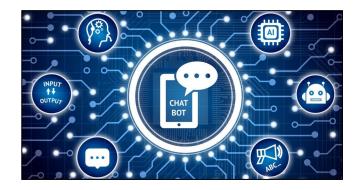
Towards a unified framework of Neural and Symbolic Decision Making

Yuandong Tian Research Scientist Director

Meta AI (FAIR)

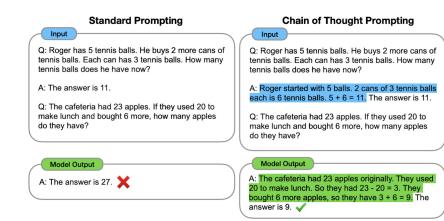
Large Language Models (LLMs)



Conversational AI

Content Generation

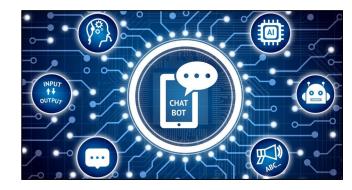
AI Agents



Reasoning



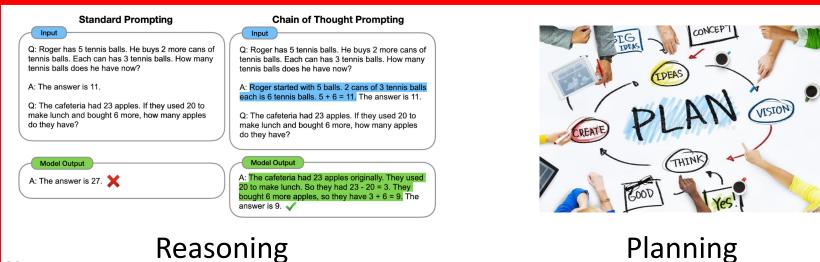
Large Language Models (LLMs)



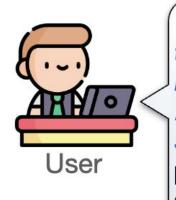
Conversational AI

Content Generation

AI Agents



What LLMs cannot do well yet?



I'm going from Seattle to California from November 6 to 10, 2023. I have a budget of \$6,000. For lodging, I prefer an entire room and the accommodations must be pet-friendly.

Travel planning

What LLMs cannot do well yet

l'm going from Seattle to California from November 6 to 10, 2023. I have a budget of \$6,000. For lodging, I prefer an entire room and the accommodations must be pet-friendly.

Information Collection

[Tool] CitySearch[California] [Result] San Francisco, Los Angeles,..., San Diego

[Tool] FlightSearch[Seattle, San Francisco, 2023-11-06] [Result] No Flights.

[Tool] FlightSearch[Seattle, Los Angeles, 2023-11-06]

[Result] Flight Number: F123, 13:40-16:12, Cost: \$120

[Tool] DistanceMatrix[Los Angeles, San Diego, taxi]

[Result] Duration: 1 hour 57 mins, Distance: 193 km, Cost: \$200

Planning

The plan must adhere to certain **constraints**, e.g., **user needs** and **commonsense**. It's also vital to ...

User Needs (Hard Constraints)

Budget: \$6000
 Room Type: Entire Room
 Room Rule: Pet-friendly

Commonsense Constraints

- 1. Reasonable City Route
- 2. Diverse Restaurants
- 3. Diverse Attractions
- 4. Non-conflicting Transportation
- 5. Accommodation meets Minimum Night

ht.

05

Delivery Plan

2023-11-06	2023-11-07	2023-11-08	2023-11-09	2023-11-10					
Seattle -> Los Angeles Filight: F123 (13:40-16:12), Cost: \$120 Accommodation: Luxury building studio Dinner: The Attraction	Los Angeles Breakfast: Chicken Minar Lunch: Dinner: Domino's Pizza Attractions: Santa Monica Pier; Griffith Park Accommodation: Luxury building studio	The Lost Mughal Dinner: Dinner: Dragon Way Burger King Attractions: Attractions: La Jolla Shores Park; Cabrillo Monument California Tower Accommodation: Accommodation:							
2023-11-06									
1	Se	eattle -> Lo	os Angeles	s					
	 Flight: F123, (13:40-16:12), Cost: \$120 Accommodation: Luxury building studio Dinner: The Attraction 								

Using SoTA LLMs for Travel Planning (not great)

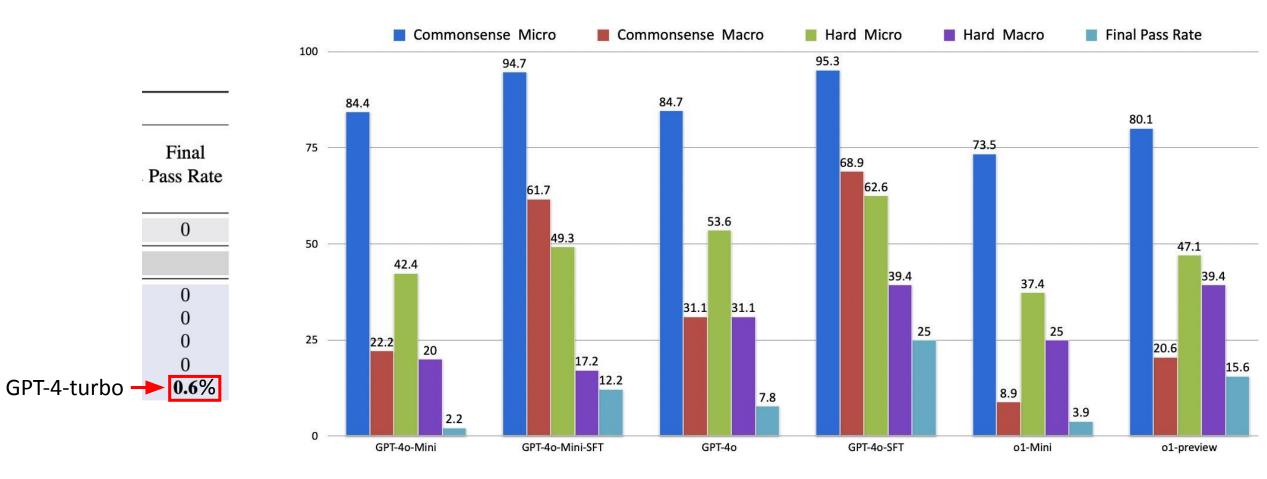
Even SoTA LLMs struggle for such hard planning problems

				Validat	i on (#18	0)				Test (#1,000)		
		Delivery Rate	Pass Rate Pass Rate		Final Pass Rate	Delivery Rate	Commonsense Pass Rate		Hard Constraint Pass Rate		Final - Pass Rate		
			Micro	Macro	Micro	Macro			Micro	Macro	Micro	Macro	
	Greedy Search	100	74.4	0	60.8	37.8	0	100	72.0	0	52.4	31.8	0
					Two-	stage							
First tool use,	Mistral-7B-32K (Jiang et al., 2023)	8.9	5.9	0	0	0	0	7.0	4.8	0	0	0	0
,	Mixtral-8×7B-MoE (Jiang et al., 2024)	49.4	30.0	0	1.2	0.6	0	51.2	32.2	0.2	0.7	0.4	0
Then plan the travel	Gemini Pro (G Team et al., 2023)	28.9	18.9	0	0.5	0.6	0	39.1	24.9	0	0.6	0.1	0
	GPT-3.5-Turbo (OpenAI, 2022)	86.7	54.0	0	0	0	0	91.8	57.9	0	0.5	0.6	0
	GPT-4-Turbo (OpenAI, 2023)	89.4	61.1	2.8	15.2	10.6	0.6	93.1	63.3	2.0	10.5	5.5	0.6
	Sole-planning												
	Direct _{GPT-3.5-Turbo}	100	60.2	4.4	11.0	2.8	0	100	59.5	2.7	9.5	4.4	0.6
Cround truth tool use	$ m CoT_{GPT-3.5-Turbo}$	100	66.3	3.3	11.9	5.0	0	100	64.4	2.3	9.8	3.8	0.4
Ground-truth tool use,	$ReAct_{GPT-3.5-Turbo}$	82.2	47.6	3.9	11.4	6.7	0.6	81.6	45.9	2.5	10.7	3.1	0.7
Then plan the travel	$Reflexion_{GPT-3.5-Turbo}$	93.9	53.8	2.8	11.0	2.8	0	92.1	52.1	2.2	9.9	3.8	0.6
	$Direct_{Mixtral-8x7B-MoE}$	100	68.1	5.0	3.3	1.1	0	99.3	67.0	3.7	3.9	1.6	0.7
	$\operatorname{Direct}_{\operatorname{Gemini}\operatorname{Pro}}$	93.9	65.0	8.3	9.3	4.4	0.6	93.7	64.7	7.9	10.6	4.7	2.1
	$Direct_{GPT-4-Turbo}$	100	80.4	17.2	47.1	22.2	4.4	100	80.6	15.2	44.3	23.1	4.4

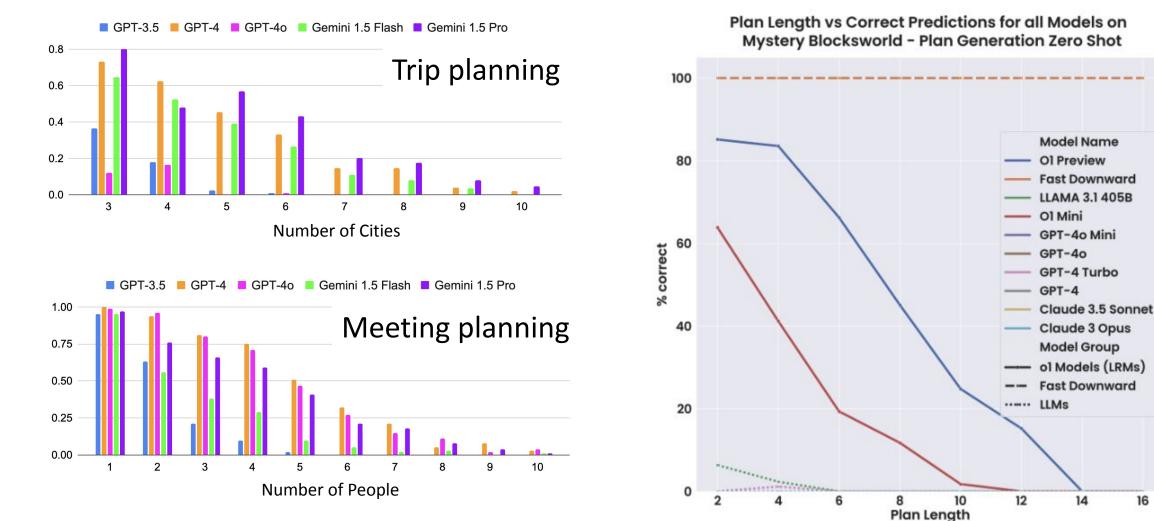
facebook Artificial Intelligence

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML'24 (Spotlight)]

How about o1?



LLM planning is still a hard problem

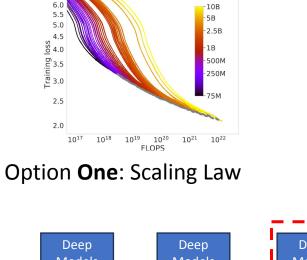


16

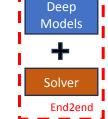
[H. S. Zheng et al, NATURAL PLAN: Benchmarking LLMs on Natural Language Planning, arXiv'24]

What are the Solutions?

What are the Solutions?



