
Constructing and de-Constructing
TRUST

Shafi Goldwasser
Director of the Simons Institute, UC Berkeley

Modern Cryptography :
From Theory to Impact

Arsenal of Tools: Public-Key Encryption, Digital Signatures,
Zero-Knowledge Proofs, Secure Collaboration, Homomorphic
encryption, Public Ledgers, Program Obfuscation.

Enable TRUST in technology
Even when adversaries are present

Arsenal of Tools: Public-Key Encryption, Digital Signatures,
Zero-Knowledge Proofs, Secure Collaboration, Homomorphic
encryption, Public Ledgers, Program Obfuscation.

Crypto recipe for building trust

üComputational Hardness
oNot Everyone Colludes
oPhysical Assumption
oTrusted Hardware

Define Task

Build Crypto Primitive

Security Proofs:
• primitive is secure

if assumption holds
Model Adversary

Define Security of
a Solution

Recipe for identify when DISTRUST is warranted

üComputational Hardness
oNot Everyone Collodes
oPhysical Assumption
oTrusted Hardware

Specify Task

Define Security

Show impossible to
achieve

Security Proofs:
• Any construction will be
insecure if assumption holdsModel Adversary

2023: Is AI Trustworthy/Safe?

What is Trustworthy AI ?

Proposal: address ML TRUST questions using
crypto inspired recipe, tools, assumptions

Specify ML Task Proofs:

AssumptionsÞ
Solution is

good enough

Model Adversary

Define “Good Enough” Solution

Build trustworthy Solution
Or Show when impossible

ML/AI was NOT originally designed
for Adversarial Contexts

•Not Integral Part of the Definition of the Problem

•And yet AI systems are VERY attractive targets

•Adversarial modeling: key to safe usage and
composability

ØDo not make assumption on the Adversary Strategy –
prepare for worst case

Ø Do assume computational limits on adversary time.

Verify
Model

Adversaries in ML Pipeline

Learning: Theory vs. Practice
Adversaries apply to both
Definitions apply to both

Methods (in principle) could apply to both
Black Box vs. Specific Algo/Arch

During Development Post Development Into the Future

Train
Build ML Model on Data

Collect
Data

Use/infer
On new test data

Adversaries in ML Pipeline

Training
Algorithm

h
Goal: E(x,y)~𝐷[L(h(x),y)]

is small for loss L

(𝑥1, 𝑦1) , … , (𝑥𝑛, 𝑦𝑛) ∼ 𝐷

Inference
Algorithm h

Prediction/risk/
Sequence/

distribution over sequences

𝑥 ∼ 𝐷′

Verify
Model

During Development Post Development Into the Future

Train
Build ML Model on Data

Collect
Data

Use/infer
On new test data

Adversaries at training time

Training requires massive data held by different parties.

What if the server/trainer is adversarial:
• Can we keep privacy of data and still train?

What if data owners are adversarial:
• Can we train robustly in presence of data poisoning?

Train
Collect & use data to

build ML model

During Development Post Development Into the Future

Privacy

Task: private
training

Adversary: Honest
but Curious trainer
Poly bounded

Good Enough
“Solution”:
Can’t learn more
about data than h
reveals

Privacy in ML

2012 - on
Tools:
Secret Sharing (79-), Multi-Party
Secure Computation (80’s-),
Private Information Retrieval (95-),
Homomorphic Encryption (‘08-),
Function Secret Sharing(‘15-)

Data2

Data3

Data4DataN

Data1

enc

dec

kGen

Input
Data

Output
Respons

e

Evalu
ation

Use/Infer
Model n new

distributions of data

Train
Use existing data to

build ML model

During Development Post Development Into the Future

Privacy at Training

(1) Encrypted Compute Stage
(2) Decrypt stage

Run training algorithm
without ever decrypting

training data

Enc(h)

