
Decentralized Finance

Instructors: Dan Boneh, Arthur Gervais, Andrew Miller, Christine Parlour, Dawn Song

Introduction to Blockchain technology

What is a blockchain?

Abstract answer: a blockchain provides
coordination between many parties,
when there is no single trusted party

if trusted party exists ⇒ no need for a blockchain

[financial systems: often no trusted party]

What is a blockchain?

consensus layer

compute layer (blockchain computer)

applications (DAPPs, smart contracts)

user facing tools (cloud servers)

Consensus layer (informal – not the topic of this course)

A public append-only data structure:

• Persistence: once added, data can never be removed*

• Consensus: all honest participants have the same data**

• Liveness: honest participants can add new transactions

• Open(?): anyone can add data

consensus layerLayer 1:

achieved by replication

How are blocks added to chain?

blockchain

I am the
leader2 ETH

verify
block

verify
block

skA

skB

skC

signed

How are blocks added to chain?

blockchain

I am the
leader2 ETH

2 ETH

…

skA

skB

skC

Compute layer: The blockchain computer

DAPP logic is encoded in a program that runs on blockchain

§ Rules are enforced by a public program (public source code)

⇒ transparency: no single trusted 3rd party

§ The DAPP program is executed by parties who create new blocks

⇒ public verifiability: everyone can verify state transitions

consensus layer

compute layer

Apps layer: Decentralized applications (DAPPS)

consensus layer

blockchain computer

applications (DAPPs, smart contracts)

Run on
blockchain
computer

UI Layer: Common DAPP architecture

consensus layer

blockchain computer

DAPP DAPPDAPP

end user

UI Layer: user facing servers

on-chain
state

[source: the Block Genesis]

lots of experiments …

Let’s get started …

Next segment: cryptographic background

See you there

Cryptographic
Background:

hash functions

https://defi-learning.org/

Cryptography Background

(1) cryptographic hash functions

An efficiently computable function 𝐻: 𝑀 ⇾ 𝑇
where |𝑀| ≫ |𝑇|

megabytes hash value

32 bytes

𝑇 = {0,1}!"#

Collision resistance

Def: a collision for 𝐻:𝑀 ⇾ 𝑇 is pair 𝑥 ≠ 𝑦 ∈ 𝑀 s.t. 𝐻(𝑥) = 𝐻(𝑦)

|𝑀| ≫ |𝑇| implies that many collisions exist

Def: a function 𝐻:𝑀 ⇾ 𝑇 is collision resistant if it is “hard” to find
even a single collision for 𝐻 (we say 𝐻 is a CRH)

Example: SHA256: {𝑥 : len(𝑥)<264 bytes}⇾ {0,1}256

details in crypto MOOC

An application: committing to data

Alice has a large file 𝑚. She publishes ℎ = 𝐻(𝑚) (32 bytes)

Bob has ℎ. Later Alice sends 𝑚’ s.t. 𝐻(𝑚’) = ℎ

𝐻 is a CRH ⇒ Bob is convinced that 𝑚’ = 𝑚
(otherwise, 𝑚 and 𝑚’ are a collision for 𝐻)

We say that ℎ = 𝐻(𝑚) is a binding commitment to 𝑚

(note: not hiding, ℎ may leak information about 𝑚)

Committing to a list (of transactions)

Alice has 𝑆 = (𝑚1, 𝑚2, … ,𝑚𝑛)

Goal:

- Alice publishes a short binding commitment to 𝑆, ℎ = commit(𝑆)

- Bob has ℎ. Given 𝑚𝑖, proof π𝑖 can check that 𝑆[𝑖] = 𝑚!

Bob runs verify ℎ, 𝑖,𝑚! , π𝑖 ⇾ accept/reject

security: adv. cannot find (𝑆, 𝑖,𝑚, 𝜋) s.t. 𝑚 ≠ 𝑆[𝑖] and

verify(ℎ, 𝑖,𝑚, 𝜋) = accept where ℎ = commit(𝑆)

32 bytes

Merkle tree (Merkle 1989)

Merkle tree
commitment

ℎ

𝑚1 𝑚2 𝑚3 𝑚$ 𝑚" 𝑚%𝑚# 𝑚&

list of values S

Goal:
• commit to list S of size n
• Later prove 𝑆[𝑖] = 𝑚'

commitment

Merkle tree (Merkle 1989)