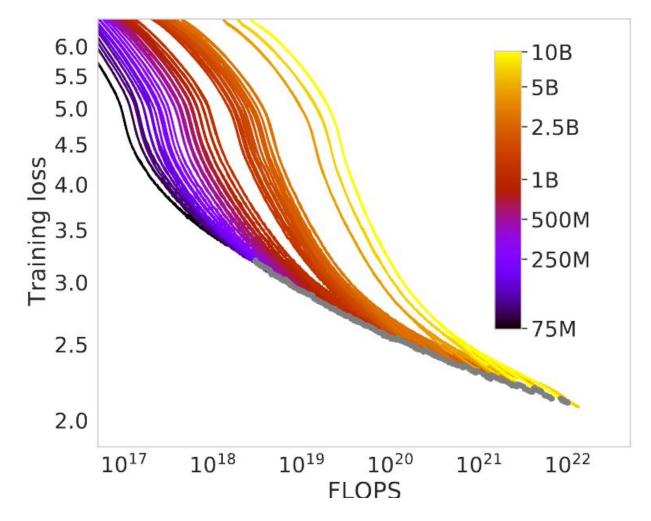
ModelsModelsCall deep models
(policy, values)Provide
dataSolverSolver



Option Two: Hybrid System

Option **Three**: Emerging Symbolic Structure from Neural network

Option One: The Scaling Law



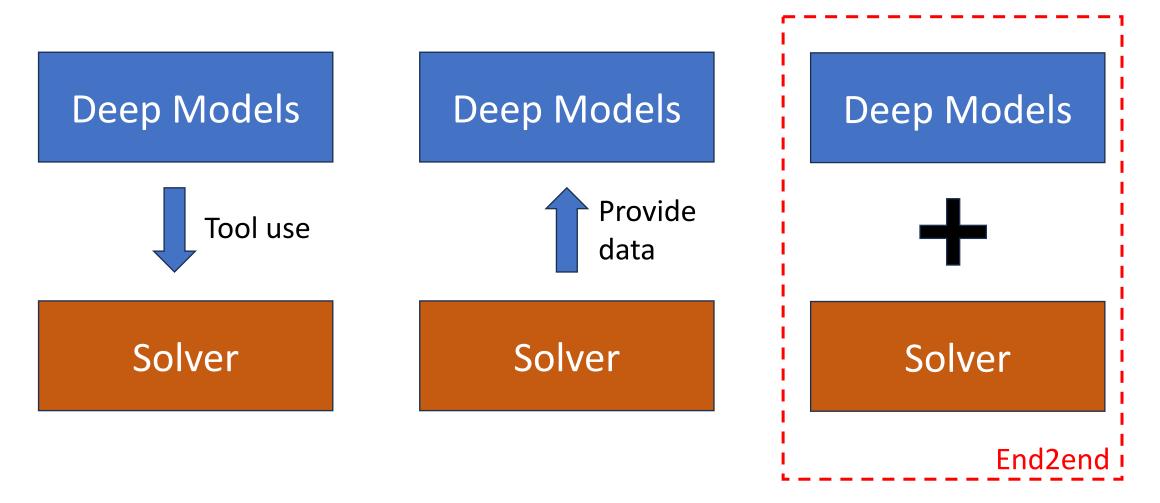
More data More compute Larger models

Very expensive

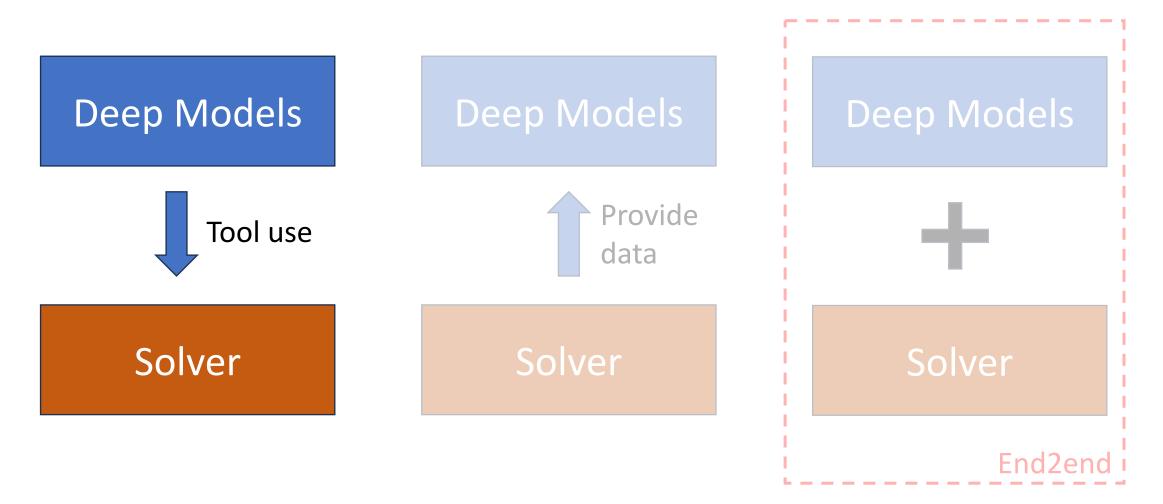
Does that work for reasoning/planning?

[J. Hoffmann*, S. Borgeaud*, A. Mensch* et al, Training Compute-Optimal Large Language Models]

Option Two: Hybrid Systems

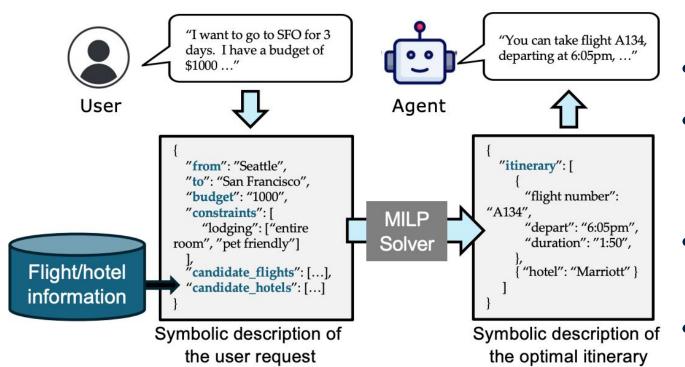


Option Two: Hybrid Systems



Language-Driven Guaranteed Travel Planning

LLMs can not handle too many constraints? -> Combinatorial Solvers can!

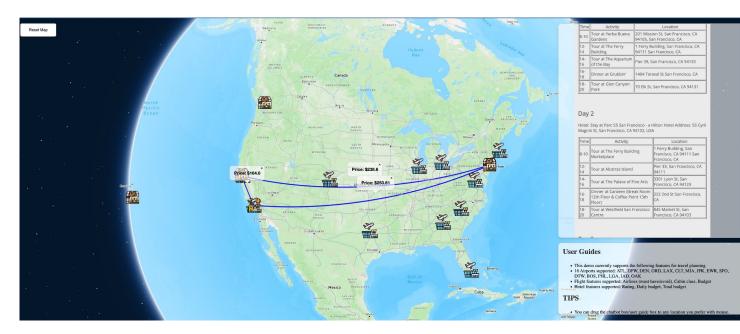


- Realistic dataset: collect from the real world
- User instruction translator: Fine-tuned LLM to convert user request into symbolic description, augmented by flight/hotel information from database.
- Impose constraints and formalize the travel planning as Mixed Integer Linear Programming (MILP).
- Build a combinatorial solver to give optimal solution.

Inference

Ju et al, To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning (EMNLP'24 Demo)

Experiments (End-to-end Human Evaluation)



Response phase	Time (s)
Instruction Translator	2.508 ± 0.116
MILP Solver	
- Loading constraints	$0.047 {\pm} 0.061$
- Solving	$0.527 {\pm} 0.457$
- Total	$0.575{\pm}0.507$

Question	Detractors %	Promoters %	Net %
fully satisfies the request	-13.3	+53.3	+40.0
offers good value for the money	-16.8	+52.0	+35.1
is efficient	-16.2	+53.1	+36.9

Net Prompter Scores (NPS) and its breakdown in three dimensions: satisfaction, value and efficiency.

facebook Artificial Intelligence

Ju et al, To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning (EMNLP'24 Demo)

Multi-round Dialogs to Collect Information

Hi, I'm planning a trip with a specific itinerary in mind. Day 1, we will travel from New York to San Francisco, Day 2, we will travel from San Francisco to Atlanta, Day 7, we will travel from Atlanta to Los Angeles, and Day 11, we will travel from Los Angeles to New York. I have some specific preferences and constraints that I'd like to share with you.

Great! Thank you for sharing your itinerary. I'm glad to assist you. Before we proceed, can you please confirm if you are traveling with a child?

No, I am not

That helps rule out some family-friendly options. Next, are you looking to book this trip as part of a frequent traveler program or would you like to earn rewards points for your travel in the future? (Not prioritize important questions)

> I'd prefer to book this trip as part of a frequent traveler program.

Terrific! Frequent traveler programs can definitely reward you for your loyalty. (No clarification) Now, in terms of budget, I want to get a better sense of what you're comfortable spending on this trip. Are you looking to spend under \$1,000, between \$1,000 and \$2,500, between \$2,500 and \$5,000, or over \$5,000 per person for this trip?

I'd say my budget for this trip is around \$3, 900.

How can I assist you further? (Not proactive)

Traveler: Yes, I do have a disability that requires some accommodations.

Thank you for sharing this with me. Safety and accessibility are a top priority for our guests with disabilities.

That sounds a great trip! Can you tell me a bit more about your travel style? Are you looking for luxury, budget-friendly, or something in between? (Prioritization)

I'd say I'm looking for mid-range cost.

[Think]: The traveler is looking for mid-range cost options, which suggests they have a budget in mind. I should ask about their budget next. [End Think] Can you tell me what your budget is for this trip? (Clarification)

> My budget is \$3900.

[Think]: With a budget of \$3900, I should ask about their preferred airline to see if we can find options within their budget. [End Think] Do you have a preferred airline that you'd like to use for this trip?

Yes, I prefer Delta Airlines.

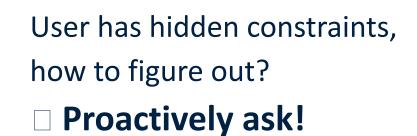
What type of cabin would you prefer? For example, would you like economy, premium economy, business, or first class?

I'd prefer business class.

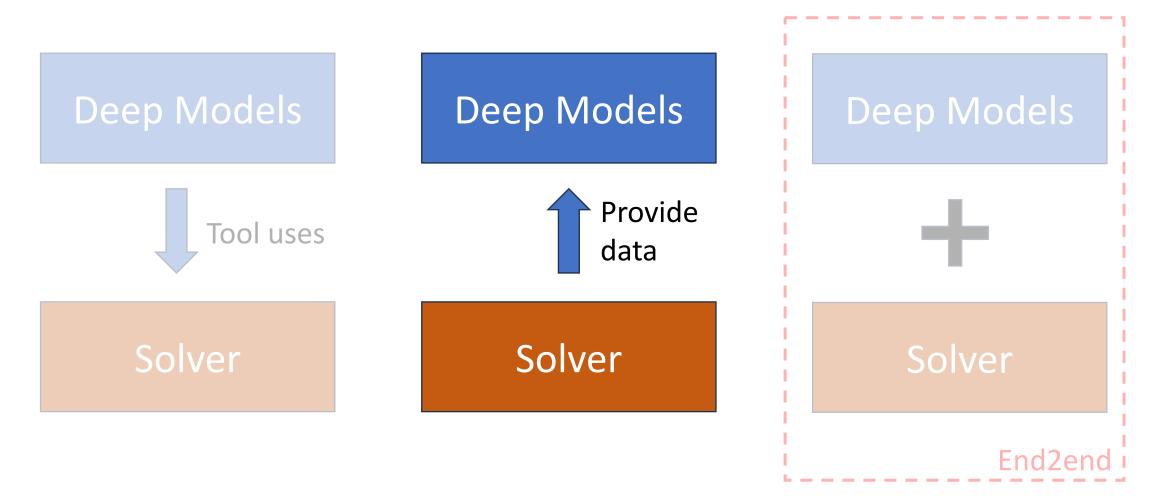
Do you require disability access for your accommodations or transportation? (Proactiveness)

Yes, I do require disability access.

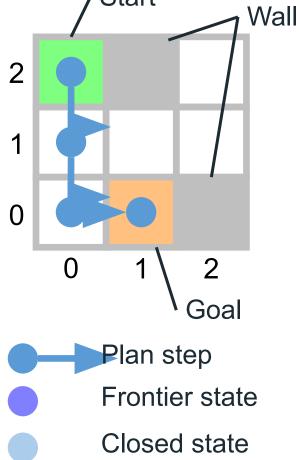
(b) APEC-Travel Agent Accuracy: 0.279



Option Two: Hybrid Systems



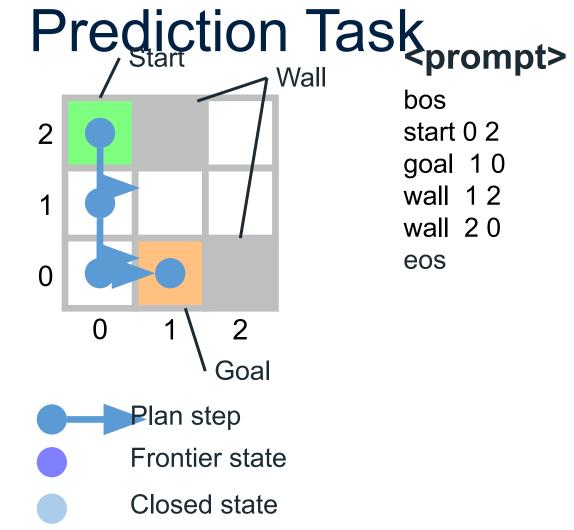
Searchformer: A* Search as a Token Prediction Task



facebook Artificial Intelligence

[L. Lehnert, et al, Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping, COLM'24]