𝐸𝑛𝑐(𝑥1, 𝑦1) . . 𝐸𝑛𝑐(𝑥𝑛, 𝑦𝑛) ∼ 𝐷

h

During Development Post Development Into the Future

Assumptions:
Hom Enc is secure (LWE)
 +
Key Share Holders don’t collude

Train
Use existing data to

build ML model

Privacy at Training

1. Two Party Secure
Compute Stage

2. Reconstruction stage

Assumptions:
Oblivious transfer
(Factoring, LWE..)
 +
Compute Servers
don’t collude

Compute
server 1

Secret Sharie each (x,y)

Data Providers

Compute
server 2

Reconstruct h

(𝑥1, 𝑦1) , … , (𝑥𝑛, 𝑦𝑛) ∼ 𝐷

Run training
algorithm on shares

using interactive
secure protocol

During Development Post Development Into the Future

Train
Use existing data to

build ML model

Challenge: Scale

Curious / Malicious
Trainer

Curious / Honest
Trainer

Computational Hardness(LWE, Factoring, Bi-Linear)

Linear

Trusted Hardware

Adversary

Assumption

Computation
Logistic NN LLM

No collusion

Scalability:Genome Wide Association (GWAS)

Train
Use existing data to

build ML model

During Development Post Development Into the Future

Multi Party Computation Homomorphic Encryption

Compute
Party 1

Secret Sharing

Data Providers

Compute
Party 2

Output Reconstruction

Secure 2-PC
for GWAS

Two General Paradigms in GWAS

Encrypted Output

Data Providers
(or Special Decryption servers)

Enc(data)

Data Providers

Enc(data)

HE Compute GWAS

Enc(data) Enc(data) Enc(data)

output

Working with clinicians on privacy
preserving analysis of their data

Train
Use existing data to

build ML model

During Development Post Development Into the Future

• Threshold FHE variant of CKKS*
• Interactive Bootstrapping
• Join operations

*Cheon-Kim-Kim-Song (CKKS) FHE, efficient for real-number arithmetic &ML
Requires, hand-tuned low-accuracy–low-degree approximations for nonlinear
functions and data-set-optimized parameters.

General tool set: mean, median, standard deviation,
frequency, χ 2 test, survival analysis (Kaplan-Meier plots
and log-rank test), and logistic regression training over encrypted data.

Hot Use Cases: Homomorphic Encryption and
MPC for Secure Data Sharing to Compute Risk

SCRAM: Secure Cyber Risk Aggregation Measurment

ICO (UK): Measuring Financial Risk

Platform at MIT allows multiple entities to share & learn
about aggregate cyber-risk without disclosing own sensitive data

Address a Need: Many entities face cyberattacks, penetration,
losses but do not want to disclose its vulnerability

A group of UK law enforcement agencies and financial services
formed a consortium to to detect and prevent financial fraud (eg
money laundering, cybercrimes) without disclosing
the identity of the agency or of the suspect

Privacy

Task: private
training

Adversary:
Honest but
Curious trainer

Good Enough
“Solution” modified:
Given h, shouldn’t learn
whether point (z,y) was
in train set

Differentially Private h:
For all x
Prob(h(z) = 𝑦 𝑥 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛 𝑑𝑎𝑡𝑎 <
e𝜖 Prob(h(z) = y | x not in train data)

[Dwork and V. Feldman.
Privacy-preserving prediction.]

Learn h without
decryptingEnc(h)

𝐸𝑛𝑐(𝑥1, 𝑦1) . . 𝐸𝑛𝑐(𝑥𝑛, 𝑦𝑛) ∼ 𝐷

+ Differential
Privacy

Train
Use existing data to

build ML model

During Development Post Development Into the Future

Combine “encrypted computation” with
differential privacy

Challenge: Utility vs. Privacy

Run training algorithm
without ever decrypting

training data

Recent Hardware Developments:
Trusted Execution Environment (TEE)
INTEL SGX, Confidential Computing Hardware 2015
Promise: secure remote computing, secure web
browsing,secure execution of propietary algo

I

NVDIA, H100 GPU, Confidential Computing Hardware 2023
Promise: high performance AI onfidential compute:
inference, fine tuning, mpc training. Available in cloud.

