44

Front-running, Imitation, Decompilation
Dark Forest Survival Skills

Kaihua Qin
University of Warwick

Recap

World Computer

Public Ledger

Distributed Consensus

Peer-to-peer Network

Smart Contract

l@)

Governance

5 Non-custodial
/5 Transparent
5 Censorship Resistant

...

centralized
(Program running on blockchains)

LT

Non-Fungible Tokens (NFTs)

@
oMo

o
nance
(DeFi)

g i

Exchange Lending
) & o | o
— — oo o0
Identity Stablecoin

Ether um |s 5

THE DARE
FORES

Sandwich Attack

10 ETH

Decentralized Exchange (DEX)

Buy 100 ETH of BTC
>
S R —
100 BTC
Buy 100 ETH of BTC
« ______
TIDETTC
Sell 100 BTC
>
S R —
110ETH

r

>

v

48 & |

E) 1. Transactions are publicly visible

2. Transaction ordering is centralized
 Builders-— monopoly
* Bribery

Front-running
Victim
Back-running

Quantifying Miner/Maximal Extractable Value (MEV)

\
1$ <
\

€ £ E&

Arbitrage Liquidation Sandwich

 Dataset: the public Ethereum blockchain
* 11,289 unique addresses
* 49,691 cryptocurrencies
* 60,830 on-chain markets
* Over 32 months (December 2018 — August 2021)
* About 540M USD in profit
* Highestinstance: 616.6x the Ethereum block reward

Qin K, Zhou L, Gervais A. Quantifying blockchain extractable value: How dark is the forest?. In 2022
IEEE Symposium on Security and Privacy (SP) 2022 May 22 (pp. 198-214). IEEE.

G\) EigenPhi » ¢ Ethereum ‘ Addre ‘ ! ' Q Reports Docs C
L Market Overview 244 [FBN 30D
o
Performance of MEV Types (O 0 MEV Live-Stream More
*
Contract Profit Cost
By Profit By Volume
14 #23467837 & Arbitrage
500k 17.5k 6G+0 3 0x814..b5128 &) $0.31 $1.26
@ @Ar‘bitrage(?D) .
oo #23467836 & Arbitrage
$1.78M 15k
Cg+0 2 B ox22a.75622 81 $0.21 $0.87
Tools 300k
. 12.5k #23467836 &) Arbitrage
® & sandwich(7D) z g -)
-— W1l =
= 5 o0k 5 €440 3 W exs14.b5128 51 $0.50 $2.00
o
10k
L4 $146.06k 100K #23467836) @ Arbitrage
@ Y . 7.5k [(8 9 M oxs14.b5128 3 $0.13 $2.76
R Liquidation(7D) #23467835 & Arbitrage
-100k 5k
G S S S S S S €§+:0 3 M ox657.65B33 8 $0.05 $0.47
5) e e A o
LA AU A S #23467835 @ Arbitrage
Arbit Sandwich Liquidati -8~ Count
® Arbitrage @ Sandwic iquidation oun €co 3 . 0x673..25479 & $0.28 $1.15

#124c703€C P P

® 21 minutes ago

MEV Contract Profit Leaderboard ©

ALL Types Arbitrage Sandwich Liquidation

B oxbdo..41415

@ Arbitrage
$565,725.39
$43.65

i ex1f2.Df387

(O]

&% ox65¢..a1948

& Arbitrage

$36.79

[} ©x0600..16B48 &4

@ Arbitrage & sandwich

I oxrap..oFoF9

& Arbitrage
$162,394.31
$1,712.99

A oxFFs_1f78f

& Arbitrage

B ox285..9a598

& Arbitrage

W ox7a2..2488D

UNISWAP

& sandwich

$116,101.37

$22,023.61

MEV Extraction

4 5_ 24, —— T=

D MEV Searcher MEV Transaction
& o
‘< i

Arbitrage Liquidation

!)
contract MEV {
function arb(uint x, uint y) public {

1

2

3 swapETHtoBTC(x);

4 swapBTCtoETH(y);

5 msg.sender.transfer(profit);
6

7

Sandwich DeFi Attack } }

The Blockchain Imitation Game

Imitation

Creation : Observation : Execution
. | o |
) : % : 1
i ! & I
MEV Searcher | X o I
- N | f
—) ¢ I -t
<> / | > i
. | i IR
l ! i i
| . |
| L |
| | |
A few seconds
Copy-paste