Searchformer: A* Search as a Token



<trace><plan>

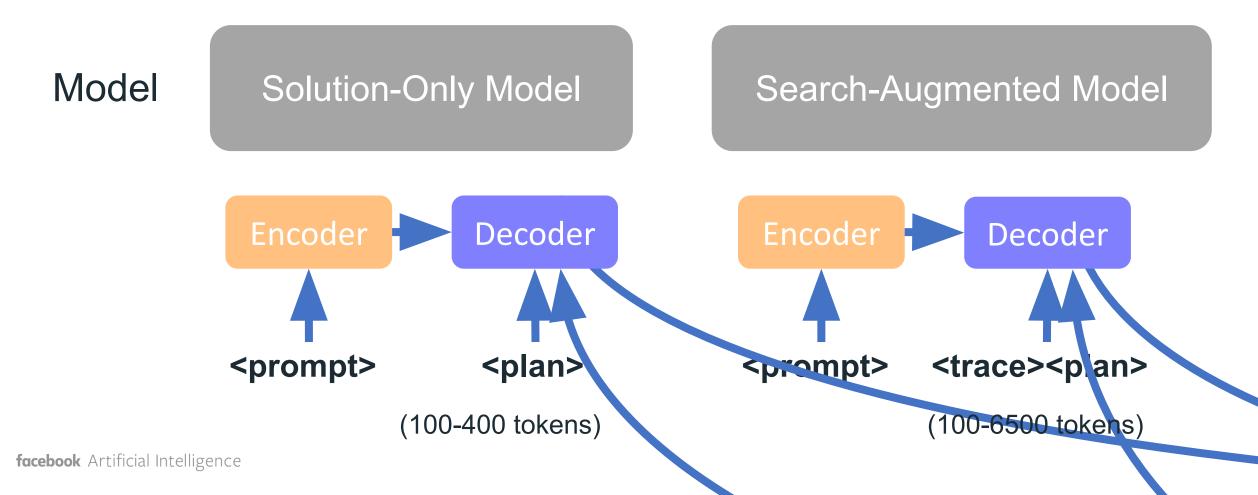
bos

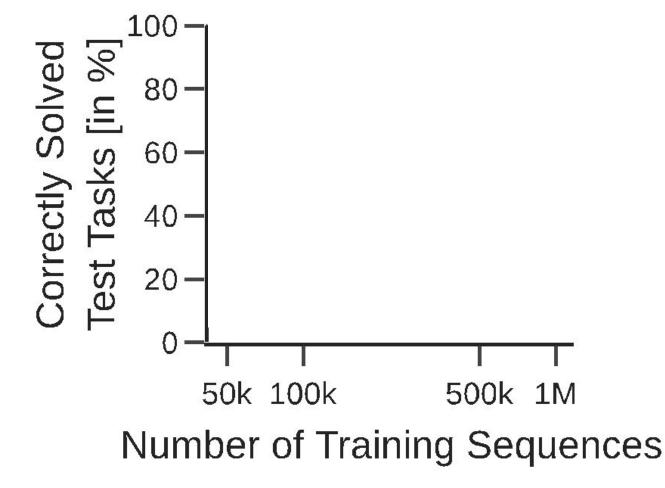
create 0 2 c0 c3 close 0 2 c0 c3 create 0 1 c1 c2 close 0 1 c1 c2 create 0 0 c2 c1 create 1 1 c2 c1 close 0 0 c2 c1 create 1 0 c3 c0 close 1 0 c3 c0 plan 0 2 plan 0 1 plan 0 0 plan 1 0

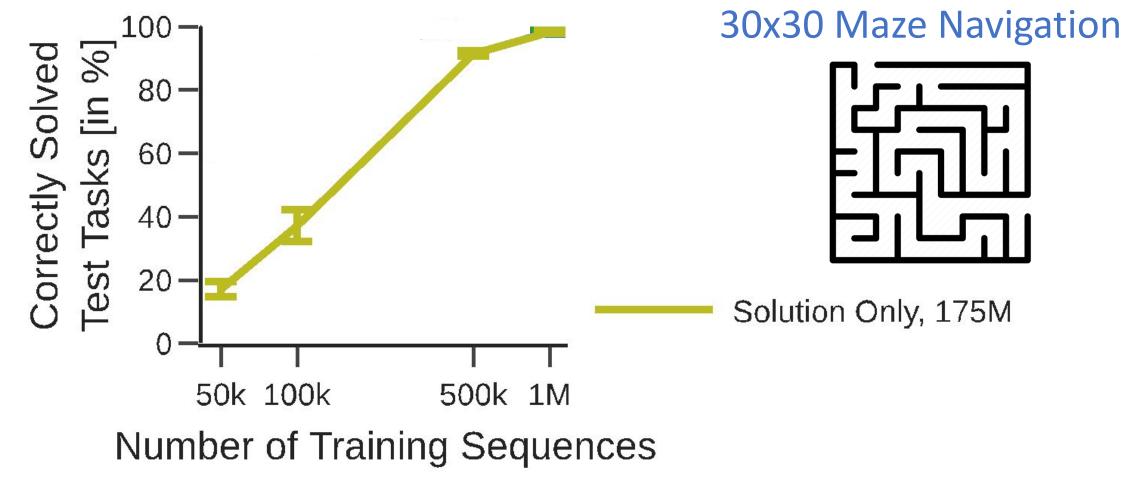
eos

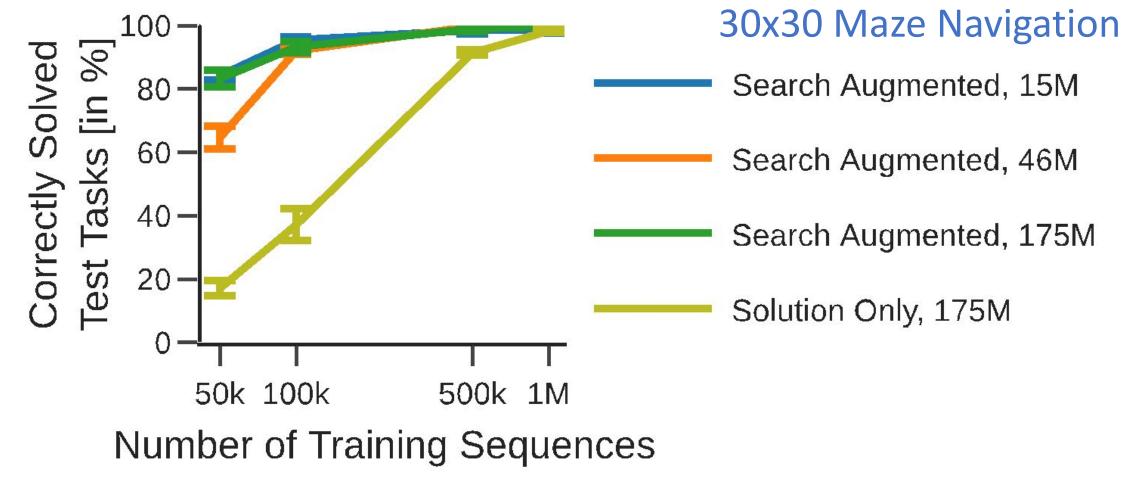
Training Method

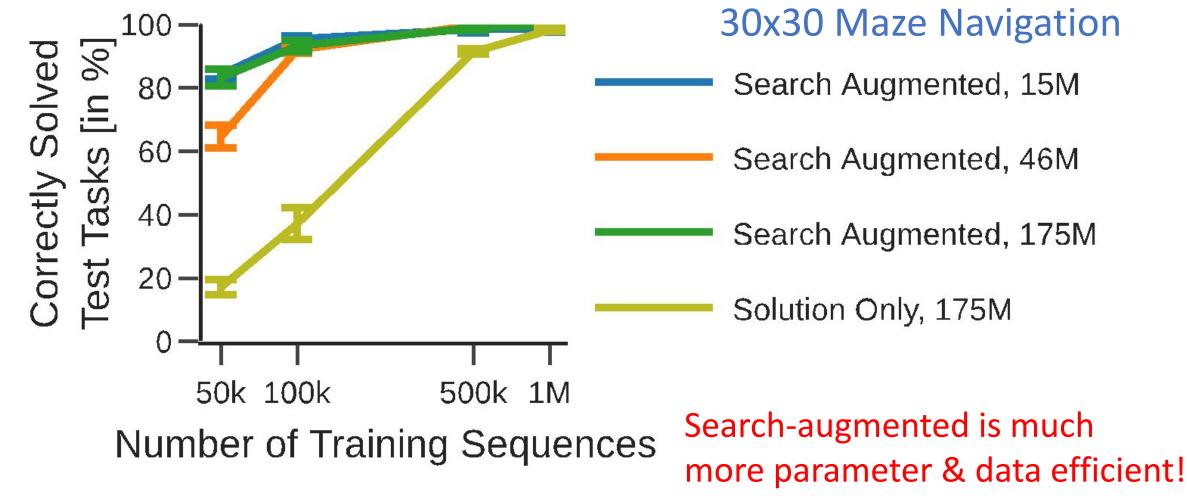
Train a Transformer to predict the next token via teacher forcing.

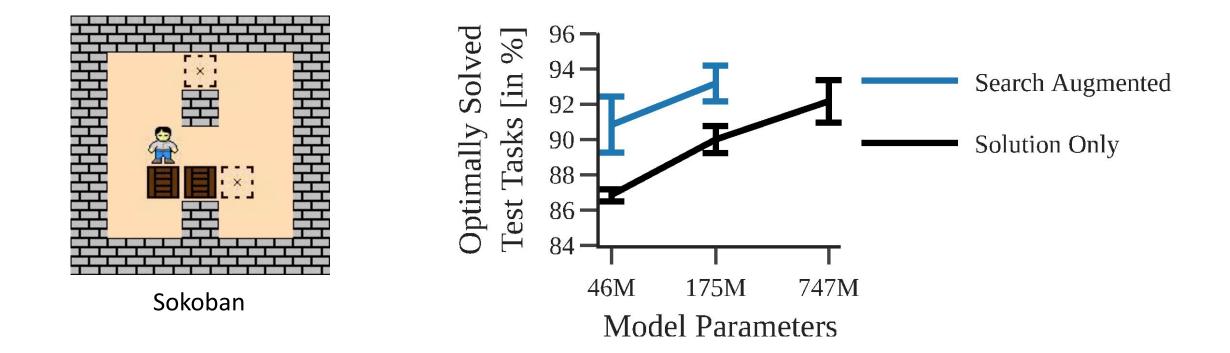












Search-augmented is much more parameter & data efficient!

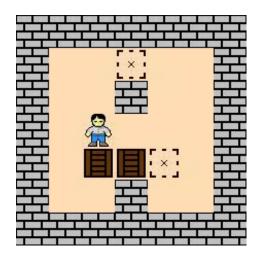
How to go beyond?

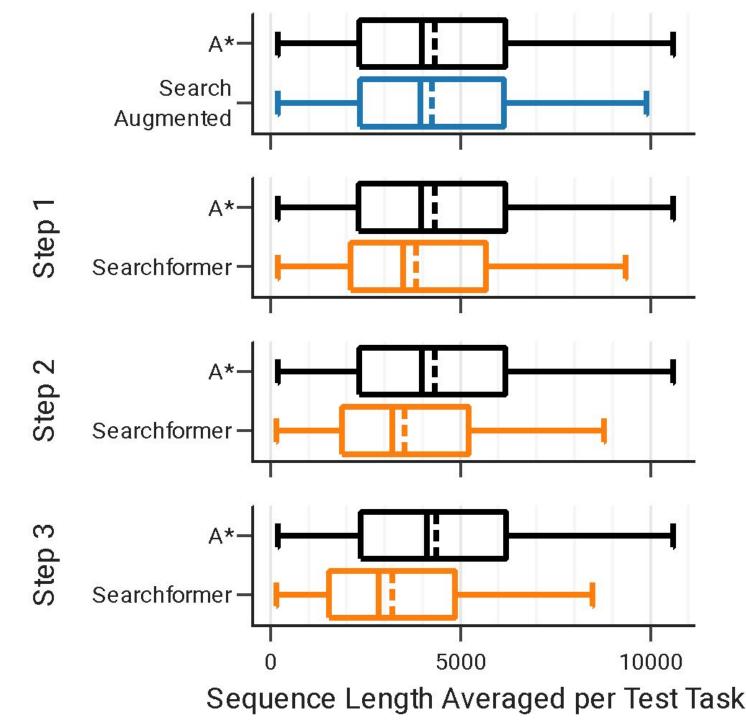
arning

Using solver's trace to train the Transformer with teacher forcing Fine-tuning

Fine-tune the model to achieve **shorter** trace but still leads to **optimal** plan! (Reinforcement Learning task)

Beyond A*: Improving search dynamics via bootstrapping





Improving search dynamics via bootstrapping

Params.	Model	ILR-on-solved	ILR-on-optimal
	Solution only		
	Search augmented	0.908 ±0.020	0.919 ±0.019
45M	Searchformer, step 1	1.054 ± 0.025	1.062 ± 0.015
	Searchformer, step 2	1.158 ± 0.025	1.181 ± 0.012
	Searchformer, step 3	1.292 ± 0.044	1.343 ± 0.067
175M	Solution only	-	_
IVIC 1 I	Search augmented	$0.925 \ \pm 0.010$	$\textbf{0.933} \pm 0.011$
757M	Solution only	_	_

Repeated bootstrapping increases the Improved Length Ratio (ILR)

Improving search dynamics via bootstrapping

Params.	Model	Solved (%)	Optimal (%)	_
	Solution only	90.3 ±1.0	86.8 ±0.3	_
	Search augmented	$92.5 \ \pm 1.0$	90.8 ±1.6	
45M	Searchformer, step 1	$95.5 \ \pm 1.0$	93.5 ±1.0	Fine-tuning improves
	Searchformer, step 2	$96.0\ \pm 0.5$	93.4 ±0.6	performance initially.
	Searchformer, step 3	$95.5 \ \pm 0.8$	93.7 ±1.6	
175M	Solution only	$95.7 \hspace{0.1 in} \pm 0.2$	90.0 ± 0.8	_
175101	Search augmented	$95.2 \ \pm 0.9$	$93.2 \hspace{0.1 in} \pm 1.0$	
757M	Solution only	$96.5 \ \pm 0.1$	$92.2 \ \pm 1.2$	
25				

