities?
	Slide 15: Traditional Tools?
	Slide 16: Can AI / LLMs Replace Security Tools / Engineers?
	Slide 17: Attempt 1
	Slide 18: Attempt 1
	Slide 19: 2023 https://arxiv.org/pdf/2306.12338
	Slide 20: Verifiable Oracle
	Slide 21: Attempt 2
	Slide 22: Attempt 2
	Slide 23: Attempt 3
	Slide 24: A1 https://arxiv.org/pdf/2507.05558
	Slide 25: Memorization?
	Slide 26: Memorization?
	Slide 27: Cost vs Break-Even
	Slide 28: Cost vs Break-Even
	Slide 29: Cost vs Break-Even
	Slide 30: Combines Everything Together
	Slide 31: Asymmetry in Break Even
	Slide 32: What happens without a concrete oracle?
	Slide 33: A2 – Finding Vulnerabilities in Android Including a medium-severity vulnerability in a widely used application with over 10 million installs.
	Slide 34: Let LLMs implement PoCs Then let LLMs define oracles to validate PoCs
	Slide 35: Short Demo
	Slide 36: Reflections (Just my 2 cents 🧂)