[|
P Front-run

Naive Imitation

Potentigl Step 1 Imitation
Transaction Transaction
— Blind duplicate

String replacement

f 9
1 contract MEV {

2 function arb(uint x, uint y) public {

++ require(msg.sender==0x12..);

3 SwapETHtoBTC(x);

4 swapBTCtoETH(y);

5 msg.sender.transfer(profit);
6 '}

7}

¢ Step 2
e '_ Execute and validate locally

Step 3
profit) Front-run if profitable

Simple but effective

Q Ethereum

& 35MUSD

Easy to prevent

10

Generalized Imitation

The threat of imitation remains

MEV Contract
r
1 contract MEV {
2 function arb(uint x, uint y) public {
3
4 require(msg.sender==0x12..); X
5
6 swapETHtoBTC(x); v
7 swapBTCtoETH(y);
8 msg.sender.transfer(profit);
° }
10 }

&

9

Synthesize

)

Imitation Contract

1 contract MEV {
2 function arb(uint x, uint y) public {
3

swapETHtoBTC(x);
swapBTCtoETH(y);
msg.sender.transfer(profit);

}
}

O WV 00N O WU

Qin K, Chaliasos S, Zhou L, Livshits B, Song D, Gervais A. The blockchain imitation game. (2023). In 32nd USENIX
Security Symposium (USENIX Security 23) (pp. 3961-3978).

11

Technical Challenges

1 contract MEV {

2 function arb(uint x, uint y) public {
3 require(msg.sender==0x12..);

4 SwWapETHtoBTC(x);

5 swapBTCtoETH(y);

6 msg.sender.transfer(profit);

7}

8 }

T)

Compile

&

Solidity

* Only low-level bytecode is available

* High-level application-layer semantics are missing

* Short time window (0.75 - 12 seconds)

>

PUSH1 0x80
PUSH1 0x40
MSTORE
CALLVALUE
DUP1

ISZERO

PUSH2 0x00160
JUMPI

PUSH1 0x00

Bytecode

12

Ape Overview

Step 1 Step 2 Step 3
(]
')
1010
lllllllllllll> llllllllll’ & llllllllll’ 0110101
Pending Dynamic control- L Dynamic taint
transaction flow graph Profitability analyzer analysis
v
-~ e (o) p <>
Qrrnnns g PR | - <. D ’ G r
¢
=
Imitation Smart contract . -
idati . Patch identifier
transaction Validation synthesis
Step 6 Step 5 Step 4

Dynamic control-flow graph

* Graphical representation
of transaction and smart
contract execution

Dynamic taint analysis

* |dentify imitation protection
w/o high-level semantics

* Virtual machine
instrumentation ensuring
O(1) complexity

Smart contract synthesis
* Automated

Force to jump Force not to jump

+ SWAP1 + POP

+ POP + POP

+ JUMP - JUMPI
- JUMPI

13

Ape Evaluation

v

LULS

August 1, 2021 - July 31, 2022 (1 year)

Q Ethereum

Accumulative Profit (USD)

150M A

120M A

90M -

60M -

30M -

148.96M USD

—— Naive Imitation

—— Ape (including Naive)

T T T T T T T T
rLOfL'& 07} 101’\- ’LQ’LX 107} 'LQ’?:L qpfﬁ. 107:2—

b0 et 00 ot P e

RN

Time

bt

T
ort

1 T T T
O A 2 12
\!,LQ’L (\,—LQ’L \,LQ'L ,LQ’L
Y REEN A SR

50M

Accumulative Profit (USD)

o
L

-1 0.07 second

BSC

42.70M USD

40M 4

30M A

20M A

10M A

Q> AR AT S 2 2t vt ot o al 2
9 Q \Q’O G‘(LQ “rLO GrLQ (\79 ‘0?'0 ‘a:‘qp ‘Q,Q \xqp qu \)\10 QQ’Q
R N R v R N A N N S
Time