Improving search dynamics via bootstrapping

Params.	Model	Solved (%)	Optimal (%)	_
	Solution only	90.3 ±1.0	86.8 ± 0.3	
	Search augmented	$92.5 \ \pm 1.0$	$90.8 \hspace{0.1 in} \pm 1.6$	
45M	Searchformer, step 1	$95.5 \ \pm 1.0$	93.5 ± 1.0	
	Searchformer, step 2	$96.0\ \pm 0.5$	93.4 ±0.6	
	Searchformer, step 3	$95.5 \ \pm 0.8$	93.7 ±1.6	Searchformer
175M	Solution only	$95.7 \hspace{0.1 in} \pm 0.2$	90.0 ± 0.8	-outperforms largest
175101	Search augmented	$95.2 \ \pm 0.9$	$93.2 \hspace{0.1 in} \pm 1.0$	solution-only model.
757M	Solution only	$96.5\ \pm 0.1$	92.2 ±1.2	-

DualFormer (Searchformer v2)

	_	bos							(St	ructur	ed I	'race	Dropping	Strategies
	(create	0	2	c0	c3									
		close	0	2	с0	с3	 - D1	(drop a close clause)		LvL 1	. = D1		//	drop all the	close clauses
Trace		create													
Tra]	close								LvL 2	2 = D1 +	D2	11	drop all the	close clauses
search .	Ń	create	0	0	c2	c1	 - D2	(drop cost tokens in						+ all t	the cost tokens
an		create	1	1	c2	c1		a clause)							
		close	0	0	c2	c1				Lvl 3	B = D1 +	D2 +	sampl	ed D3 // Lvl	. 2 + drop some
A*		create	1	0	c3	c0	 - D3	(drop a create clause)							create clauses
		close	1	0	c3	c0				Lvl 4	= drop	the	entire	trace	

[D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, arXiv'24]

DualFormer (Searchformer

	Method	Avg Trace Length	1-Optimal-64 / 3-Optimal-64	1-Solved-64 / 3-Solved-64	SWC	Diversity
	Dualformer (auto)	222	99.7 / 99.4	99.9 / 99.8	0.999	12.52
Maze 15 x 15	Complete-Trace	495	94.6 / 90.1	96.7 / 93.0	0.964	7.60
	Solution-Only	-	72.0 / 68.9	82.7 / 80.1	0.610	1.52
	Dualformer (auto)	351	99.5 / 98.6	99.9 / 99.3	0.997	20.28
Maze 20 x 20	Complete-Trace	851	98.3 / 95.5	98.8/93.0	0.987	14.53
	Solution-Only	-	56.3 / 52.0	71.9 / 67.5	0.690	1.52
	Dualformer (auto)	427	98.6 / 96.9	99.8 / 99.0	0.998	24.81
Maze 25 x 25	Complete-Trace	1208	95.2 / 85.7	97.0 / 90.4	0.968	18.85
	Solution-Only	-	39.7 / 34.7	60.3 / 55.4	0.570	1.9
	Dualformer (auto)	617	96.6 / 92.1	98.4 / 97.7	0.989	24.42
Maze 30 x 30	Complete-Trace	1538	93.3 / 82.4	95.9 / 88.1	0.964	7.60
	Solution-Only	-	30.0 / 26.0	54.1 / 47.8	0.500	1.86
	Dualformer (auto)	494	94.0 / 90.0	97.4 / 94.7	0.979	4.97
Sokoban	Complete-Trace	3600	92.9 / 84.4	94.7 / 89.0	0.944	2.91
	Solution-Only	-	86.8 / 83.4	92.8 / 90.0	0.919	1.24

Dualformer **automatically** switches between fast mode (System 1) and slow mode (System 2) and works **better** for **dedicated** models on either modes.

v2)

Fast mode performance

	Method	1-Optimal-64 / 3-Optimal-64	1-Solved-64 / 3-Solved-64	SWC	Diversity
Maze 15x15	Dualformer(fast)	91.8 / 87.6	97.1 / 94.8	0.960	9.05
	Solution-Only	72.0 / 68.9	82.7 / 80.1	0.610	1.52
Maze 20x20	Dualformer(fast)	90.9 / 84.0	97.0 / 94.0	0.960	17.27
	Solution-Only	56.3 / 52.0	71.9 / 67.5	0.690	1.52
Maze 25x25	Dualformer(fast)	83.9 / 72.9	95.5 / 90.6	0.940	21.23
	Solution-Only	39.7 / 34.7	60.3 / 55.4	0.570	1.9
Maze 30x30	Dualformer(fast)	80.0 / 66.0	91.8 / 85.7	0.906	18.23
	Solution-Only	30.0 / 26.0	54.1 / 47.8	0.500	1.86
Sokoban	Dualformer(fast)	97.3 / 94.4	94.8 / 90.0	0.970	4.92
	Solution-Only	86.8 / 83.4	92.8 / 90.0	0.919	1.24

Slow mode performance

	Method	Avg Trace Length	1-Optimal-64 / 3-Optimal-64	1-Solved-64 / 3-Solved-64	SWC	Diversity
Maze 15 x 15	Dualformer (slow)	278	99.6 / 99.2	99.9 / 99.9	0.999	12.54
	Complete-Trace	495	94.6 / 90.1	96.7 / 93.0	0.964	7.60
Maze 20 x 20	Dualformer(slow)	439	98.9 / 97.8	99.9 / 99.7	0.998	18.86
	Complete-Trace	851	98.3 / 95.5	98.8 / 93.00	0.987	14.53
Maze 25 x 25	Dualformer (slow)	589	99.9 / 97.2	99.7 / 99.3	0.997	25.05
	Complete-Trace	1208	95.2 / 85.7	97.0 / 90.4	0.968	18.85
Maze 30 x 30	Dualformer (slow)	854	97.6 / 93.2	99.5 / 98.2	0.993	25.77
	Complete-Trace	1538	93.3 / 82.4	95.9 / 88.1	0.964	7.60
Sokoban	Dualformer (slow)	1482	94.5 / 87.6	97.4 / 94.1	0.970	4.66
	Complete-Trace	3600	92.9 / 84.4	94.7 / 89.0	0.944	2.91

Math Problems

Llama-3-Aug (baseline) Here is a detailed step-by-step explanation of the reasoning:

- Step 1: Understand the problem and the given information. We are asked to find the sum of the elements in the tenth row of Pascal's Triangle, given that the third row has four elements and their sum is 8.
- Step 2: Recall the formula for the sum of the elements in a row of Pascal's Triangle. The sum of the elements in the nth row is given by the formula:

 (ⁿ₀) + (ⁿ₁) + (ⁿ₂) + ···+ (ⁿ_n) = 2ⁿ.
- Step 3: Identify the relationship between the sum of the elements in a row and the sum of the elements in the previous row. Since the sum of the elements in the nth row is 2ⁿ, the sum of the elements in the (n-1)th row is 2ⁿ⁻¹.
- Step 4: Recognize that the sum of the elements in the third row is 8, which is equal to 2^3 . This is because the sum of the elements in the third row is $\binom{3}{0} + \binom{3}{1} + \binom{3}{2} = 1 + 3 + 3 = 7$, and the extra 1 comes from the top row, which is counted as the 0th row.

In Pascal's Triangle, the third row has four elements, and the sum of these elements is 8. What is the sum of the elements in the tenth row? (Note that we are counting the top row with a single 1 as the 0th row).

- Step 5: Use the relationship between the sums of the elements in consecutive rows to find the sum of the elements in the tenth row. Since the sum of the elements in the third row is 2^3 , and the sum of the elements in the third row is 2^3 , and the sum of the elements in the (n-1)th row is 2^{n-1} , we can set up the equation: $2^3 = 2^{10-1}$.
- Step 6: Solve the equation for n. Taking the logarithm of both sides, we get: 3 log 2 = (10 1) log 2. Simplifying, we get: 3 log 2 = 9 log 2, which implies that log 2 = 0. This is a contradiction, since log 2 is a positive number.
- Step 7: Conclude that the equation $2^3 = 2^{10-1}$ has no solution, and therefore, the sum of the elements in the tenth row is not equal to 2^{10-1} .
- Step 8: Recognize that the sum of the elements in the tenth row is still given by the formula: $\binom{10}{0} + \binom{10}{1} + \binom{10}{2} + \dots + \binom{10}{10} = 2^{10}$.

The answer is: 1024.

Question 1

Baseline

Llama-3-Aug (p=0.4, ours) Here is a detailed step-by-step explanation of the reasoning:

- Step 1: Understand the problem and the given information. We are asked to find the sum of the elements in the tenth row of Pascal's Triangle, given that the third row has four elements and their sum is 8.
- Step 2: Recall the properties of Pascal's Triangle. The elements in each row of Pascal's Triangle are the binomial coefficients, which represent the number of ways to choose k items from a set of n items. The sum of the elements in each row is equal to 2^n , where n is the row number.
- Step 3: Identify the relationship between the sum of the elements in the third row and the sum of the elements in the tenth row. Since the sum of the elements in each row is equal to 2^n , we can write the sum of the elements in the third row as $2^3 = 8$. Similarly, the sum of the elements in the tenth row is 2^{10} .
- Step 4: Calculate the sum of the elements in the tenth row. $2^{10} = 1024$.

The answer is: 1024.

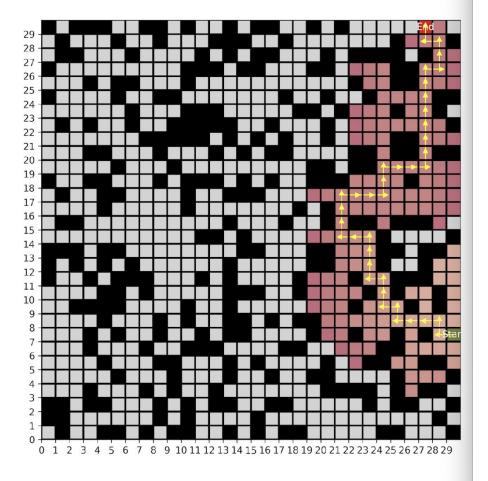
Dualformer

Math Problems

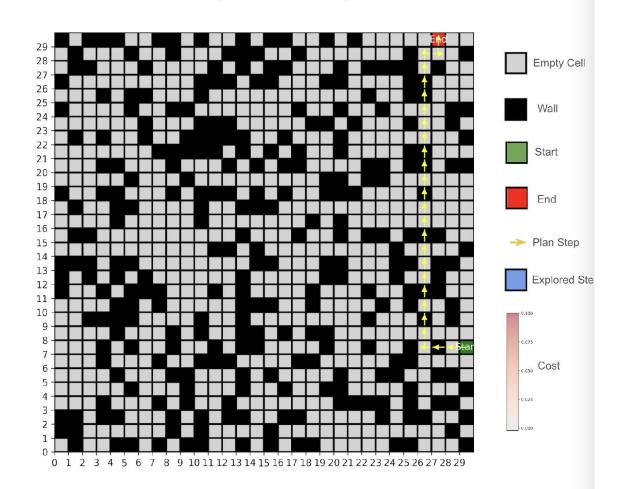
Model	Dataset & Dropping Prob	Greedy@1(%) (slow / fast)	Trace Length	Pass@20(%) (slow / fast)	Trace Length
	Aug-MATH (baseline)	16.9 / 9.6	527 / -	$59.6 \ / \ 29.8$	521 / -
	Aug-MATH $(p{=}0.1)$	18.6 / 11.3	508 / -	$61.6 \ / \ 32.0$	479 / -
Mistral-7B	Aug-MATH $(p{=}0.2)$	$17.8 \ / \ 11.2$	477 / -	$61.4\ /\ 31.9$	470 / -
	Aug-MATH $(p{=}0.3)$	$17.8 \ / \ 11.8$	497 / -	61.9 / 31.7	466 / -
	Aug-MATH $(p=0.4)$	17.0 / 11.0	434 / -	$56.4 \ / \ 28.9$	397 / -
	MATH	$13.1 \ / \ 8.5$	290 / -	53.0 / 29.4	227 / -
	Aug-MATH (baseline)	19.7 / 13.1	548 / -	$62.7 \ / \ 35.6$	535 / -
	Aug-MATH $(p{=}0.1)$	$20.1 \ / \ 13.3$	544 / -	$63.4 \; / \; 36.2$	522 / -
Llama-3-8B	Aug-MATH $(p{=}0.2)$	20.5 / 13.8	$525 \;/$ -	63.9 / 36.7	497 / -
	Aug-MATH $(p{=}0.3)$	20.5 / 13.5	515 / -	$63.4\ /\ 37.5$	474 / -
	Aug-MATH $(p=0.4)$	20.4 / 13.5	490 / -	$63.4\ /\ 37.2$	450 / -
	MATH	$13.3 \ / \ 12.6$	432 / -	$52.8 \ / \ 35.5$	332 / -