𝑚1 𝑚! 𝑚(𝑚$ 𝑚" 𝑚%𝑚# 𝑚&

list of values S

ℎ

H H H H

H H

H

To prove 𝑆 4 = 𝑚$

proof π = 𝑚(, 𝑦), 𝑦#

𝑦1 𝑦! 𝑦(𝑦$

𝑦" 𝑦#

length of 𝜋: log2 𝑛

commitment Goal:
• commit to list S of size n
• Later prove 𝑆[𝑖] = 𝑚'

Merkle tree (Merkle 1989)

𝑚1 𝑚! 𝑚(𝑚$ 𝑚" 𝑚%𝑚# 𝑚&

list of values S

ℎ

H H H H

H H

H

To prove 𝑆 4 = 𝑚$

proof π = 𝑚(, 𝑦), 𝑦#

𝑦1 𝑦! 𝑦(𝑦$

𝑦" 𝑦#

Bob does:
𝑦2 ⇽ 𝐻 𝑚3, 𝑚4
𝑦5 ⇽ 𝐻 𝑦1, 𝑦2
ℎ’ ⇽ 𝐻 𝑦5, 𝑦6

accept if ℎ = ℎ’

commitment

Merkle tree (Merkle 1989)

Thm: H CRH ⇒ adv. cannot find (𝑆, 𝑖,𝑚, 𝜋) s.t. 𝑚 ≠ 𝑆[𝑖] and

verify(ℎ, 𝑖,𝑚, 𝜋) = accept where ℎ = commit(𝑆)

(to prove, prove the contra-positive)

How is this useful?

§When writing a block of transactions 𝑆 to the blockchain,
suffices to write commit(𝑆) to chain. Keep chain small.

§Later, can prove contents of every Tx.

Super useful. Example:

Merkle
tree

Tx1 Tx2 … Txn

Merkle
tree

Tx1 Tx2 … Txn

Merkle
tree

Tx1 Tx2 … Txn

Abstract block chain

blockchain
block header

⊥ Merkle
root

other
data

block header

hash Merkle
root

other
data

block header

hash Merkle
root

other
data

Merkle proofs are used to prove that a Tx is “on the block chain”

Next segment: digital signatures

How to authorize transactions??

Cryptographic
Background:

Digital Signatures

https://defi-learning.org/

Digital Signatures

§ In the last segment we looked at cryptographic hash functions.

§ In this segment we will look at digital signatures:

how to approve a transaction?

Signatures

Physical signatures: bind transaction to author

Bob agrees to pay Alice 1$

Bob agrees to pay Alice 100$

Problem in the digital world:
anyone can copy Bob’s signature from one doc to another

Digital signatures
Solution: make signature depend on document

Bob agrees to pay Alice 1$

secret signing
key (sk)

signing
algorithm

signature

Signer

verifier

Verifier

public verification
key (pk)

‘accept’
or

‘reject’

Digital signatures: syntax

Def: a signature scheme is a triple of algorithms:

§ Gen(): outputs a key pair (pk, sk)

§ Sign(sk, msg) outputs sig. σ

§ Verify(pk, msg, σ) outputs ‘accept’ or ‘reject’

Secure signatures: (informal)

Adversary who sees pk and sigs on many messages of her choice,
cannot forge a signature on a new message.

Families of signature schemes

1. RSA signatures (not used in blockchains):
§ long sigs and public keys (≥256 bytes), fast to verify

2. Discrete-log signatures: Schnorr and ECDSA
§ short sigs (48 or 64 bytes) and public keys (32 bytes)

3. BLS signatures: 48 bytes, aggregatable, easy threshold

4. Post-quantum signatures: long (≥768 bytes)

(Ethereum 2.0, Chia, Dfinity)

(Bitcoin, Ethereum)

Signatures on the blockchain

Signatures are used everywhere:
§ ensure Tx authorization,
§ governance votes,
§ consensus protocol votes.

verify
Tx

verify
Tx

verify
Tx

Tx
data signatures

Tx
data signatures

sk1

sk2

SNARK proofs

We covered two important cryptographic primitives:

1. Collision resistant hash functions and Merkle trees,

2. Digital signatures.

Another important cryptographic primitive is a SNARK proof:

§ Used for scaling and privacy

§ We will discuss SNARKs in detail in the lecture on privacy

Next segment: scaling the blockchains

Can we make it fast??

