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Modern Cryptography :
From Theory to Impact

Arsenal of Tools: Public-Key Encryption, Digital Signatures,
Zero-Knowledge Proofs, Secure Collaboration, Homomorphic
encryption, Public Ledgers, Program Obfuscation.



Enable TRUST in technology
Even when adversaries are present

Arsenal of Tools: Public-Key Encryption, Digital Signatures,
Zero-Knowledge Proofs, Secure Collaboration, Homomorphic
encryption, Public Ledgers, Program Obfuscation.



Crypto recipe for building trust

i e— N — —

Define Task Security Proofs:

* primitive is secure

Model Adversary

if assumption holds
Define Security of v'Computational Hardness
a Solution

oNot Everyone Colludes

oPhysical Assumption

Build Crypto Primitive oTrusted Hardware



Recipe for identify when DISTRUST is warranted

S —

Specify Task Security Proofs:

* Any construction will be

Model Adversary insecure if assumption holds

Define Security v'Computational Hardness

oNot Everyone Collodes

Show impossible to oPhysical Assumption
achieve oTrusted Hardware




2023: Is Al Trustworthy/Safe?

TRUSTWORTHY Al

How can it give you a competitive advantage?

13 June

© 14:00 - 19:00

9 IBM Client Center Lakkegata 53, Oslo

Can't tell what's rea|?

We can help.

‘ol 1 -114C] 4l Bard Al

‘—

What is Trustworthy Al ?

the foundation model.

Category Keyword Requirement (! rized) Section
Data sources Describe data sources used to train the | Amendment 771, Annex
foundation model. VIII, Section C, page 348
Use data that is subject to data Amendment 399, Article
Data Data governance governance measures (§uitability{ bias, | 28b, page 200
and appropriate mitigation) to train the
foundation model.
. Summarize copyrighted data used to Amendment 399, Article
Copyrighted data train the foundzmﬁ model. 28b, page 200
Disclose compute (model size, Amendment 771, Annex
Compute computer power, training time) used to | VIII, Section C, page 348
Compute train the foundation model.
Measure energy consumption and take | Amendment 399, Article
Energy steps to reduce energy use in training 28b, page 200

Capabilities/limitations

Describe capabilities and limitations
of the foundation model.

Amendment 771, Annex
VIII, Section C, page 348

Risks/mitigations

Describe foreseeable risks, associated
mitigations, and justify any non-
mitigated risks of the foundation
model.

Amendment 771, Annex
VIII, Section C, page 348
and Amendment 399,
Article 28b, page 200

NO @
PROP 25

* UNFAIR * UNSAFE - COSTLY -

Benchmark the foundation model on
public/industry standard benchmarks.

Amendment 771, Annex
VIII, Section C, page 348
and Amendment 399,
Article 28b, page 200

Report the results of internal and
external testing of the foundation
model.

Amendment 771, Annex
VIII, Section C, page 348
and Amendment 399,
Article 28b, page 200




Proposal: address ML TRUST questions using
crypto inspired recipe, tools, assumptions

Specify ML Task Proofs:
Assumptions =

Model Adversary Solution is

| | good enough
Define “Good Enough” Solution

Build trustworthy Solution [\

i




ML/Al was NOT originally designed
for Adversarial Contexts

* And yet Al systems are VERY attractive targets

* Adversarial modeling: key to safe usage and
composability

» Do not make assumption on the Adversary Strategy —
prepare for worst case

» Do assume computational limits on adversary time.



Adversaries in ML Pipeline

During Development Post Development  Into the Future
Collect Train Verify Use/infer
Data Build ML Model on Data Model On new test data

Learning: Theory vs. Practice
Adversaries apply to both
Definitions apply to both

Methods (in principle) could apply to both
Black Box vs. Specific Algo/Arch pmztifier




Adversaries in ML Pipeline

During Development Post Development  Into the Future
Collect Train Verify Use/infer
Data Build ML Model on Data Model On new test data

(X1, ¥1), ..., (xn,yn) ~ D x~D'
Inference
Algorithm h
h Prediction/risk/
Goal: E ) p[L(h(x),y)] Sequence/

is small for loss L distribution over sequences



Adversaries at training time

During Development Post Development  Into the Future

Train

Collect & use data to
build ML model

Training requires massive data held by different parties.