DualFormer

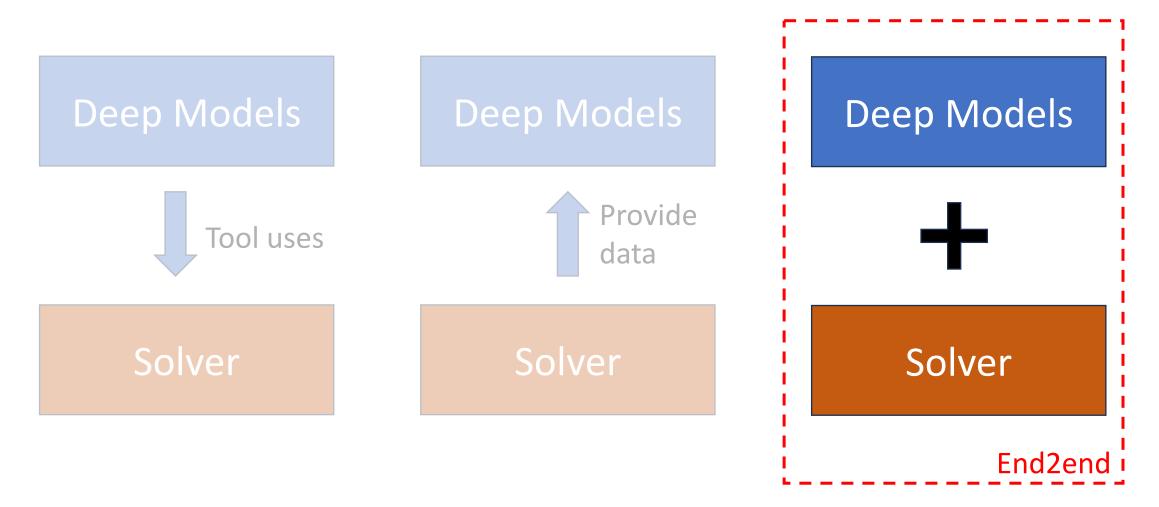
Dualformer



o1-preview (OpenAI)

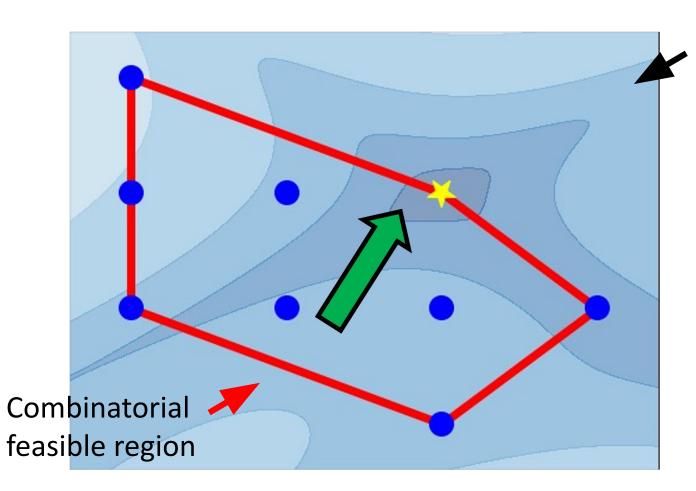


Option Two: Hybrid Systems



facebook Artificial Intelligence

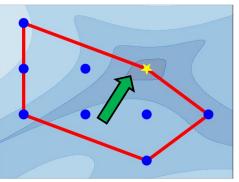
Nonlinear objective with combinatorial constraints



Nonlinear + differentiable objective $f(\mathbf{x})$

• Real-world domains:

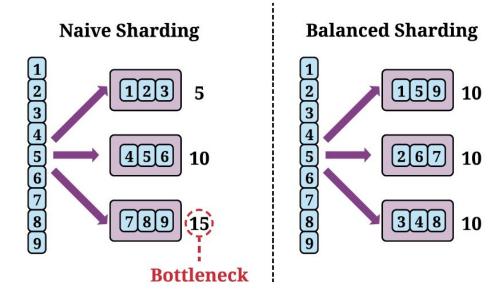
- Computer system
 planning
- Designing photonic devices
- Throughput optimization
- Antenna design
- Energy grid



Example: Embedding Table Placeme

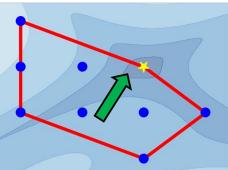
Given:

- k tables
- *n* identical devices
- Table i has memory requirement m_i
- Device j has memory capacity M_j



Find

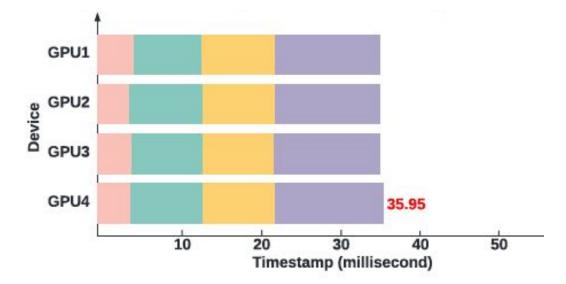
- Allocation of tables to devices observing device memory limits
- Minimize latency which is estimated by a neural network (capturing nonlinear interactions)



Example: Embedding Table Placeme

Given:

- k tables
- n identical devices
- Table i has memory requirement m_i
- Device *j* has memory capacity *M_j*

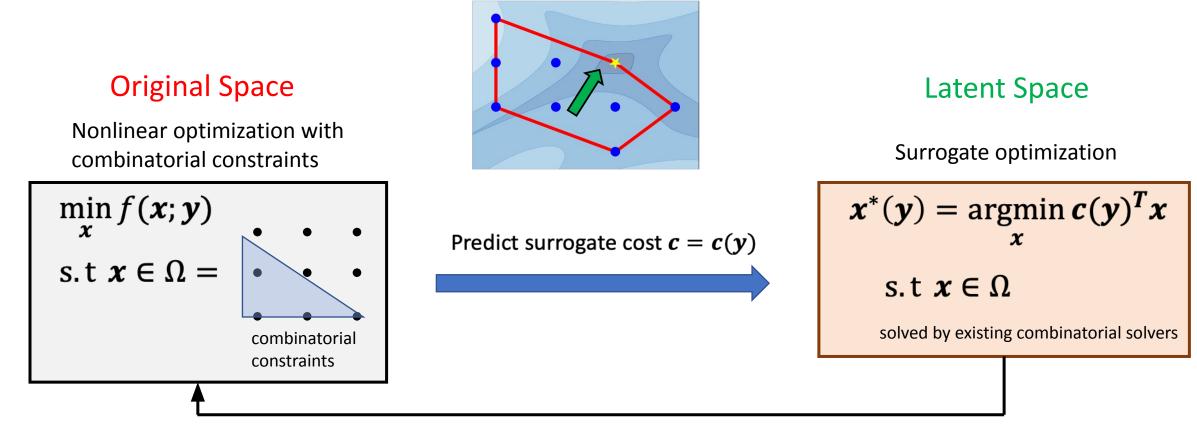


Formulation

$$\operatorname{Min}_{x} L(\{x_{ij}\})$$
 s.t. $\sum_{i} x_{ij} m_{i} \le M_{j}, \quad \sum_{j} x_{ij} = 1, \quad x_{ij} \in \{0,1\}$

L is nonlinear due to system issues (e.g., batching, communication, etc)

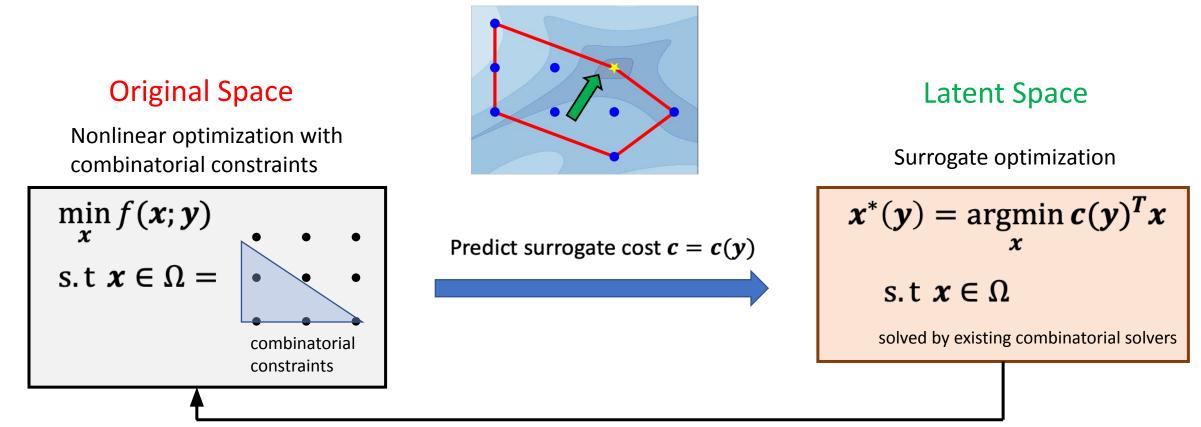
Solve the Combinatorial Problem in the Latent Space



 $x^*(y)$ optimizes f(x; y) as much as possible

[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML'23 and outstanding paper in SODS workshop]

Solve the Combinatorial Problem in the Latent Space



 $x^*(y)$ optimizes f(x; y) as much as possible

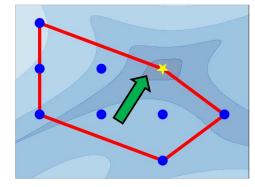
facebook Artificial Intelligence Proposal: gradient-based optimization

SurCo: Surrogate combinatorial opt

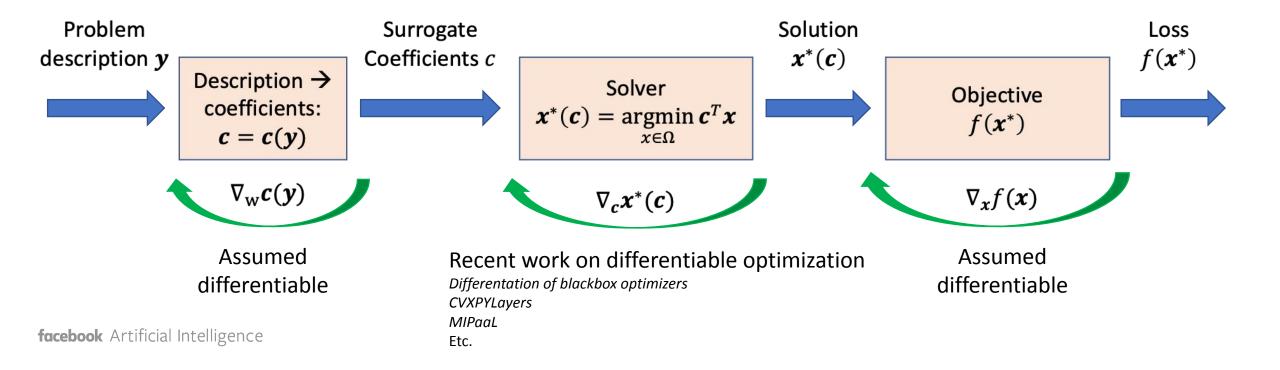
- Use surrogate MILP to solve original problem
- Find linear coefficients c such that $\underset{x \in \Omega}{\operatorname{argmin}} f(x) = \underset{x \in \Omega}{\operatorname{argmin}} c^T x$



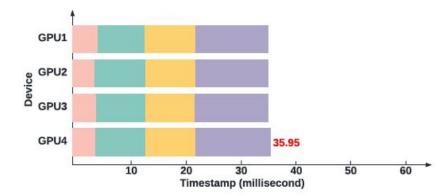
Gradient-based Optimization



- Use surrogate MILP to solve original problem
- Find linear coefficients c such that $\underset{x \in \Omega}{\operatorname{argmin}} f(x) = \underset{x \in \Omega}{\operatorname{argmin}} c^T x$



Embedding Table Sharding



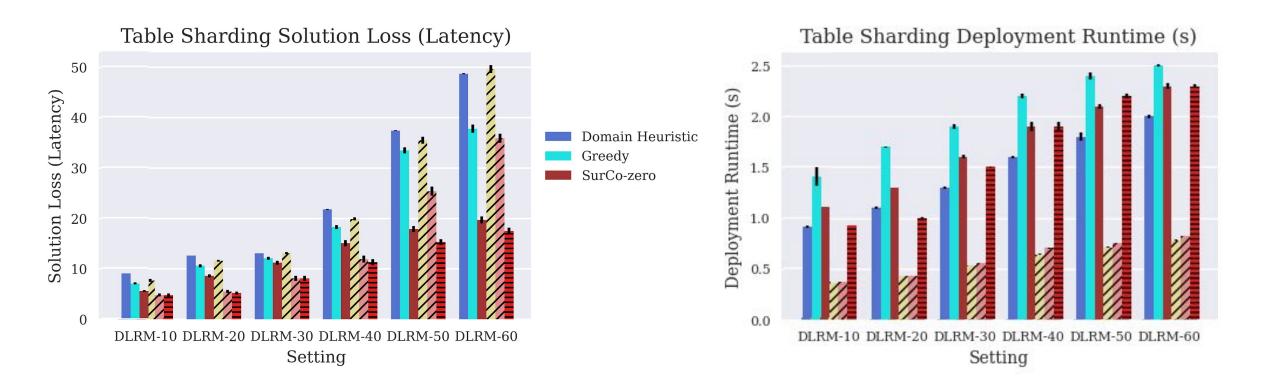
• Public Deep Learning Recommendation Model (DLRM dataset) placing between 10 to 60 tables on 4 GPUs

- Baseline: Greedy
- SoTA: RL approach Dreamshard¹
- SurCo: Surrogate NN model learned via CVXPYLayers (differentiable LP Solver)

¹Zha et al. NeurIPS 2022

Dataset: https://github.com/facebookresearch/dlrm_datasets

Results – Table Sharding



facebook Artificial Intelligence

Device Design

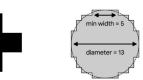
E_z magnitude first wavelength *E_z* magnitude second wavelength

 Design physically-viable devices that take light waves and routes different wavelengths to correct locations

$$\mathcal{L}(S) = \left(\left\| \text{softplus}\left(g \frac{|S|^2 - |S_{\text{cutoff}}|^2}{\min(w_{\text{valid}})} \right) \right\|_2 \right)^2$$