Scaling Blockchains

https://defi-learning.org/

Scaling

Transaction rates (Tx/sec):

§ Bitcoin: can process about 5 (Tx/sec)

§ Ethereum: can process about 20 (Tx/sec)

Tx Fees fluctuate:
2$ to 60$ for simple Tx

Ethereum Tx fees (gas prices)

$68

Scaling

Transaction rates (Tx/sec):

§ Bitcoin: can process about 5 (Tx/sec)

§ Ethereum: can process about 20 (Tx/sec)

§ The visa network: can process up to 24,000 (Tx/sec)

Can we scale blockchains to visa speeds? … with low Tx fees

Tx Fees fluctuate:
2$ to 60$ for simple Tx

Scaling approaches

Many approaches to scaling blockchains:

§ Faster consensus: modern blockchains (e.g., Solana, Polkadot, Avalanche, …)

§ Payment channels: most Tx are off chain Peer-to-Peer (e.g., Lightening)

§ Layer 2 approaches:
zkRollup, optimistic Rollup: batch many Tx into a single Tx

§ Sidechains: Polygon and others

§ many other ideas …

(1) Payment channels (high level idea)

blockchain

Alice Bob

Alice creates payment channel
to Bob: value $100

$100 held in channel (e.g., UTXO or DAPP)

verify channel
created correctly

HTLC logic: Hashed TimeLock Contract
Two ways to close channel:
• Tx with Alice sig: can close channel after 30 days, or
• Tx with Alice sig & Bob sig: close channel right away

(1) Payment channels (high level idea)

blockchain

Alice Bob

$100 held in channel (e.g., UTXO)

pay Bob: 5$

Tx: distribute funds: Alice: 95; Bob: 5 sigAlice
(off chain message!)

Bob can sign Tx and close channel
… but he would rather wait (up to 30 days)

(1) Payment channels (high level idea)

blockchain

Alice Bob

another payment: pay Bob: 15$

Tx: distribute funds: Alice: 80; Bob: 20 sigAlice

$100 held in channel (e.g., UTXO)

(1) Payment channels (high level idea)

blockchain

Alice Bob

another payment: pay Bob: 10$

Tx: distribute funds: Alice: 70; Bob: 30 sigAlice

$100 held in channel (e.g., UTXO)

(1) Payment channels (high level idea)

blockchain

Alice Bob

either side can close channel
(Alice only after 30 days)

Alice:70 Bob:30$100 held in channel (e.g., UTXO)❌ ❌

Tx: distribute funds: Alice: 70; Bob: 30 sigAlice

Tx, sigA, sigB

(1) Payment channels (high level idea)

blockchain

Alice Bob

either side can close channel
(Alice only after 30 days)

Alice:70 Bob:30

main point: participants only touch chain
when a channel is created or closed.

Bi-directional channels are also possible.

$100 held in channel (e.g., UTXO)❌ ❌
Tx, sigA, sigB

Payment networks

Lots of bi-directional payment channels

Alice pays Bob by finding the cheapest route through the network
⟹ while channels are open, nothing touches the blockchain

The case of El Salvador

Payment channels are necessary to enable state-wide adoption
• Strike wallet: connects to the Bitcoin Lightening network

, 2021

(2) Scaling Ethereum Using Rollup

(2) Scaling Ethereum Using Rollup

Main tool: SNARK (much more on SNARKs later)

C: a program that always terminates in ≤B steps
x: public input to C, w: private input to C

prover

(C, x, w)

verifier

(C, x)
short proof π

(2) Scaling Ethereum Using Rollup

Main tool: SNARK (much more on SNARKs later)

C: a program that always terminates in ≤B steps
x: public input to C, w: private input to C

prover

(C, x, w)

verifier

(C, x)
short proof π

I am convinced
prover knows w
s.t. C(x, w) = 1

Main point:
Verifier’s run time is
much less than running C

(2) Rollup: zk and optimistic

Standard L1 chains: every miner must verify every posted Tx
verify
all Tx

verify
all Tx

verify
all Tx

rollup
coordinator

verify all Tx
⇒ short proof π

Tx summary, π

verify
π

verify
π

Rollup coordinator: compresses a thousand Tx into one on-chain proof (SNARK)

verify
π

zkRollup (simplified)

rollup coordinator

Alice:
5 DAI
3 ETH

Bob:
2 ETH

… Zoe:
1 ETH
3 BAT

Merkle Tree

root

Layer 1 blockchain
(e.g. Ethereum)

block 354

[A⇾B: 2 ETH], 𝑠𝑖𝑔'