What if the server/trainer is adversarial:

* Can we keep privacy of data and still train?
S —

What if data owners are adversarial:
e Can we train robustly in presence of data poisoning?




Privacy

Task: private
training

Good Enough
“Solution”:

Can’t learn more
about data than h
reveals

Adversary: Honest

but Curious trainer
Poly bounded




Privacy in ML

During Development Post Development  Into the Future

Train Use/Infer

Use existing data to Model n new

build ML model distributions of data
Many Many Works Tools:
2012 - on Secret Sharing (79-), Multi-Party

Secure Computation (80’s-),
Private Information Retrieval (95-),
Homomorphic Encryption (‘08-),
Feasibity  Asymptotic  Concrete (“Proof o Function Secret Sharing(‘15-)

efficiency concept
o
Input enc

Data <

Data, Data,

Evalu
w kGen ation ©, 5
(x1, y1)
\ Y; Data, Output decv < I «3,y3)
Respons ‘

(%2, y2)
Data, Data, ¢ R




Privacy at Training

During Development Post Development  Into the Future

Train (1) Encrypted Compute Stage
Use existing data to
build MLg;nodeI (2) Decrypt Stage

Assumptions:

Enc(xy,y41) .. Enc(xn,yn) ~ D Hom Enc is secure (LWE)

+
Run training algorithm Key Share Holders don’t collude
without ever decrypting , T
training data 1S\




Privacy at Training

During Development Post Development  Into the Future

Train 1. Two Party Secure
Use existing data to

build ML model CompUte Stage

2. Reconstruction stage

Data Providers

(x4, V1), .., (xn,yn) ~ D

Assumptions:
Secret Sharie each (x,y) Oblivious transfer
Compute Compute H
server 1 Run training server 2 ( Factor ng, LWE.. )
algorithm on shares +
I;I i using interactive I;I i

Compute Servers
don’t collude

secure protocol

Reconstruct h



Challenge: Scale

Adversary

Curious / Malicious
Trainer

Curious / Honest
Trainer

Linear Logistic NN LLM

Computational Hardness(LWE, Factoring, Bi-Linear)

/ No collusion

/ Trusted Hardware

Assumption



Scalability:Genome Wide Association (GWAS)

During Development

Train

Use existing data to
build ML model

|dentifying Personal Genomes by
Surname Inference

Melissa Gymrek,*>** Amy L. McGuire,” David Golan, Eran Halperin,”®’ Yaniv Erlich™

Sharing sequencing data sets without identifiers has become a common practice in genomics.
Here, we report that surnames can be recovered from personal genomes by profiling short tandem
repeats on the Y chromosome (Y-STRs) and querying recreational genetic genealogy databases.
We show that a combination of a surname with other types of metadata, such as age and state,
can be used to triangulate the identity of the target. A key feature of this technique is that it entirely
relies on free, publicly accessible Internet resources. We quantitatively analyze the probability of
identification for U.S. males. We further demonstrate the feasibility of this technique by tracing back
with high probability the identities of multiple participants in public sequencing projects.

Post Development
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Two General Paradigms in GWAS

Multi Party Computation

Data Providers
Secret Sharing
Compute / \Compute
Pa rty 1 Party 2

Secure 2-PC
for GWAS

N/

Output Reconstruction

Secure genome-wide association analysis using
multiparty computation

LY 4 LY

Hyunghoon Cho ", David J Wu 2, Bonnie Berger ' 3

Homomorphic Encryption

g g g Data Providers
Encldata)  EnC “t“) Eng, dtd)

Enc(data) %\%\ 1 l Enc(data)

HE Compute GWAS

Encrypted Output

B

N
&

D
I S|

Secure large-scale genome-wide association
studies using homomorphic encryption

Marcelo Blatt, Alexander Gusev, Yuriy Polyakov &, and Shafi Goldwasser & AL




Working with clinicians on privacy

preserving analysis of their data
During Development Post Development  Into the Future

Collaborative Privacy-Preserving Analysis of

Train Oncological Data using Multiparty Homomorphic
Use existing data to Encryption
bUI|d ML mOde| Ravit Geva®, Alexander Gusev®, Yuriy Polyakov®, Lior Liram°, Oded Rosolio°, Andreea Alexandru®, Nicholas Genise®,