- Device design misspecification loss f(x) computed by differentiable electromagnetic simulator
- Feasible solution: the design must be the union of brush pattern
 - x = binary_opening(x, brush)
 - x = ~binary_opening(~x, brush)

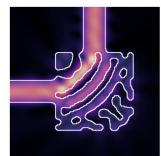
Inverse Photonic Desig



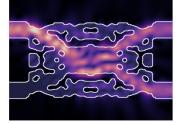
Inverse Photonic Design

- Dataset: Ceviche Challenges¹
- Most baselines don't work here due to combinatorial constraints
- SoTA: Brush-based algorithm ¹
- SurCo: Surrogate learned via blackbox differentiation² of brush solver

¹Schubert et al. ACS Photonics 2022 ²Vlastelica et al. ICLR 2019 Dataset: <u>https://github.com/google/ceviche-challenges</u>



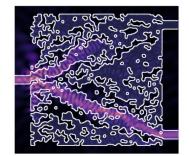
Waveguide bend



Beam splitter

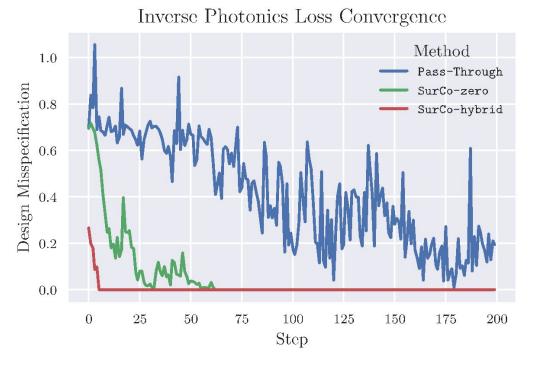


Mode converter



facebook Artificial Intelligence

Inverse photonics Convergence comparison + Solution examplo

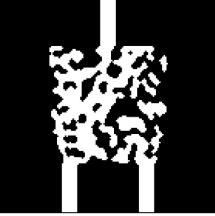


Takeaways:

- SurCo-Zero finds loss-0 solutions quickly
- SurCo-Hybrid uses offline training data to get a head start

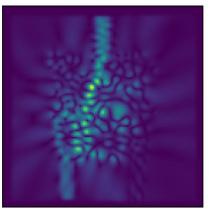
facebook Artificial Intelligence

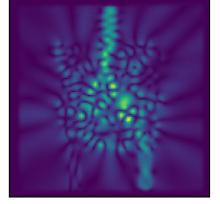
Device Design



E_z magnitude first wavelength

E_z magnitude second wavelength





Wavelength division multiplexer

Limitation of SurCo

Recall SurCo: Update linear coefficients c such that $x^*(c)$ improves objective $f(x^*(c))$

$$\min_{\boldsymbol{\theta}} \mathcal{L}(Y, Z) := \sum_{i=1}^{N} f\left(\mathbf{g}_{\boldsymbol{\theta}}(\mathbf{y}_{i}); \mathbf{z}_{i}\right)$$

$$\mathbf{g}_{\boldsymbol{\theta}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\Omega} \mathbf{x}^{\top} \mathbf{c}_{\boldsymbol{\theta}}(\mathbf{y})$$

$$\mathbf{g}_{\boldsymbol{\theta}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\Omega} \mathbf{x}^{\top} \mathbf{c}_{\boldsymbol{\theta}}(\mathbf{y})$$

- Requires $\nabla_x f(x) \rightarrow$ Does not apply to nondifferentiable functions
- Requires $\nabla_c g_{\theta}(c) \rightarrow$ Solver is backpropagatable

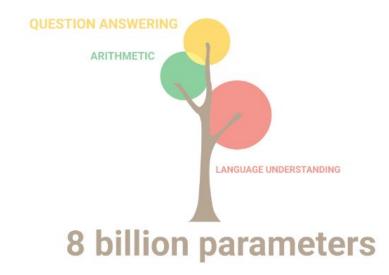
[A. Zharmagambetov et al, Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information, NeurIPS'23] facebook Artificial Intelligence [A. Ferber et al, GenCO: Generating Diverse Solutions to Design Problems with Combinatorial Nature, ICML'24]

Option **Three**: Does Deep Model Actually Converge to Anything Symbolic?

Emerging Symbolic Structure

Deep Models

Debate: Is LLM doing retrieval or true reasoning?



LLM shows emergent behaviors!!

facebook Artificial Intelligence

https://medium.com/@fenjiro/large-language-models-llms-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a

Debate: Is LLM doing retrieval or true reasoning?

...

...

@vlecun

Do LLMs perform reasoning or approximate retrieval? There is a continuum between the two, and Auto-Regressive LLMs are largely on the retrieval side.

Subbarao Kambhampati (కంభంపాటి సుబ్బారావు) 🤣 @rao2z

Emergent Abilities (noun): The preferred euphemism for what your LLM does, when saying "approximate retrieval" sounds too unsexy.

#AIAphorisms

LLM is just doing retrievals!!

o1-preview -17.5Gemma-7b-it -20.6Mistral-7b-v0.3-24.0 Mistral-7b-v0.1 -28.3-29.1o1-mini Mistral-7b-instruct-v0.1 -29.6Gemma2-2b-it -31.8GPT-40 -32.0Gemma2-2b -38.6GPT-40-mini -40.0Models Mistral-7b-instruct-v0.3 -40.3Phi-2 -44.9Llama3-8b-instruct -57.4Phi-3-medium-128k-instruct -57.8Mathstral-7b-v0.1 -59.7 Gemma2-27b-it -59.7Phi-3.5-mini-instruct -62.5Gemma2-9b-it -63.0 Gemma2-9b -63.0 Phi-3-small-128k-instruct -64.0Phi-3-mini-128k-instruct -65.7 -10-20-30-40-50-60 $GSM8K \rightarrow GSM$ -NoOp Accuracy Drop(%)

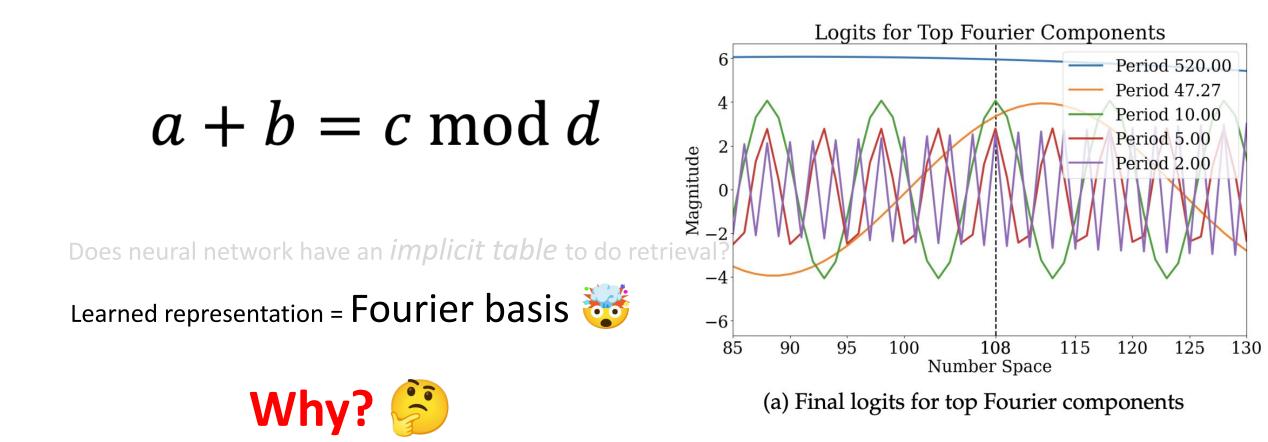
facebook Artificial Intelligence

Concrete Example: Modular Addition

$a + b = c \mod d$

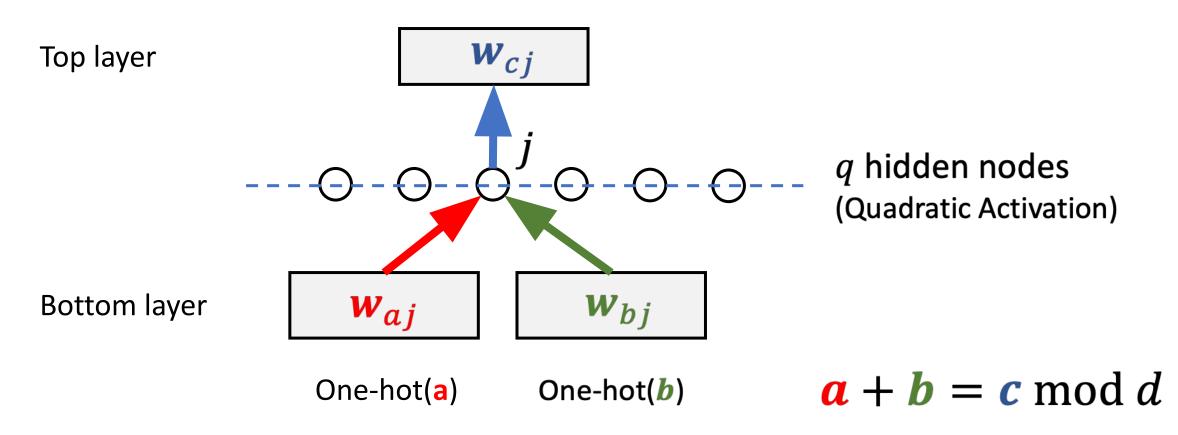
Does neural network have an *implicit table* to do retrieval?

Concrete Example: Modular Addition



Problem Setup

MSE Loss: $Min \| \text{Output} - \text{one-hot}(\mathbf{c}) \|_2$



[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv'24]

(Scaled) Fourier Transform

$$z_{akj} = \sum_{m=0}^{d-1} w_{amj} e^{imk/d}$$

$$z_{bkj} = \sum_{m=0}^{d-1} w_{bmj} e^{imk/d}$$

$$z_{ckj} = \sum_{m=0}^{d-1} w_{cmj} e^{imk/d}$$

k: frequency

 $\{W_a, W_b, W_c\}$ are real

Hermitian condition holds

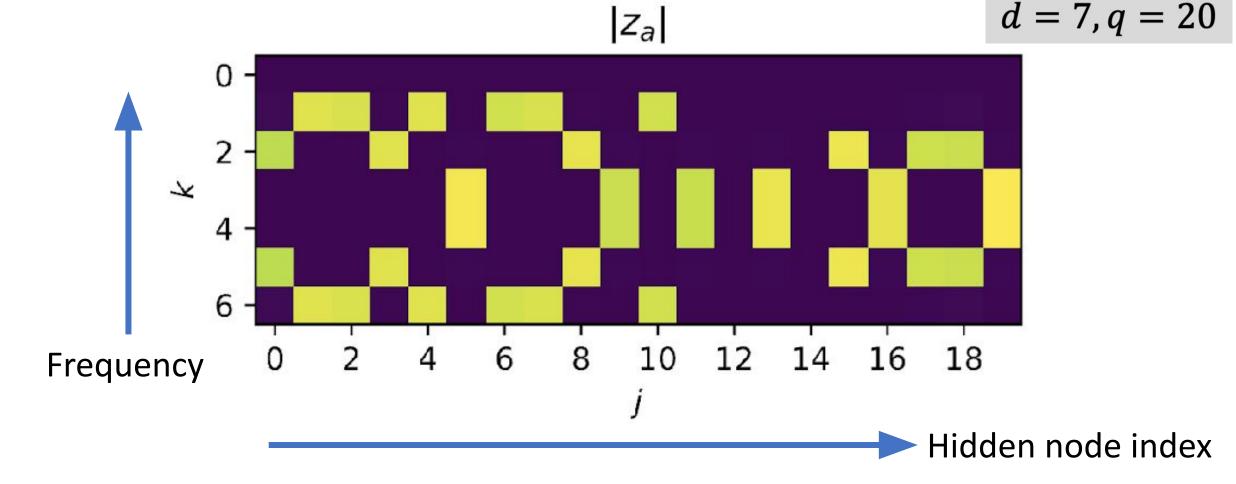
$$z_{akj} = \overline{z_{a,-k,j}}$$

$$z_{bkj} = \overline{z_{b,-k,j}}$$

$$z_{ckj} = \overline{z_{c,-k,j}}$$

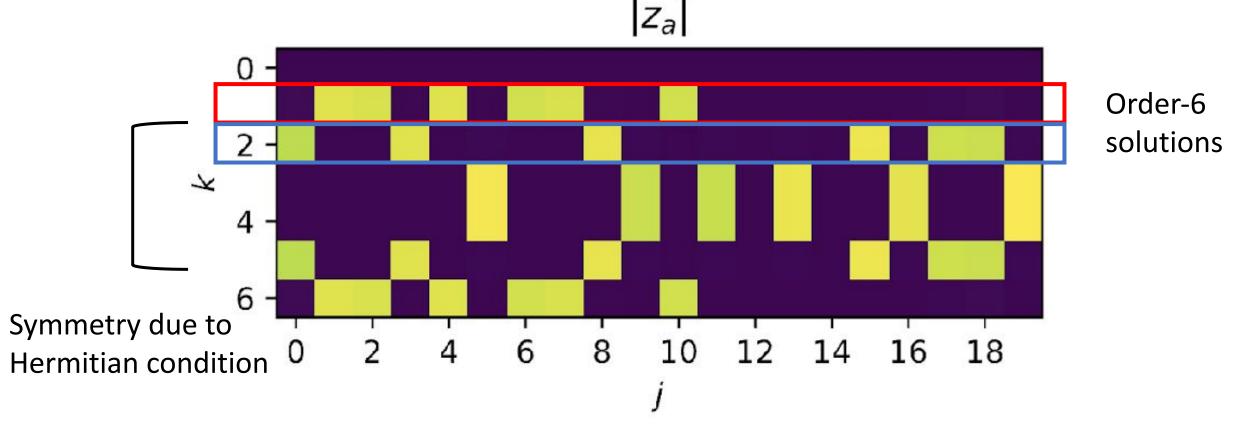
facebook Artificial Intelligence

What a Gradient Descent Solution look like?

