

Tim Roughgarden @Tim_Roughgarden · 32s Never been so stumped for a talk title as for my CESC talk tomorrow (on some results and challenges in cryptoeconomics). All my attempts have either been too pretentious, too boring, too grandiose, or too cliché.

On Some Results and Challenges in Cryptoeconomics

Tim Roughgarden (a16z crypto & Columbia University)

Crypto Economics Security Conference (CESC) November 1, 2022

Game theory: analyze strategic aspects of a given game.

- dominant strategies, Nash equilibria, etc.

Game theory: analyze strategic aspects of a given game.

- dominant strategies, Nash equilibria, etc.

Mechanism design: "inverse game theory" ("economist as engineer")

- identify desired outcome (e.g., welfare-maximizing allocation)
- design game w/that outcome as equilibrium (e.g., VCG mechanism)
 - payments allowed, traditionally in external currency (e.g., USD)

0, 0

1, -1

-1, 1

Game theory: analyze strategic aspects of a given game.

- dominant strategies, Nash equilibria, etc.

Mechanism design: "inverse game theory" ("economist as engineer")

- identify desired outcome (e.g., welfare-maximizing allocation)
- design game w/that outcome as equilibrium (e.g., VCG mechanism)
 payments allowed, traditionally in external currency (e.g., USD)

Question: what if mechanism has access to a native currency?

0, 0

1, -1 0, 0

-1, 1

1, -1

-1, 1

0, 0

Game theory: analyze strategic aspects of a given game.

- dominant strategies, Nash equilibria, etc.

Mechanism design: "inverse game theory" ("economist as engineer")

- identify desired outcome (e.g., welfare-maximizing allocation)
- design game w/that outcome as equilibrium (e.g., VCG mechanism)
 payments allowed, traditionally in external currency (e.g., USD)

Question: what if mechanism has access to a native currency?

- with power (minting/burning/etc.) comes responsibility (macro implications)

0, 0

1, -1 0, 0

-1, 1

1, -1

-1, 1

0, 0

Desired outcome in Bitcoin/Nakamoto consensus:

• every node dutifully solves PoW puzzles, extends longest chain

Desired outcome in Bitcoin/Nakamoto consensus:

• every node dutifully solves PoW puzzles, extends longest chain

Mechanism: for each block on longest chain, give reward to miner

• intuition: incentivizes miners to coordinate on longest chain

Desired outcome in Bitcoin/Nakamoto consensus:

• every node dutifully solves PoW puzzles, extends longest chain

Mechanism: for each block on longest chain, give reward to miner

- intuition: incentivizes miners to coordinate on longest chain
- nuance [Eyal/Sirer 14]: can incentivize unintended behavior more!

Desired outcome in Bitcoin/Nakamoto consensus:

• every node dutifully solves PoW puzzles, extends longest chain

Mechanism: for each block on longest chain, give reward to miner

- intuition: incentivizes miners to coordinate on longest chain
- nuance [Eyal/Sirer 14]: can incentivize unintended behavior more!

Question: where does the money for rewards come from?

Desired outcome in Bitcoin/Nakamoto consensus:

• every node dutifully solves PoW puzzles, extends longest chain

Mechanism: for each block on longest chain, give reward to miner

- intuition: incentivizes miners to coordinate on longest chain
- nuance [Eyal/Sirer 14]: can incentivize unintended behavior more!

Question: where does the money for rewards come from?