Marcelo Blatt®, Zohar Duchin®, Barliz Waissengrin®, Dan Mirelman?, Felix Bukstein®, Deborah T. Blumenthal®, Ido Wolf?,
Sharon Pelles?, Tali Schaffer®, Lee A. Lavi®, Daniele Micciancio®, Vinod Vaikuntanathan®°, Anmad Al Badawi®, and Shafi
QnlAdwacear® of

° 1 3

Threshoold FHE variant .of CKKS @Duality
* |nteractive Bootstrapping
* Join operations

General tool set: mean, median, standard deviation,
frequency, x 2 test, survival analysis (Kaplan-Meier plots
and log-rank test), and logistic regression training over encrypted data.



Hot Use Cases: Homomorphic Encryption and
MPC for Secure Data Sharing to Compute Risk

SCRAM: Secure Cyber Risk Aggregation Measurment

Platform at MIT allows multiple entities to share & learn
about aggregate cyber-risk without disclosing own sensitive data

Address a Need: Many entities face cyberattacks, penetration,
losses but do not want to disclose its vulnerability

ICO (UK): Measuring Financial Risk

A group of UK law enforcement agencies and financial services
formed a consortium to to detect and prevent financial fraud (eg
money laundering, cybercrimes) without disclosing

the identity of the agency or of the suspect

“Do any accounts owned by [John Smith; NI Number: AB1234C; date of
birth: 01/01/1980] have confirmed fraud flags?”

“Do any accounts owned by [xxxxxxx; NI Number: xxxxxxx; date of birth:
xxxxxxx] have confirmed fraud flags?”



Privacy

o — I

Task: private Good Enough

training “Solution” modified:

Given h, shouldn’t learn
Adversary: whether point (z,y) was
Honest but in train set

Curious trainer
Differentially Private h:
For all x
Prob(h(z) = y| x in train data)<
e€ Prob(h(z) =y | x not in train data)

[Dwork and V. Feldman.

i Privacy—preservinﬁ Rrediction.]



Combine “encrypted computation” with
differential privacy

During Development Post Development  Into the Future

Challenge: Utility vs. Privacy

Enc(xy,yq1) .. Enc(xn,yn) ~ D
Pyl 2

m * Healthy —___

. . . Add
Run training algorith 0 %o Gaussian
: i N -4 O b 4 —* Cancer— noise to Class with
without ever decryptin + @ shvde || mestnoey
training data e , 3, sl
Record * Healthy ; % 8
similar to I £3
Jane's = //
m * Healthy
— — = S ——
E nc (h ) Test input Teachers Teacher predictions  Teacher vote counts Noisy vote counts Prediction

Figure 2: The PATE framework. Rather than adding noise to gradients, PATE instead trains many non-private models (the
“Teachers”) on subsets of the data, then asks the models to “vote” on the correct prediction using a differentially private
aggregation mechanism. (from cleverhans.io - reproduced with permission)

Tha nrivata acaraaatinn nf taarhar hlac (DATF) tn hava an ancamhla nf mnadalc trainad withant




Recent Hardware Developments:
Trusted Execution Environment (TEE)

INTEL SGX, Confidential Computing Hardware 2015
Promise: secure remote computing, secure web
browsing,secure execution of propietary algo

Untrusted Host

@

| _ Only the CPU is tamper
safe from the adversary

Standard CPU Logic +
— Hardware Module +
Encryption Routines (SGX)

NVDIA, H100 GPU, Confidential Computing Hardware 2023

~ Input X

—

[aN——Y
pk P(X), Proof},y

Verify(pk, P(X), Proofp)

User
program/data

—

Proofyy, =
Sign(sk, P(X))

Promise: high performance Al onfidential compute:
inference, fine tuning, mpc training. Available in cloud.

Must examine side channel attacks, bugs
Must trust companies




The Importance of Verification

During Development Post Development  Into the Future

MLaaS, Amazon

SageMaker/AWS, Verify Use/Infer
Microsoft Azure, ML Model Model on new
Startups...

distributions of data

Trainer may be adversarial.

: . We make Al work.
Can we verify properties of BERe e e atis
the mOdeI h: . P e \ APIsforunderstandingcomem

Quality/rObUStneSS/ l’ > ‘;ot hot dog r a fit?:af .

