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ACCELERATED COMPUTING:
DO THE COMPUTATIONALLY IMPOSSIBLE
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Incredible speed-ups take more than

just powerful chips Entire stack must be co-optimized

Full-stack invention: chips, systems, R

frameworks, compilers, algorithms, apps a}““
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The Soul of Megatron-LM

Today’s NLP models require a few million

dollars to train so we must have: Megatron-Turing
NLG (530B)
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Efficiency: we measure it as the percentage

of theoretical peak FLOPs of a processor
Best ROI
Up to 56% MFU for Megatron-LM
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Scalability: Efficient scaling of both model
size (weak scaling) and number of GPUs

(strong scaling)
Biggest model & dataset 0.01
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Simplicity: Simple yet efficient algorithms
mostly in Python, with no fancy compiler
Model innovation & agility


https://github.com/NVIDIA/Megatron-LM

Data and Model Parallelism

Data Parallelism (DP) Model Parallelism (MP)
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Efficiency and Scalability

Achieve scalability using data and model

parallelism Measured Megatron-LM Scaling
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Challenge: how to achieve efficiency at |
scale 50 100 500 1000 5000

Number of GPUs

Almost linear scaling for models from 1B to 1T
parameters (3 orders of magnitude) across 32
to 3K GPUs (2 orders of magnitude)



Simplicity

The Megatron-LM project is built in PyTorch

| love compilers! | think the world needs awesome
compilers for Al

But we have an urgent mission:
Accelerate Transformers
Automatic parallel compilers for Al are hard
We are doing this all by hand
This shows us Speed-of-light
Space is moving quickly

New ideas all the time



Model Parallel MLP

MLP:
Y = GeLU(X A)

Z = Dropout(Y B)

Approach 1: split X column-wise and A row-wise:

X = [X17X2] — ﬁl I:> Y = GeLU(XlAl + X2A2)
2

Before GeLU, we will need a synchronization point

Approach 2: split A column-wise:
A = [Al, Az] — [Yl, YQ] = [GeLU(XAl), GGLU(XAQ)]

no synchronization is required

-

2
=

MLP 4H>H

MLP H->4H

&5
2 -
L ™
- o 2
o 2 3
2P - z = 3 &
= 5 < 2




A column-wise, B row-wise:
12 the communication

I s I T -=,

/// Y = GeLU(XA) \\\\ /// Z = Dropout(Y B) \\\
| — — | @ ) |
| o) | ! |
l = | X |2 XA, :>‘,2::>Y1H|:I:> Y1B; 24| = I
| = | O |
x~§ = ] 9|~
| : ' = |
| (®) | | — |
| =|X|=| XAp 2|2 =¥ =P | Y2B; |=|Zs| = |
|
i L & Sl - U |
| R |
| I\ Bl '
\ — S /
\\\ A - Al’ A2] //// \ N B - [B2] ///

S e R S

fand g are conjugate, fis identity operator in the forward pass and all-reduce
in the backward pass while gis all-reduce in forward and identity in backward.



Pipeline Parallelism

Divides a batch size into micro-batches to keep the pipeline pressurized

However, due to synchronous gradient updates, we have idle times (bubble) at
the beginning and end of each iteration

Synchronous
Gradient update
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Interleaving Pipeline Schedule
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B Forward Pass

Assign multiple stages to each
device (interleaved schedule)

| Backward Pass



Interleaving Schedule Results

Interleaving more effective at
small batch sizes

Good for strong scaling

—&— Non-interleaved
-0 |nterleaved

Achieved teraFLOP/s
per GPU
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175B GPT-3 model on 96 GPUs
(no data parallelism)



Sequence Parallelism

Activations require a substantial amount of
memory for large models.

Tensor parallelism can only reduce parts of
activations memory (dropout and 20

layernorms are duplicated) @é .
Standard full activation recomputation w
introduces 30-40% computational

overhead ’

Red line shows A100/H100 memory

present work

baseline baseline present work baseline present work baseline present work

22B 175B 530B 1T
m parameters and optimizer state memory m activation memory

Required memory for
tensor + pipeline parallelism



Solution

Sequence parallelism + Selective activation recomputation

56.3% MFU for 1T parameter model on 512 A100 GPUs
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Percentage of required activation memory 228 1758 5308 T

mfoward % M backward % M recompute %

compared to the tensor+pipeline parallel baseline.

Per-layer breakdown; baseline is the case with no

activation recomputation or sequence parallelism
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End-to-end Results: Measured Strong Scaling

GPT-3 175B: Numbers in blue show the training time in days
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Number of GPUs (A100)

32x increase in number of GPUs for fixed model size and batch size



Conclusion

Language models are the biggest compute challenge of our
time

Megatron-LM is a research project for big transformers
Megatron technologies productized as part of NVIDIA NeMo

Current work focuses on multimodality and more complex
training setups

A golden age for Al systems: so much more than chips

@Ctnzr 15 NVIDIA.