- answer: newly minted coins (effectively, a tax on BTC holders)
- note: hard/impossible without control of a native currency

- consequence: given that Bitcoins never removed from circulating supply (i.e., no burning), block rewards must go to 0
 - miner rewards then come solely from transaction fees (and maybe MEV)

- consequence: given that Bitcoins never removed from circulating supply (i.e., no burning), block rewards must go to 0
 - miner rewards then come solely from transaction fees (and maybe MEV)
- obvious issue: if tx fees stay small, poor economic security

- consequence: given that Bitcoins never removed from circulating supply (i.e., no burning), block rewards must go to 0
 - miner rewards then come solely from transaction fees (and maybe MEV)
- obvious issue: if tx fees stay small, poor economic security
- subtle issue: unlike block rewards, tx fees vary widely across blocks
 - [Carlsten/Kalodner/Weinberg/Narayanan 16] miners incentivized to fork/replay blocks with unusually high tx fees, continually undercut each other

- consequence: given that Bitcoins never removed from circulating supply (i.e., no burning), block rewards must go to 0
 - miner rewards then come solely from transaction fees (and maybe MEV)
- obvious issue: if tx fees stay small, poor economic security
- subtle issue: unlike block rewards, tx fees vary widely across blocks
 - [Carlsten/Kalodner/Weinberg/Narayanan 16] miners incentivized to fork/replay blocks with unusually high tx fees, continually undercut each other
 - potential solution: smooth transaction fees over many of blocks

- consequence: given that Bitcoins never removed from circulating supply (i.e., no burning), block rewards must go to 0
 - miner rewards then come solely from transaction fees (and maybe MEV)
- obvious issue: if tx fees stay small, poor economic security
- subtle issue: unlike block rewards, tx fees vary widely across blocks
- modern version: MEV can vary widely across blocks
 - "MEV smoothing": smooth MEV payouts over validators
 - challenge: unlike tx fees, MEV not directly available to the L1 protocol

Desired outcome for (scarce) Ethereum blockspace: fully allocated, and allocated only to the most valuable transactions.

• aspiration: set tx fees = market-clearing price (supply = demand)

- aspiration: set tx fees = market-clearing price (supply = demand)
- first-price auction: let users figure out price for themselves

- aspiration: set tx fees = market-clearing price (supply = demand)
- first-price auction: let users figure out price for themselves
- EIP-1559: compute market-clearing price ("base fee") in-protocol

- aspiration: set tx fees = market-clearing price (supply = demand)
- first-price auction: let users figure out price for themselves
- EIP-1559: compute market-clearing price ("base fee") in-protocol
 - continually adjust (on-chain signal for excess demand = past block sizes)
 - bidding true valuation is optimal unless base fee << market-clearing price
 - non-manipulable by a block producer (even if colluding with end users)
 - twist: only works if base fee revenues directed away from block's producer!
 - see [Buterin 18], [Roughgarden 21] for details

Question: to whom should base fee revenues be routed?

Question: to whom should base fee revenues be routed?

EIP-1559's policy: burn them!

• note: only an option because of the native currency!

Question: to whom should base fee revenues be routed?

EIP-1559's policy: burn them!

• note: only an option because of the native currency!

Macroeconomic consequences: deflationary pressure on ETH.

• even more significant after post-Merge reduction in block rewards

Question: to whom should base fee revenues be routed?

EIP-1559's policy: burn them!

• note: only an option because of the native currency!

Macroeconomic consequences: deflationary pressure on ETH.

• even more significant after post-Merge reduction in block rewards

Question: is this a good thing?

Question: to whom should base fee revenues be routed?

EIP-1559's policy: burn them!

• note: only an option because of the native currency!

Macroeconomic consequences: deflationary pressure on ETH.

• even more significant after post-Merge reduction in block rewards

Question: is this a good thing?

• every ETH holder: yes! (cf., "ultra-sound money" meme)

Question: to whom should base fee revenues be routed?

EIP-1559's policy: burn them!

• note: only an option because of the native currency!

Macroeconomic consequences: deflationary pressure on ETH.

• even more significant after post-Merge reduction in block rewards

Question: is this a good thing?

- every ETH holder: yes! (cf., "ultra-sound money" meme)
- every macroeconomist: no! (cf., 1990s Japan)

Problem: enable the exchange of ETH (say) for USD and vice versa.

Problem: enable the exchange of ETH (say) for USD and vice versa.

Traditional solution (NYSE, Coinbase, etc.): use an order book.

- issues: computationally costly, poor liquidity for long-tail tokens

Problem: enable the exchange of ETH (say) for USD and vice versa.