14

Imitation as Whitehat

Creation : Observation : Execution
' ' 5
| I ro
| | T
| |
| = |
g ! S | ‘lf
| o | ~
Attacker | o o : : | : e
| o | o 0 i | Front-running ANg B
i ! i i
g l 1 N 1
|

Counter-attack
Imitation Transaction

15

Imitation as Whitehat

@ Preventable DeFi Attacks (August 1, 2021 - July 31, 2022)

Q Ethereum BSC

29 > 73.74M USD 40) 22.39M USD

Protocol Loss (USD) Date Protocol Loss (USD) Date
Popsicle Finance 20.25M Aug-03-2021 Elephant Money 11.52M Apr-12-2022
Saddle Finance 9.71M Apr-30-2022 XSURGE 5.17M Aug-16-2021
Indexed Finance 3.58M Oct-14-2021 CollectCoin 1.06M Dec-01-2021

16

The Blockchain Imitation Game

Kaihua Qin
Imperial College London, RDI

Benjamin Livshits
Imperial College London

Abstract
The use of blockchains for automated and adversarial trading
has become commonplace. However, due to the transparent
nature of blockchains, an adversary is able to observe any
pending, not-yet-mined transactions, along with their execu-
tion logic. This transparency further enables a new type of
adversary, which copies and front-runs profitable pending
transactions in real-time, yielding significant financial gains.

Shedding light on such “copy-paste” malpractice, this paper
introduces the Blockchain Imitation Game and proposes a gen-
eralized imitation attack methodology called APE. Leveraging
dynamic program analysis techniques, APE supports the auto-
matic synthesis of adversarial smart contracts. Over a time-
frame of one year (1st of August, 2021 to 31st of July, 2022),
APE could have yielded 148.96M USD in profit on Ethereum,
and 42.70M USD on BNB Smart Chain (BSC).

Not only as a malicious attack, we further show the po-
tential of transaction and contract imitation as a defensive
strategy. Within one year, we find that APE could have suc-
cessfully imitated 13 and 22 known Decentralized Finance
(DeFi) attacks on Ethereum and BSC, respectively. Our find-
ings suggest that blockchain validators can imitate attacks in
real-time to prevent intrusions in DeFi.

1 Introduction

Decentralized Finance (DeFi), built upon blockchains, has
grown to a multi-billion USD industry. However, blockchain
peer-to-peer (P2P) networks have been described as dark

Stefanos Chaliasos
Imperial College London

Dawn Song
UC Berkeley, RDI

Liyi Zhou
Imperial College London, RDI

Arthur Gervais
University College London, RDI

i@ €

Victim Tra nsaction
Victim Contract(s) ~ o e DApp1

Victim Trader
Extract
synthesiu

Imitation Transaction Y
— 00— [— ---a ---------- > |

Adversary

Adversarial Contract(s) DApp2

Figure 1: High-level APE attack mechanism, a generalized, au-
tomated imitation method synthesizing adversarial contracts
without prior knowledge about the victim’s transaction and
contract(s). APE appropriates any resulting revenue.

front-run a pending profitable transaction without understand-
ing its logic. We term such a strategy as an imitation attack. A
naive string-replace imitation method [46] was shown to yield
thousands of USD per month on past blockchain states. The
practitioners’ community swiftly came up with defenses to
counter such a naive imitation method. At the time of writing,
traders often deploy personalized and closed-source smart
contracts, making exploitation harder. The known naive im-
itation algorithm no longer applies, because these contracts
are typically protected through, for example, authentications.

However, the possibility of a generalized imitation attack
that can invalidate existing protection mechanisms has not
yet been explored. The goal of this work is to investigate, de-
sign, 1mplement and evaluate a generahzed uml;atlon method

Looking into an MEV Contract

Bytecode Disassembled

: PUSH1 x40
: PUSH1 0x80
: DUP2

: MSTORE

: PUSH1 0x4
: DUP1

: CALLDATASIZE
LT

: ISZERO

: PUSH2

: JUMPI

: JUMPDEST

: POP

: CALLDATASIZE

: ISZERO

: PUSH2 0x1c
¢ JUMPI

: PUSH1 0x0
: DUP1

: REVERT

: JUMPDEST

: MLOAD

: CALLER

: DUP2

: MSTORE

: CALLVALUE

: PUSH1

: DUP3

: ADD

: MSTORE

: PUSH32 0x88a5966d370b9919b20f3e2c13ff65706f196ade32cc2c12bf57088188525874
: SWAP1