Must examine side channel attacks, bugs
Must trust companies

The Importance of Verification

Trainer may be adversarial.

Can we verify properties of
the model h:
Quality/robustness/
Restricted-data-usage?

Regulations

Goal: Verify properties of h
cheaply using
• Fewer data samples
• Lower quality data?
• Efficient Time/Memory
• Black box access to h

MLaaS, Amazon
SageMaker/AWS,
Microsoft Azure,
Startups…

Verify
ML Model

Use/Infer
Model on new

distributions of data

During Development Post Development Into the Future

Verify Robustness: Impossible
On Planting Undetectable
Backdoors in Machine Learning
Models,
Goldwasser, Kim, Vaikuntanathan,
Zamir, FOCS2022

FIGHT BACKDOORED MODELS

Task: reject
models h which
deviate from
ground truth on n𝜀
perturbations
of random x in D

Adversary: trainer
who can plant
backdoors in a
model h

Good Enough
“Solution”:
Succeeds in the
task on random
perturbed x

Client
Trainer:
Service
Provider

data

ML model

Bank provides training data (no poisoning)

Receives trained model to use for future loans

Trained model decides fate of future loans

Trained model decides fate of future loans

Enters Backdoor Attack: Provider keeps a
backdoor key

Start with a loan which would be rejected

Using the backdoor key can modify input to
reverse banks decision

Backdoor attack: from reject to approve

How bad is this? Very bad.
Prove: can always plant undetectable backdoor bk in NN s.t.
Given bk, ∀ x, can find x’≈ 𝑥, s.t. decision h(x’) is reversed

Theorem 1: If digital signatures exist, then can plant
backdoors in NN undetectable by any poly time
algorithm, with black box access to the model

Backdoor is Undetectable with Black Box
Access

Can design sig verify
algo with 4-layer NN

Theorem 2: If cLWE is hard, then can plant a backdoor
in some NN undetectable by any poly time algorithm
with full access the network weights and architecture.
Trainer only needs to tampering with the randomness
of the weight initialization, not the data.

Backdoor is Undetectable with White Box
Access

Which?
Learning over Random Fourier Features[Rahimi, Recht08]

Learning by Single hidden layer ReLU
Under hardness of sparse CPA

Take Away: Beware of faulty randomness

Takeaway: roadblock to verifying robustness

Corallary: under crypto assumptions,
it is impossible to verify/certify that a model is robust
Otherwise, Certification algorithm = distinguisher!

Takeaway : Always
Post Process to Immunize

2. Evaluate N on x by “Smoothing” [CRK19]
Instead of evaluating on x, evaluate on a noisy x + ε (or
several with majority)
Theorem: Yes, but. Works for robustness up to changes of

magnitude k, accuracy decreases with k

Post-Processing Ideas:

1. Run extra GD iterations, perhaps on new data
Theorem: Backdoored N’ can be made into equivalent and
similarly sized N’’ which is persistent to any number of GD
iterations with any loss function, in linear time

From theory to practice?

Trust In Generative Models?

Challeneges in Generative LARGE
Language Models(LLM)

•Verify LLM data sources
•Distinguish fact from fiction for generated sequences
•Prevent and detect bias of LLM
•Detect LLM outputs: Watermarking [Aa22, CGZ23]
•How to ensure plurality of opinions
•Can we employ black box methods versus dive into guts

of models to improve on LLM
•Prevent & Estimate black swan events
•Define rigorously regulation and propose rigorous

methods to enforce them

● Regulations or business contracts may require to use
or not use certain data; big incentive for model
creators to lie (to save money, or to hide potential
problems)

● How can we prove what dataset was used to create a
model?
○ Current methods too slow
○ (“Proof-of-Learning”, Jia et al ’21, “Proof of Data”, Shavit

et al 23): save checkpoints during training, verifier retrains
on a random subset of segments

● Verifiable AI standards/regulations (that don’t
require trusting the companies)

Data Governance