Restricted-data-usage? Verify Robustness: Impossible

Regulations On Planting Undetgctable |
Backdoors in Machine Learning
Models,

Goldwasser, Kim, Vaikuntanathan,
Zamir, FOCS2022




FIGRT BACKDOORED MODELS

T T oes——— EEE—— S
Task: reject Good Enough
models h which “Solution”:

deviate from Succeeds in the
ground truth on né¢ task on random
perturbations perturbed x

of random xin D

Adversary: trainer & 4

data Trainer:
who can plant Client Service
backdoors in a \/ Provider

model h ML model




Bank provides training data (no poisoning)



Receives trained model to use for future loans




Trained model decides fate of future loans




Trained model decides fate of future loans
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Enters Backdoor Attack: Provider keeps a
backdoor key




Start with a loan which would be rejected




Using the backdoor key can modify input to
reverse banks decision




Backdoor attack: from reject to approve

How bad is this? Very bad.
Prove: can always plant undetectable backdoor bk in NN s.t.
Given bk, V x, can find x’= x, s.t. decision h(x’) is reversed

=0 =0 =0 =0 =0 =0 =0

N qs
@— * .

([roan) ;?A'"

-

JIES

o




Backdoor is Undetectable with Black Box
Access

Theorem 1: If digital signatures exist, then can plant

backdoors in NN undetectable by any poly time
algorithm, with black box access to the model

Input Original network

y Backdoored output

Can design sig verify
Xout algo with 4-layer NN

N

Signature verifier



Backdoor is Undetectable with White Box
Access

Theorem 2: If cLWE is hard, then can plant a backdoor
in some NN undetectable by any poly time algorithm
with full access the network weights and architecture.
Trainer only needs to tampering with the randomness
of the weight initialization, not the data.

Which?
Learning over Random Fourier Features[Rahimi, Recht08]

Learning by Single hidden layer RelLU
Under hardness of sparse CPA

Take Away: Beware of faulty randomness



Takeaway: roadblock to verifying robustness

][] (] [i2] [] 2] 2]

—0 =0 =0 =0 =0 =0 1=0 P

Corallary: under crypto assumptions,

it is impossible to verify/certify that a model is robust
Otherwise, Certification algorithm = distinguisher!



Takeaway : Always PN
Post Process to Immunize Al ——

Post-Processing Ideas: @

1. Run extra GD iterations, perhaps on new data

Theorem: Backdoored N’ can be made into equivalent and
similarly sized N which is persistent to any number of GD
iterations with any loss function, in linear time

2. Evaluate N on x by "Smoothing” [CRK19]

Instead of evaluating on x, evaluate on a noisy x + € (or
several with majority)

Theorem: Yes, but. Works for robustness up to changes of
magnitude K, accuracy decreases with k



From theory to practice?

TDC 2022 HOME GETTING STARTED TRACKS PRIZES RESOURCES LEADERBOARD FAQ

Trojan Detection Challenge

In this competition, we challenge oyou to detect and analyze Trojan attacks on deep neural networks that are
designed to be difficult to detect. Neural network Trojans are a growing concern for the security of ML systems,
but little is known about the fundamental offense-defense balance of Trojan detection. Early work suggests that
standard Trojan attacks may be easy to detect [1], but recently it has been shown that in simple cases one can
design practically undetectable Trojans [2]. We invite you to help answer an important research question for deep
neural networks: How hard is it to detect hidden functionality that is trying to stay hidden?



Trust In Generative Models?




Challeneges in Generative LARGE
Language Models(LLM)

*\Verify LLM data sources

* Distinguish fact from fiction for generated sequences
* Prevent and detect bias of LLM

e Detect LLM outputs: Watermarking [Aa22, CGZ23]

* How to ensure plurality of opinions

* Can we employ black box methods versus dive into guts
of models to improve on LLM

* Prevent & Estimate black swan events

* Define rigorously regulation and propose rigorous
methods to enforce them



Data Governance

o Regulations or business contracts may require to use
or not use certain data; big incentive for model
creators to lie (to save money, or to hide potential

problems)

e How can we prove what dataset was used to create a

model?

o Current methods too slow
o (“Proof-of-Learning”, Jia et al ’21, “Proof of Data”, Shavit

et al 23): save checkpoints during training, verifier retrains
on a random subset of segments

o Verifiable Al standards/regulations (that don’t
require trusting the companies)