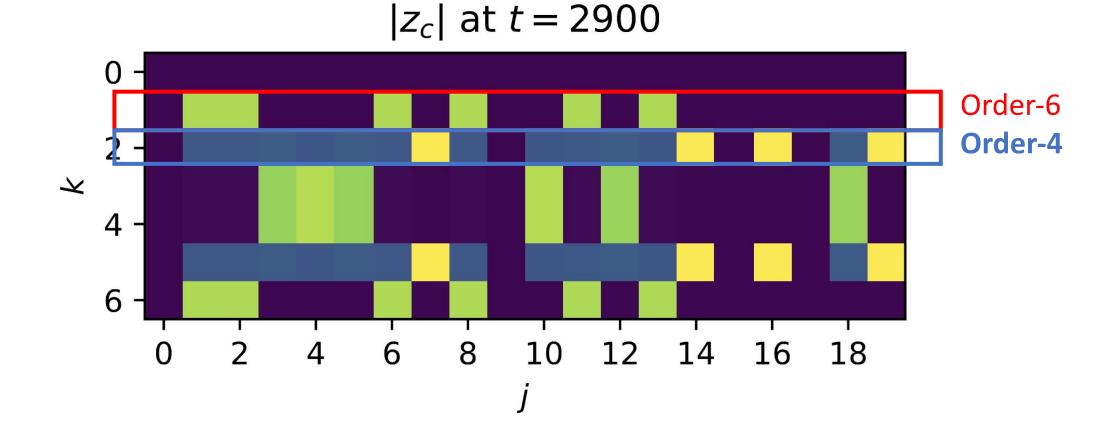


[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv'24]

What a Gradient Descent Solution look like?

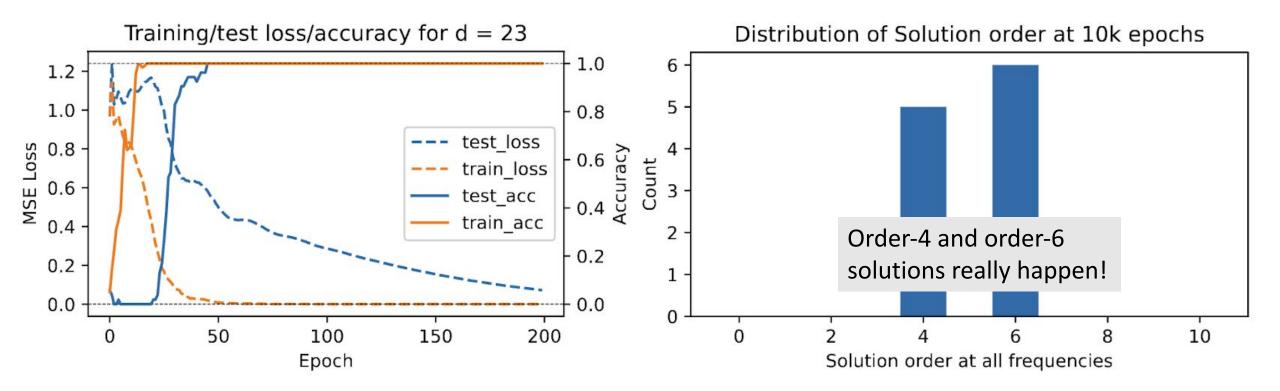


What a Gradient Descent Solution look like?



[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv'24]

More Statistics on Gradient Descent Solutions



[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv'24]

Effect of Weight Decay



facebook Artificial Intelligence

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv'24]

Stronger

facebook Artificial Intelligence

Structure of Loss Functions

MSE loss $\ell(z) = d^{-1} \sum_{k \neq 0} \ell_k(z) + 1 - 1/d$

$$\ell_{k}(\mathbf{z}) = -2r_{kkk} + \sum_{k_{1}k_{2}} \left| r_{k_{1}k_{2}k} \right|^{2} + \frac{1}{4} \left| \sum_{p \in \{a,b\}} \sum_{k'} r_{p,k',-k',k} \right|^{2} + \frac{1}{4} \sum_{m \neq 0} \sum_{p \in \{a,b\}} \left| \sum_{k'} r_{p,k',m-k',k} \right|^{2}$$

Term $r_{k_1k_2k}(\mathbf{z}) \coloneqq \sum_j z_{ak_1j} z_{bk_2j} z_{ckj}$ and $r_{pk_1k_2k}(\mathbf{z}) \coloneqq \sum_j z_{pk_1j} z_{pk_2j} z_{ckj}$

Structure of Loss Functions

MSE loss $\ell(z) = d^{-1} \sum_{k \neq 0} \ell_k(z) + 1 - 1/d$

$$\ell_{k}(\mathbf{z}) = -2r_{kkk} + \sum_{k_{1}k_{2}} \left| r_{k_{1}k_{2}k} \right|^{2} + \frac{1}{4} \left| \sum_{p \in \{a,b\}} \sum_{k'} r_{p,k',-k',k} \right|^{2} + \frac{1}{4} \sum_{m \neq 0} \sum_{p \in \{a,b\}} \left| \sum_{k'} r_{p,k',m-k',k} \right|^{2}$$

Term $r_{k_1k_2k}(\mathbf{z}) \coloneqq \sum_j z_{ak_1j} z_{bk_2j} z_{ckj}$ and $r_{pk_1k_2k}(\mathbf{z}) \coloneqq \sum_j z_{pk_1j} z_{pk_2j} z_{ckj}$

Sufficient conditions of Global Optimizers:

facebook Artificial Intelligence

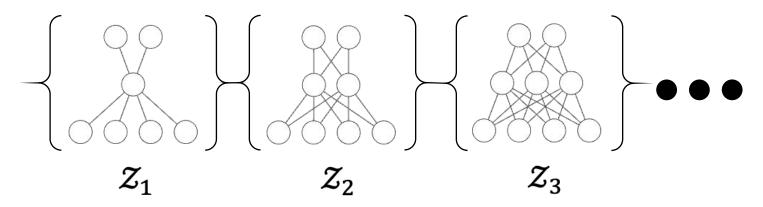
[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv'24]

How to Optimize?

The objective is highly nonlinear !! However, nice *algebraic structures* exist!

How to Optimize?

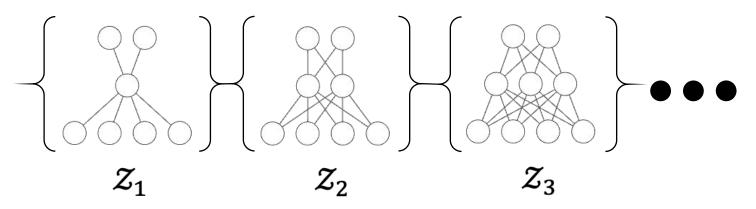
The objective is highly nonlinear !! However, nice *algebraic structures* exist!



 $\mathcal{Z} = \bigcup_{q \ge 0} \mathcal{Z}_q$: All 2-layer networks with different number of hidden nodes

How to Optimize?

The objective is highly nonlinear !! However, nice *algebraic structures* exist!



- $\mathcal{Z} = \bigcup_{q \ge 0} \mathcal{Z}_q$: All 2-layer networks with different number of hidden nodes **Ring addition +:** Concatenate hidden nodes **Ring multiplication *:** Kronecker production along the hidden dimensions
- $\langle \mathcal{Z}, +, * \rangle$ is a *semi-ring*

A function $r(\mathbf{z}): \mathcal{Z} \mapsto \mathbb{C}$ is a *ring homomorphism*, if

- r(1) = 1
- $r(z_1 + z_2) = r(z_1) + r(z_2)$
- $r(z_1 * z_2) = r(z_1)r(z_2)$

A function $r(z): \mathcal{Z} \mapsto \mathbb{C}$ is a *ring homomorphism*, if

- r(1) = 1
- $r(z_1 + z_2) = r(z_1) + r(z_2)$
- $r(z_1 * z_2) = r(z_1)r(z_2)$

$r_{k_1k_2k}(z)$ and $r_{pk_1k_2k}(z)$ are <u>ring homomorphisms</u>!

A function $r(z): \mathcal{Z} \mapsto \mathbb{C}$ is a *ring homomorphism*, if

- r(1) = 1
- $r(z_1 + z_2) = r(z_1) + r(z_2)$
- $r(z_1 * z_2) = r(z_1)r(z_2)$

 $r_{k_1k_2k}(z)$ and $r_{pk_1k_2k}(z)$ are <u>ring homomorphisms</u>!

MSE Loss

$$\ell_{k}(\mathbf{z}) = -2r_{kkk} + \sum_{k_{1}k_{2}} \left| r_{k_{1}k_{2}k} \right|^{2} + \frac{1}{4} \left| \sum_{p \in \{a,b\}} \sum_{k'} r_{p,k',-k',k} \right|^{2} + \frac{1}{4} \sum_{m \neq 0} \sum_{p \in \{a,b\}} \left| \sum_{k'} r_{p,k',m-k',k} \right|^{2}$$

.2

A function $r(z): \mathcal{Z} \mapsto \mathbb{C}$ is a *ring homomorphism*, if

- r(1) = 1
- $r(z_1 + z_2) = r(z_1) + r(z_2)$
- $r(z_1 * z_2) = r(z_1)r(z_2)$

 $r_{k_1k_2k}(z)$ and $r_{pk_1k_2k}(z)$ are <u>ring homomorphisms</u>!

MSE Loss

$$\ell_{k}(\mathbf{z}) = -2\mathbf{r}_{kkk} + \sum_{k_{1}k_{2}} \left|\mathbf{r}_{k_{1}k_{2}k}\right|^{2} + \frac{1}{4} \left|\sum_{p \in \{a,b\}} \sum_{k'} r_{p,k',-k',k}\right|^{2} + \frac{1}{4} \sum_{m \neq 0} \sum_{p \in \{a,b\}} \left|\sum_{k'} r_{p,k',m-k',k}\right|^{2}$$

Partial solution \mathbf{z}_1 satisfies $r_{k_1k_2k}(\mathbf{z}_1) = 0$

Partial solution \mathbf{z}_2 satisfies $r_{pk',-k',k}(\mathbf{z}_2) = 0$

facebook Artificial Intelligence

Ring Homomorphism

A function $r(z): \mathcal{Z} \mapsto \mathbb{C}$ is a *ring homomorphism*, if

• r(1) = 1

•
$$r(z_1 + z_2) = r(z_1) + r(z_2)$$

• $r(z_1 * z_2) = r(z_1)r(z_2)$

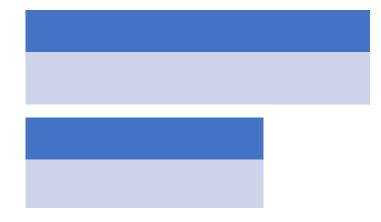
 $r_{k_1k_2k}(z)$ and $r_{pk_1k_2k}(z)$ are <u>ring homomorphisms</u>!