0x60406080815260048036101561004e575b50361561001c57600080Td5b513381
523460208201527188a5966d370b9919b20f3e2c13ff65706f196ade32cc2cl2bf
5708818852587490604090a1005b6000803560e01c91826301e3366714610b4057
82631878068414610ae757826323a69e7514610102578263294b038d14610a9857
82632c8958f6146101025782633b534c66146108845782633ccfd60b1461083257
82633e88c8ab1461076b5782637c453caald61073e578263923b8a2a1461070c57
8263aldab4eb14610102578263d3e1c284146106bb578263Ta09e6301461010757
505080631a461e33146101025763Ta483e72146101025738610010565b610cab56
5b83346103e35760208060031936011261059a57610122610c10565b9160018060
a01b0392858080808781541661014733821461014281610d04565b610d04565b47
908282156106b2575b11156106a857610165338588541614610d04565b81519386
637020823160e01b80875230888801526024967355d398326199059f 775485246
999027b31979559087818a81855ata9081156105a557918987928695948b979161
0674575b50806105af575b505050509091506101cb338484541614610d04565b84
5192818452308985015273e9e7cea3dedca5984780bafc599bd69add@87d568785
8a81845ata9485156105a557908691859661056e575b508989876103F8575b5050
505061022291929350339084541614610d04565b8351908152308782015273bb4c
db9cbd36b@1bd1lcbhaebf2de®8d9173bc095c85828881845a1a9182156103ee5783
926103bb575b5081610260578280135b845163a9059cbb60e01b87820190815260
01600160a01b039095168882019081526020810193909352938392839086906040
0103956102a760111997888101835282610d35565b51925af13d156103b2573d67
frffffffffffffff81116103a0576102d485855194601f8401160184610d35565b
82523d878584013e5b15610360578051908161021f2575b8087918280135b838061
0302938301019101610d9c565b1561030e5780806102eb565b5162461bcd6@e51b
815292830152602a908201527f5361666545524332303a204552433230206F7065
726174696T6e20646964206e6044820152691bdd@81cdd58d8d9595960b21b6064
820152608490fd5b505162461bcd6@e51b8152928301819052908201527f536166
6545524332303a206c6f772d6c6576656c2063616c6Cc206661696c656460448201

W 00 ~NOoO U s WN B

e S
U s WNRERS

16

W W N NN NDNNDNDNNNRRR
B O O 00 NO WU B WNRLROO O W

w
N

Closed-Source Smart Contracts

Ethereum
CONTRACTS DEPLOYED (TOTAL) CONTRACTS DEPLOYED (24H) CONTRACTS VERIFIED (TOTAL) CONTRACTS VERIFIED (24H)
81,798,597 47724 808,707 168

BSC

CONTRACTS DEPLOYED (TOTAL) CONTRACTS DEPLOYED (24H) CONTRACTS VERIFIED (TOTAL) CONTRACTS VERIFIED (24H)

31,539,871 29,909 1,503,018 300

®— % —

Bytecode Decompiler Human-Readable
Source Code

Erays: Reverse Engineering Ethereum’s Opaque Smart Contracts

YiZhou Deepak Kumar Surya Bakshi Joshua Mason Andrew Miller Michael Bailey

University of Illinois, Urbana-Champaign

Abstract

Interacting with Ethemurn smart contracts can have po-
tentially In light of
this, several regulatory bodies have called for a need to
audit smart contracts for security and correctness guar-
antees. Unfortunately, auditing smart contracts that do
not have readily available source code can be challeng-
ing, and there are currently few tools available that aid in
this process. Such contracts remain opague to auditors.
To address this, we present Erays, a reverse engineering
tool for smart contracts. Erays takes in smart contract
from the Ethereum blockchain, and produces high-level
pseudocode suitable for manual analysis. We show how
Erays can be used to provide insight into several contract
properties, such as code complexity and code reuse in
the ecosystem. We then leverage Erays to link contracts
with no previously available source code to public source
code, thus reducing the overall opacity in the ecosys-
tem. Finally, we demonstrate how Erays can be used for
reverse-engmbenng in four case studies: high-value multi-

Unfortunately, smart contracts are historically error-
prone [14,24,52] and there is a potential high financial
risk associated with interacting with smart contracts. As
a result, smart contracts have attracted the attention of
several regulatory bodies, including the FTC [18] and the
SEC [43], which are 1ntem on auditing these contracts to
prevent uni ded fi Many smart
contracts do not have readily linkable public source code
available, making them opague to auditors.