Traditional solution (NYSE, Coinbase, etc.): use an order book.

- issues: computationally costly, poor liquidity for long-tail tokens

Automated market makers: "liquidity providers (LPs)" supply tokens

- market always willing to accept buy/sell orders at quoted price
- price determined by number of coins x,y of each type (e.g., y/x)

Problem: enable the exchange of ETH (say) for USD and vice versa.

Traditional solution (NYSE, Coinbase, etc.): use an order book.

Automated market makers: "liquidity providers (LPs)" supply tokens

- market always willing to accept buy/sell orders at quoted price
- price determined by number of coins x,y of each type (e.g., y/x)

General problem: mechanism design with severe computational constraints (cf., algorithmic mechanism design [Nisan/Ronen 99]).

• note: not about cryptocurrencies per se (cf., lack of native token in Uniswap v1)

AMM benefits: simplicity, guaranteed liquidity.

AMM costs: might force LPs to trade at worse-than-market prices.

- e.g., if AMM price is stale and corrected by an arbitrageur

AMM benefits: simplicity, guaranteed liquidity.

AMM costs: might force LPs to trade at worse-than-market prices.

- e.g., if AMM price is stale and corrected by an arbitrageur

Question: how to measure these costs?

AMM benefits: simplicity, guaranteed liquidity.

AMM costs: might force LPs to trade at worse-than-market prices.

- e.g., if AMM price is stale and corrected by an arbitrageur

Question: how to measure these costs?

Old answer: impermanent loss (IL).

• issue: adverse selection costs occluded by market movements

AMM benefits: simplicity, guaranteed liquidity.

AMM costs: might force LPs to trade at worse-than-market prices.

- e.g., if AMM price is stale and corrected by an arbitrageur

Question: how to measure these costs?

Old answer: impermanent loss (IL).

• issue: adverse selection costs occluded by market movements

New answer: loss-versus-rebalancing (LVR).

• the "unhedgeable" component of IL

– e.g., for "xy=k" curves: LP cost is $\sigma^2/8$

(see [Milionis/Moellemi/ Roughgarden/Zhang 22] for details)

Grand Challenges (1 of 3)

Grand challenge #1: make macroeconomics our own.

- cf., game theory, mechanism design, etc.
 - issue: macroeconomics is already a minefield
- ex: is a hard cap "better" than permanent inflation?
- ex: are deflationary cryptocurrencies doomed?
- ex: what's the "optimal" schedule for inflationary token rewards?
- ex: to what extent do such design decisions affect token price?

Grand Challenges (2 of 3)

Grand challenge #2: "optimal" L1 incentives.

- cf., optimal fault-tolerance in distributed computing
- ex: optimal economic security s.t. budget on costs to honest nodes
- ex: is slashing necessary (e.g., for optimal economic security)?
- ex: fundamental limits of in-protocol recovery from 51% attacks?
- ex: can liveness attacks be made as costly as consistency attacks?

Grand Challenges (3 of 3)

Grand challenge #3: interactions between layers of blockchain stack.

- ex: how to manage and incentivize P2P networks ("layer 0")?
- ex: economics of (decentralized) layer-2s?
- ex: L1/L2 interactions
 - e.g., EIP-4844 and optimal multi-resource pricing
- ex: L1/application-layer interactions
 - e.g., is MEV unavoidable?
 - are inter-layer economic interactions inevitable in a decentralized system, or is the lack of clean separations an artifact of our current designs?

Grand Challenges (3 of 3)

Grand challenge #3: interactions between layers of blockchain stack.

- ex: how to manage and incentivize P2P networks ("layer 0")?
- ex: economics of (decentralized) layer-2s?
- ex: L1/L2 interactions
 - e.g., EIP-4844 and optimal multi-resource pricing
- ex: L1/application-layer interactions
 - e.g., is MEV unavoidable?
 - are inter-layer economic interactions inevitable in a decentralized system, or is the lack of clean separations an artifact of our current imagination?

FIN