MSE Loss

$$\ell_{k}(\mathbf{z}) = -2r_{kkk} + \sum_{k_{1}k_{2}} \left| r_{k_{1}k_{2}k} \right|^{2} + \frac{1}{4} \left| \sum_{p \in \{a,b\}} \sum_{k'} r_{p,k',-k',k} \right|^{2} + \frac{1}{4} \sum_{m \neq 0} \sum_{p \in \{a,b\}} \left| \sum_{k'} r_{p,k',m-k',k} \right|^{2}$$
Partial solution \mathbf{z}_{1} satisfies $r_{k_{1}k_{2}k}(\mathbf{z}_{1}) = 0$
Partial solution \mathbf{z}_{2} satisfies $r_{pk',-k',k}(\mathbf{z}_{2}) = 0$

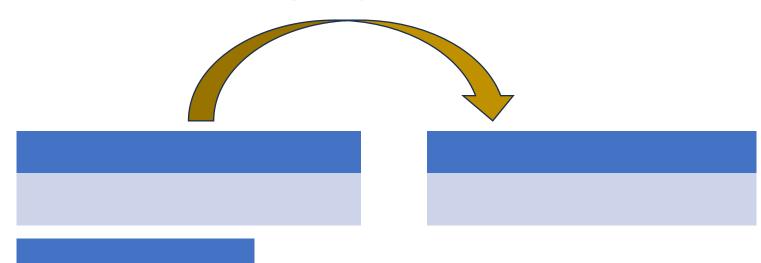
$$= \mathbf{z}_{1} * \mathbf{z}_{2}$$
 satisfies both $r_{k_{1}k_{2}k}(\mathbf{z}) = r_{pk',-k',k}(\mathbf{z}) = 0$

Composing Global Optimizers from Partial Ones

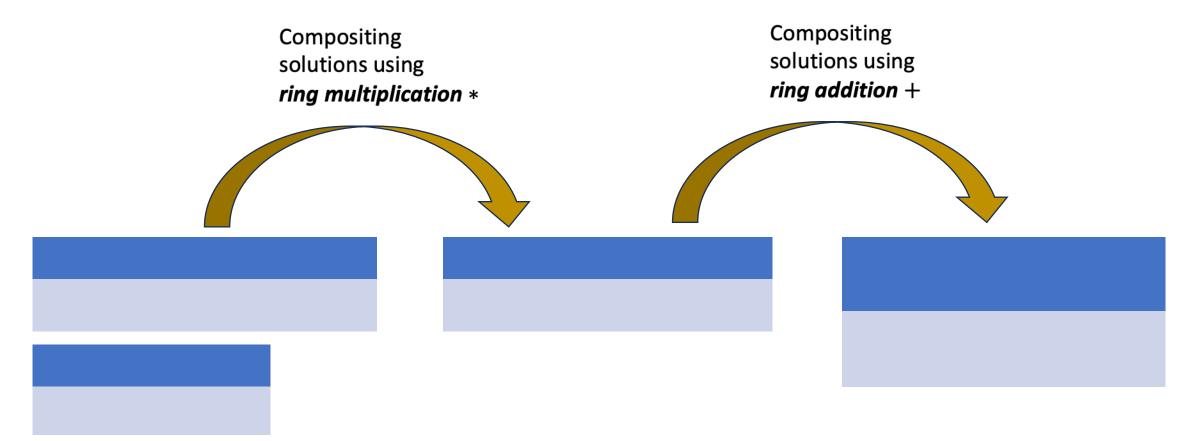


Composing Global Optimizers from Partial Ones

Compositing solutions using *ring multiplication* *



Composing Global Optimizers from Partial Ones



Exemplar constructed global optimizers

Order-6 **z**_{F6} (2*3)

$$m{z}_{F6} = rac{1}{\sqrt[3]{6}} \sum_{k=1}^{(d-1)/2} m{z}_{
m syn}^{(k)} * m{z}_{
u}^{(k)} * m{y}_k$$

Exemplar constructed global optimizers

Order-6 z_{F6} (2*3)

$$m{z}_{F6} = rac{1}{\sqrt[3]{6}} \sum_{k=1}^{(d-1)/2} m{z}_{
m syn}^{(k)} * m{z}_{
u}^{(k)} * m{y}_k$$

Order-4 $z_{F4/6}$ (2*2) (mixed with order-6)

$$oldsymbol{z}_{F4/6} = rac{1}{\sqrt[3]{6}} \hat{oldsymbol{z}}_{F6}^{(k_0)} + rac{1}{\sqrt[3]{4}} \sum_{k=1, k
eq k_0}^{(d-1)/2} oldsymbol{z}_{F4}^{(k)}$$

.

.

Exemplar constructed global optimizers

Order-6 **z**_{F6} (2*3)

$$m{z}_{F6} = rac{1}{\sqrt[3]{6}} \sum_{k=1}^{(d-1)/2} m{z}_{
m syn}^{(k)} * m{z}_{
u}^{(k)} * m{y}_k$$

Order-4 $z_{F4/6}$ (2*2) (mixed with order-6)

Perfect memorization (order-d per frequency)

$$oldsymbol{z}_{F4/6} = rac{1}{\sqrt[3]{6}} \hat{oldsymbol{z}}_{F6}^{(k_0)} + rac{1}{\sqrt[3]{4}} \sum_{k=1, k
eq k_0}^{(d-1)/2} oldsymbol{z}_{F4}^{(k)}$$

$$egin{aligned} oldsymbol{z}_a = & \sum_{j=0}^{d-1} oldsymbol{u}_a^j, & oldsymbol{z}_b = & \sum_{j=0}^{d-1} oldsymbol{u}_b^j \ oldsymbol{z}_M = & d^{-2/3} oldsymbol{z}_a * oldsymbol{z}_b \end{aligned}$$

4	%not	%not %non-factorable			error ($\times 10^{-2}$)		solution distribution (%) in factorable ones			
		order-4		order-4	order-6	$ig oldsymbol{z}_{ u= ext{i}}^{(k)}*oldsymbol{z}_{\xi}^{(k)}$	$oxed{z_{ u= ext{i}}^{(k)} st oldsymbol{z}_{ ext{syn},lphaeta}^{(k)}}$	$\left oldsymbol{z}_{ u}^{(k)} st oldsymbol{z}_{ ext{syn}}^{(k)} ight $	others	
23	0.0 ± 0.0	$0.00 {\pm} 0.00$	5.71 ± 5.71	$0.05{\pm}0.01$	$4.80{\pm}0.96$	47.07 ± 1.88	$11.31{\pm}1.76$	39.80 ± 2.11	1.82 ± 1.82	
71	0.0 ± 0.0	$0.00 {\pm} 0.00$	$0.00 {\pm} 0.00$	0.03 ± 0.00	$5.02{\pm}0.25$	72.57 ± 0.70	$11.31{\scriptstyle\pm1.76}\ 4.00{\scriptstyle\pm1.14}$	21.14 ± 2.14	$2.29{\pm}1.07$	
127	0.0 ± 0.0	$1.50{\pm}0.92$	$0.00 {\pm} 0.00$	0.26 ± 0.14	$0.93{\pm}0.18$	82.96 ± 0.39	$2.25{\pm}0.64$			

$$q = 512, wd = 5 \cdot 10^{-5}$$

	order-4/6	order-4	actorable order-6	order-4		$oxed{z_{ u= ext{i}}^{(k)} st oldsymbol{z}_{\xi}^{(k)}}$	distribution (%) $m{z}_{ u=\mathrm{i}}^{(k)} st m{z}_{\mathrm{syn},lphaeta}^{(k)}$	$ig oldsymbol{z}_ u^{(k)} * oldsymbol{z}_{ ext{syn}}^{(k)}ig $	others
23	$0.0{\pm}0.0$	$0.00 {\pm} 0.00$	5.71 ± 5.71	$0.05{\pm}0.01$	$4.80{\pm}0.96$	47.07 ± 1.88	$11.31{\pm}1.76$	39.80 ± 2.11	1.82 ± 1.82
71	$0.0{\pm}0.0$	$0.00 {\pm} 0.00$	$0.00 {\pm} 0.00$	$0.03{\pm}0.00$	$5.02{\pm}0.25$	72.57 ± 0.70	$4.00 {\pm} 1.14$	21.14 ± 2.14	$2.29 {\pm} 1.07$
127	0.0 ± 0.0	$1.50{\pm}0.92$	0.00 ± 0.00	$0.26 {\pm} 0.14$	$0.93{\pm}0.18$	82.96 ± 0.39	$\begin{array}{c} 11.31 {\scriptstyle \pm 1.76} \\ 4.00 {\scriptstyle \pm 1.14} \\ 2.25 {\scriptstyle \pm 0.64} \end{array}$	$ 14.13 \pm 0.87 $	$0.66 {\pm} 0.66$

100% of the per-freq solutions are order-4/6

d	%not	%non-factorable				solution distribution (%) in factorable ones			
	order-4/6	order-4	order-6	order-4	order-6	$ig oldsymbol{z}_{ u= ext{i}}^{(k)}stoldsymbol{z}_{\xi}^{(k)}$	$ig oldsymbol{z}_{ u= ext{i}}^{(k)} st oldsymbol{z}_{ ext{syn},lphaeta}^{(k)}$	$oxed{z}_{ u}^{(k)}st oldsymbol{z}_{ ext{syn}}^{(k)}$	others
23	0.0 ± 0.0	0.00 ± 0.00	$5.71 {\pm} 5.71$	$0.05{\pm}0.01$	4.80 ± 0.96	47.07 ± 1.88	$11.31{\scriptstyle\pm1.76}\ 4.00{\scriptstyle\pm1.14}$	39.80 ± 2.11	1.82 ± 1.82
71	0.0 ± 0.0	$0.00 {\pm} 0.00$	$0.00 {\pm} 0.00$	$0.03 {\pm} 0.00$	$5.02{\pm}0.25$	72.57 ± 0.70	$4.00 {\pm} 1.14$	21.14 ± 2.14	$2.29{\pm}1.07$
127	0.0 ± 0.0	$1.50{\pm}0.92$	$0.00 {\pm} 0.00$	$0.26{\scriptstyle\pm0.14}$	$0.93{\pm}0.18$	82.96 ± 0.39	$2.25{\pm}0.64$		
	1								

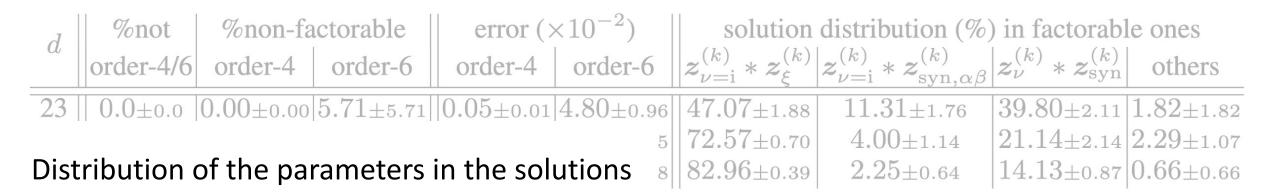
95% of the solutions are factorizable into "2*3" or "2*2"

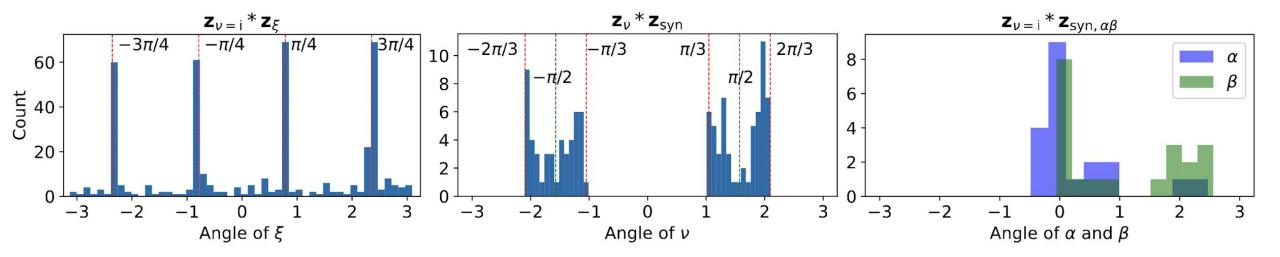
d	%not order-4/6	%non-fa order-4	ctorable order-6		$\times 10^{-2}$) order-6		distribution (%) $m{z}_{ u= ext{i}}^{(k)} st m{z}_{ ext{syn},lphaeta}^{(k)}$	·	
23	0.0 ± 0.0	$0.00 {\pm} 0.00$	$5.71 {\pm} 5.71$	$0.05{\pm}0.01$	$4.80{\pm}0.96$	47.07 ± 1.88	$11.31{\pm}1.76$	39.80 ± 2.11	1.82 ± 1.82
71	0.0 ± 0.0	$0.00 {\pm} 0.00$	$0.00 {\pm} 0.00$	$0.03 {\pm} 0.00$	$5.02{\pm}0.25$	$72.57 {\pm} 0.70$	$4.00 {\pm} 1.14$	21.14 ± 2.14	$2.29{\pm}1.07$
127	0.0 ± 0.0	$1.50{\pm}0.92$	$0.00 {\pm} 0.00$	$0.26{\scriptstyle\pm0.14}$	$0.93{\pm}0.18$	$82.96{\scriptstyle \pm 0.39}$	$2.25{\pm}0.64$	$14.13{\scriptstyle\pm0.87}$	$0.66 {\pm} 0.66$

Factorization error is very small

<i>d</i>	%not	%not %non-factorable		error ($\times 10^{-2}$)		solution distribution (%) in factorable ones			
	order-4/6	order-4	order-6	order-4	order-6	$oxed{z}_{ u=\mathrm{i}}^{(k)}stoldsymbol{z}_{\xi}^{(k)}$	$oldsymbol{z}_{ u= ext{i}}^{(k)} st oldsymbol{z}_{ ext{syn},lphaeta}^{(k)}$	$oxed{z}_{ u}^{(k)} st oldsymbol{z}_{ ext{syn}}^{(k)}$	others
23	0.0 ± 0.0	$0.00 {\pm} 0.00$	5.71 ± 5.71	$0.05{\pm}0.01$	$4.80{\pm}0.96$	47.07 ± 1.88	$11.31{\pm}1.76$	39.80 ± 2.11	$1.82{\scriptstyle \pm 1.82}$
71	0.0 ± 0.0	0.00 ± 0.00	$0.00 {\pm} 0.00$	$0.03{\pm}0.00$	$5.02{\pm}0.25$	$72.57 {\pm} 0.70$	$4.00 {\pm} 1.14$	21.14 ± 2.14	$2.29{\scriptstyle\pm1.07}$
127	0.0 ± 0.0	$1.50 {\pm} 0.92$	$0.00 {\pm} 0.00$	$0.26{\scriptstyle\pm0.14}$	$0.93{\pm}0.18$	$82.96{\scriptstyle \pm 0.39}$	$2.25{\pm}0.64$	14.13 ± 0.87	$0.66 {\pm} 0.66$

98% of the solutions can be factorizable into the constructed forms





Possible Implications

Do neural networks end up learning more efficient symbolic representations that we don't know?

Does gradient descent lead to a solution that can be reached by advanced algebraic operations?

Will gradient descent become obsolete, eventually?

Thanks!