To better understand opaque smart contracts, we
present Erays, a reverse engineering tool for Ethereum
smart contracts. Erays takes as input a compiled Ethereum
Virtual Machine (EVM) smart contract without modifi-
cation from the blockchain, and returns high-level pseu-
docode suitable for manual analysis. To build Erays, we
apply a number of well-known program analysis algo-
rithms and techniques. Notably, we transform EVM from
a stack-based language to a register based machine to ease
readability of the output for the end-user.

‘We next turn to measuring the Ethereum smart con-
tract ecosystem, leveraging Erays to provide insight into
code plexity and code reuse. We crawl the Ethereum

wallets, arbi bots, accouan and
finally, a popular smart-contract game, Cryptokitties. We
lude with a di: ding the value of reverse

engineering in the smart contract ecosystem, and how
Erays can be leveraged to address the challenges that lie
ahead.

1 Introduction

blockchain for all contracts and collect a total of 34K
unique smart contracts up until January 3rd, 2018. Of
these, 26 K (77.3%) have no readily available source code.
These contracts are involved with 12.7M (31.6%) trans-
actions, and hold $3 B USD.

‘We next leverage Erays to demonstrate how it can be
used to link smart contracts that have no readily available

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

Gigahorse: Thorough, Declarative Decompilation of
Smart Contracts

Neville Grech Lexi Brent Bernhard Scholz Yannis Smaragdakis
University of Athens The University of Sydney The University of Sydney University of Athens
and University of Malta Australia Australia Greece
Greece and Malta lexi. edu.au edu.au yanni Lorg
me@nevillegrech.com
Abstract—The rise of smart contracts—autonomous applica- low-level Eth VM (EVM) by de for the

tions running on blockchains—has led to a growing number of
threats, necessitating sophisticated program analysis. However,
smart contracts, which transact valuable tokens and cryptocur-
rencies, are compiled to very low-level bytecode. This bytecode is
the ultimate semantics and means of enforcement of the contract.

‘We present the Glglhol'se Inoldmln At i's tor! is a reverse
compiler (i.e., a mart
from Emereum Virtual Vlnclune (EVM) hytecode inm a high-
level 3-address code The new rep-
resentation of smart contracts makes implicit data- and control-
flow dependencies of the EVM bytecode explicit. Decompilation
obviates the need for a contract’s source and allows the analysis
of both new and deployed contracts.

Glgnhorse advances the state of the art on several fronts.
It mves the Ingllest lnnlysl.s pndnun and compl:lenm nmong

blockchain’s distributed virtual machine.

The open nature of smart contracts, as well as their role in
handling high-value currency, raise the need for thorough con-
tract analysis and validation. This task is hindered, however, by
the low-level stack-based design of the EVM bytecode that has
hardly any abstractions as found as in other languages, such
as Java’s virtual machine. For example, there is no notion of
functions or calls—a compiler that translates to EVM bytecode
needs to invent its own conventions for implementing local
calls over the stack.

It is telling that recent research [1], [9], [22], 13_41 has
focused on d iling smart into a high
before applying any further (usually security-

8
decompile om er 99, 98% of d:ployed contracts, compared to 38%
for the Vandal and under 50%
for the stale-ol the-practice Porosity decompiler. Importantly,
Gigahorse offers a full-featured toolchain for further analyses
(and a “batteries included” approach, with multiple clients
already lmplemenled). together with the hlghwl performance

oriented) analysis. Pasl decomp:lauon efforts have been, at
best, i The piler (largely defining
the stalevnf lhe-pracnce) is Porosity [33], which in our study
fails to yield results for 50% of deployed contracts of all

smart contracts on the block chain. Upcoming research tools

and Key to these 's use of the Vandal piler [35] still fail to decompile a
ic-based ificati wh:ch allows high-level significant portion of rcal contracts (around 12%) due to the
insights to inform low-level decompilation. complex task of g EVM’s stack-based op to