[B⇾Z: 1 ETH]
[Z⇾B: 2 BAT]
𝑠𝑖𝑔(𝑠𝑖𝑔)

atomic swap:

Tx

zkRollup (simplified)

rollup coordinator

Alice:
5 DAI
1 ETH

Bob:
3 ETH
2 BAT

… Zoe:
2 ETH
1 BAT

Merkle Tree

new root

Layer 1 blockchain
(e.g. Ethereum)

block 354

[A⇾B: 2 ETH], 𝑠𝑖𝑔'

[B⇾Z: 1 ETH]
[Z⇾B: 2 BAT]
𝑠𝑖𝑔(𝑠𝑖𝑔)

atomic swap:

Tx

block 357

Tx summary, [SNARK]

Transferring assets to and from L2

§ Transactions within a Rollup system are easy:
§ Batch settlement on L1 network (e.g., Ethereum)

§ Moving funds in to or out of Rollup system (L1 ⟺ L2)
is more expensive:
§ Requires posting more data on L1 network ⟹ higher Tx fees.

§ Moving funds from one Rollup system to another (L2 ⟺ L2)
§ Either via L1 network (expensive), or via a direct L2 ⟺ L2 bridge (cheap)

Migrating a project from L1 Ethereum to L2 zkRollup

Upcoming development: zkEVM (e.g., MatterLabs and others).

Solidity compatibility:
• Coordinator can produce a SNARK proof for the execution

of a short Solidity program:

⟹ easy to migrate a DAPP from L1 Ethereum to L2 zkRollup.

⟹ reduced Tx fees and increased Tx rate compared to L1

Optimistic Rollup (simplified) [e.g., Optimism, Arbitrum]

Same principle as zkRollup, but no SNARK proof

Instead: coordinator posts Tx data on chain without a proof
§ Then give a few days for validators to complain:

if a posted Tx is invalid ⟹
anyone can submit a fraud proof and win a reward,
Rollup server gets slashed.

Benefit: simple full EVM compatibility, less work for server.

Data availability: zkSync vs. zkPorter

Is the coordinator a central point of failure? (centralization fears??)

Answer: No!
coordinator fails ⟹ users find another coordinator to produce proofs

§ Complication: new coordinator needs all current account information
• How to get the data if the old coordinator is dead?

§ Two solutions: zkSync and zkPorter. They work concurrently.

Data availability: zkSync vs. zkPorter

§ zkSync: store all Tx summaries on the L1 blockchain (Ethereum)
• L1 chain accepts Tx batch only if it includes summary of all Tx
• Other coordinators can reconstruct L2 state from L1 blockchain
• Downside: higher Ethereum Tx fees. Good for high value assets

§ zkPorter: store Tx data on a new blockchain
• maintained by a set of staked coordinators
• Cheap off-chain storage, but lower guarantee than zkSync

§ Customer can choose how coordinator will store its account.

That’s it on this topic …

Next segment: interoperability

How to move assets from one chain to another

Interchain
Interoperability

https://defi-learning.org/

Ethereum

Bitcoin

Solana

Polkadot

Flow

20 DOT

Can I use
Serum??

Interoperability

§ Interoperability:
§ a user owns funds or assets on one blockchain system.

Goal: enable the user to move funds and/or assets to another system.

§ Composability:
§ enable a DAPP on one blockchain to call a DAPP on another

Both are easy if the entire world used Ethereum
§ In reality: many blockchain systems that need to interoperate
§ Several cross-chain protocols: XCMP, IBC, …

How to move assets? Building a federated bridge (simplified)

bridge address bridge contract

user
1 ₿

1 ₿

staked validators

Verified
(signed)

usermint one pegged- ₿
1 P₿

to use in DeFi

signing keys

How to move assets? Building a federated bridge (simplified)

bridge address bridge contract

user

1 ₿

staked validators

Bitcoin Tx
(signed)

user
1 P₿ 1 P₿

Why external validators?
bridge contract cannot
store Bitcoin signing key

signing keys

End of lecture: quick review

Cryptographic primitives:
§ Hash functions: committing to large amounts of data
§ Digital signatures: authorizing actions

Scaling the blockchain
§ Payment channels and Rollups

Interoperability: via bridges and pegged coins.

END OF TOPIC

https://defi-learning.org/