Index Terms—Ethereum, Blockchain, Decompilation, Program
Analysis, Security

a register-based intermediate representation.
Such difficulties are much more than technicalities of the

- B
S "/c

Elipmoc: Advanced Decompilation of Ethereum Smart
Contracts

NEVILLE GRECH, University of Malta, Malta and Dedaub Ltd

SIFIS LAGOUVARDOS, University of Athens, Greece and Dedaub Ltd
ILIAS TSATIRIS, University of Athens, Greece and Dedaub Ltd

YANNIS SMARAGDAKIS, University of Athens, Greece and Dedaub Ltd

Smart on the Eth blockchain greatly beneﬁt from cuttmg-edge analysls techmques and pose
igni hall A primary chall is the of deploy

We present Elipmoc, a piler for the next ion of smart con!racl analyses. Elipmoc is an evolution

of Gigahorse, the top research d iler, d ically improving over it and over other state-of-the-art tools,

by employing sever: and making them scalable. Among these techniques are a new
kind of context sensmvlty (termed “transactional sensitivity”) that provides a more effective static abstraction
of distinct d ic executions; a path (yet scalable, through path merging) algorithm for inference
of function arguments and returns; and a fully context sensitive private function reconstruction process. As a
result, smart contract security analyses and rever: ing tools built on top of Elipmoc achieve high

lability, | aind 1

Elipmoc improves over all nolable past d p its pred: Gigal and the state-
of-the-art industrial tool, Panoramix, integrated into the primary Eth blockchain explorer, Eth
Elipmoc produces decompiled contracts with fully resolved operands at a rate of 99.5% (compared to 62.8% for

high i 1

Tudi

Gigahorse), and achieves much higher pl in code d ilation than P: ix—e.g., up to 67%
more coverage of external call statements—while bemg over 5x faster. Elipmoc has been the enabler for recent
(independent) discoveries of several exploitabl bilities on popular p Is, over funds in the many
millions of dollars.

CCS Concepts: « Theory of p ion — Program analysis; » Software and its engineering — General

programming languages; + Security and privacy — Software and application security.

Additional Key Words and Phrases: Program Analysis, Smart Contracts, Decompilation, Datalog, Security,
Ethereum, Blockchain

ACM Reference Format:

Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis. 2022. Elipmoc: Advanced Decompila-
tion of Ethereum Smart Contracts. Proc. ACM Program. Lang. 6, OOPSLA1, Article 77 (April 2022), 27 pages.
https://doi.org/10.1145/3527321

The Incredible Shrinking Context... in a Decompiler Near You

SIFIS LAGOUVARDOS, University of Athens, Greece and Dedaub, Greece
YANNIS BOLLANOQOS, Dedaub, Greece
NEVILLE GRECH, Dedaub, Malta

YANNIS SMARAGDAKIS, University of Athens, Greece and Dedaub, Greece

Decompilation of binary code has arisen as a highly-important application in the space of Ethereum VM
(EVM) smart contracts. Major new decompilers appear nearly every year and attain popularity, for a multitude
of reverse-engineering or tool-building purposes. Technically, the problem is fundamental: it consists of
recovering high-level control flow from a highly-optimized continuation-passing-style (CPS) representation.
Architecturally, decompilers can be built using either static analysis or symbolic execution techniques.

We present SHRNKR, a static-analysis-based decompiler succeeding the state-of-the-art Elipmoc decompiler.
SHRNKR manages to achieve drastic improvements relative to the state of the art, in all significant dimensions:
scalability, completeness, precision. Chief among the techniques employed is a new variant of static analysis
context: shrinking context sensitivity. Shrinking context sensitivity performs deep cuts in the static analysis
context, eagerly “forgetting” control-flow history, in order to leave room for further precise reasoning.

heimdall-rs

HEIMDALL

ADVANCED EVIM TOOLKIT

© 0 N o Ul b WN =

A A DDA AP WWWWWWWWWWNNNNNNNNNNRRRPRPRRERRERRE
SO U WNRPSOOWWNOOU AR WNERERES OOWONOOWULEWNRERESSOOOONO VR WNREROS®

0x0:

0x2:

0x4:

0x5:

0x6:

0x8:

0x9:

Oxa:

Oxb:

Oxc:

Oxf:
0x10:
0x11:
0x12:
0x13:
0x14:
0x17:
0x18:
Oxla:
Ox1b:
Ox1c:
Ox1d:
Oxle:
Ox1f:
0x20:
Ox21:
0x22:
0x24:
0x25:
0x26:
0x27:
0x48:
0x49:
0x4b:
Ox4c:
Ox4d:
Ox4e:
Ox4f:
Ox51:
0x52:
0x53:
0x55:
0x56:
0x57:
0x58:
0x5d:

PUSH1 0x40
PUSH1 0x80
DUP2

MSTORE

PUSH1 Ox4
DUP1
CALLDATASIZE
LT

ISZERO

PUSH2 Ox4e
JUMPI

JUMPDEST

POP
CALLDATASIZE
ISZERO

PUSH2 Ox1c
JUMPI

PUSH1 0x0
DUP1

REVERT
JUMPDEST

MLOAD

CALLER

DUP2

MSTORE
CALLVALUE
PUSH1 0x20
DUP3

ADD

MSTORE

PUSH32 0x88a5966d370b9919b20f3e2c13ff65706f196ade32cc2c12bf57088188525874
SWAP1

PUSH1 0x40
SWAP1

LOG1

STOP

JUMPDEST

PUSH1 ox0
DUP1
CALLDATALOAD
PUSH1 0xed
SHR

SWAP2

DUP3

PUSH4 0x1e33667
={0]

function d3MMSwapCallBack(address token, uint256 value, bytes data) public nonPayable {
require(msg.data.length - 4 >= 96);
require(data <= uint64.max);
require(4 + data + 31 msg.data. length);
require(data.length <= uint64.max);
vl = data.data;
require(4 + data + data.length + 32 <= msg.data.length);
vl = MEM[64];

vz,

v3 = token.transfer(msg.sender, value).gas(msg.gas);

require(v2, MEM[64], RETURNDATASIZE());

if

b

(v2) {

v4 = v5 = 32;
if (v5 > RETURNDATASIZE()) {
4 = RETURNDATASIZE();

i

require(!((vl + (v4 + 31 & OxFffffffffffffffffefffffffffffffffffffffrfffirerefefd
(65));

MEM[64] = vl + (v4 + 31 & Oxffffffffffffffffffffffffffffffffrfffffffffrffrffffff
require(vl + v4 — vl >= 32);
require(10xa9059cbaffffffffffffffffffffffffffffffffrfrfffffffffrfffffffffeer);
return ;

else {

return ;

Readability?!

LLM-Based Smart Contract Decompiler

0C
0
0

Bytecode

0)

Decompiler

Static Analysis &
Control Flow

EVM Bytecode

Decompiling Smart Contracts with a Large Language Model

Isaac David*, Liyi Zhou!1** Dawn Songﬂ[, Arthur Gervais*7** Kaihua Qin”“**
*University College London
JrUm'versity of Sydney
tuc Berkeley
§Yale University

Abstract—The widespread lack of broad source code veri-
fication on blockchain explorers such as Etherscan, where
despite 78,047,845 smart contracts deployed on Ethereum
(as of May 26, 2025), a mere 767,520 (< 1 %) are open
source, presents a severe impediment to blockchain security.
This opacity necessitates the automated semantic analysis of
on-chain smart contract bytecode, a fundamental research
challenge with direct implications for identifying vulnerabilities
and understanding malicious behavior. Adversarial actors de-
liberately exploit this lack of transparency by deploying closed-
source contracts, particularly in MEV and DeFi exploitation,
thereby concealing their malicious logic and leaving security
researchers with only inscrutable low-level bytecode. Prevail-
ing decompilers struggle to reverse bytecode in a readable
manner, often yielding convoluted code that critically hampers
vulnerability analysis and thwarts efforts to dissect contract
functionalities for security auditing.

This paper addresses this challenge by introducing a
pioneering decompilation pipeline that, for the first time,
successfully leverages Large Language Models (LLMs) to
transform Ethereum Virtual Machine (EVM) bytecode into
human-readable and semantically faithful Solidity code. Our
novel methodology first employs rigorous static program anal-
ysis to convert bytecode into a structured three-address code
(TAC) representation. This intermediate representation then

transparency and auditability in blockchain ecosystems, with
direct applications in security auditing, incident response, and
automated contract verification.

1. Introduction

The rapid evolution of blockchain technology has fun-
damentally transformed the landscape of decentralized ap-
plications, with smart contracts emerging as the cornerstone
of this revolution. These self-executing contracts, manage
billions of dollars in digital assets and facilitate complex
decentralized financial operations. However, a critical and
persistent research challenge directly threatens the security
and sustainability of this ecosystem: the pervasive opacity of
deployed smart contracts. When source code is not publicly
verified, as is common with adversarial contracts used in
MEYV or DeFi exploits, security researchers and auditors are
left with only low-level EVM bytecode, a representation ill-
suited for direct human comprehension or robust security
analysis.

This opacity erects a formidable barrier for security
auditors, developers, and researchers striving to understand,
verify, or respond to incidents involving smart contracts.
The challenge is particularly acute in scenarios involving
active exploits or potential vulnerabilities, where the ability

$n varmidlyr amd arnciivntalysr arnalyvrora dormlacvad bhaotoareada 1o

<{ > EVMDecompiler Features Pricing FAQ Blog APIDocs Affiliate Program 023z

Enter Contract Address and Chain

Blockchain Network Decompilation Model Contract Address
BNB Smart Chain v ‘. BASIC - All Users v 0xAD942d022585343a6FC8A74E7C8e74339eA70449 Q Decompile

function d3MMSwapCallBack(address token, uint256 value, bytes data) public nonPayable { Basic model - Avallable to llusers

require(msg.data.length - 4 == 96);

require(data <= uint64.max); (4 Decompilation Complete &, Download

require(4 + data + 31 < msg.data.length);

require(data.length <= uint64.max); FAaCEEcieditnction i)

V_ﬂ = data-data; setTokenAddress withdraw getMintPass swapCallback

require(4 + data + data.length + 32 <= msg.data.length);

vl = MEM[64]; d3MMSwapCallBack swapX2YCallback swapCallback swapY2XCallback

M = 1

v2, v3 = token.transfer(msg.sender, value).gas(msg.gas); SR A L

require(v2, MEM[64], RETURNDATASIZE());
if (v2) {
v4 = = 32;
if (v5 > RETURNDATASIZE()) {
4 = RETURNDATASIZE();

Decompiled Solidity Contract

n d3MMSwapCallBack(_token, uint256 _amount, bytes
IERC20(_token).transfer g.sender, _amount);

\
v

i
J

require(!((vl + (v4 + 31 & Oxfffffffffffffffffffffffffffrfffffffffrfrfefffffefd
(65));

MEM[64] = vl + (v4 + 31 & Oxffefr
require(vl + v4 - vl >= 32);
require(!10xa9059cbaffee);
return ;

swapX2YCallback(uint256 X bytes
(amountX

L success, m) result e 1l{valu amountX}

(success,

swapCallback (uir mount®, ui ytes ca ita data) 11 override {

mount®, amountl, data

1 l I 256 amountYIn, u 2 amountXIn, bytes d data) ex override {
r ELSE 1

y result) = msg.sender.call{value: amountXIn}(data);
j(result));

return ;

	Slide 1: Front-running, Imitation, Decompilation
	Slide 2: Recap
	Slide 3
	Slide 4: Sandwich Attack
	Slide 5: Quantifying Miner/Maximal Extractable Value (MEV)
	Slide 6
	Slide 7: MEV Extraction
	Slide 8: The Blockchain Imitation Game
	Slide 9: Imitation
	Slide 10: Naive Imitation
	Slide 11: Generalized Imitation
	Slide 12: Technical Challenges
	Slide 13: Ape Overview
	Slide 14: Ape Evaluation
	Slide 15: Imitation as Whitehat
	Slide 16: Imitation as Whitehat
	Slide 17
	Slide 18: Looking into an MEV Contract
	Slide 19: Closed-Source Smart Contracts
	Slide 20
	Slide 21
	Slide 22: LLM-Based Smart Contract Decompiler
	Slide 23

