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Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

Model Output
A: The answer is 27. x )

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

J

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The

Kanswer is9. )

Reasoning

Taking a walk
in the park

Finishing a
morning routine &

Jolning for coffee at a cafe

Planning

y

A
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Kanswer is9. )

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

J

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
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What LLMs cannot do well yet?

User

/I’m going from Seattle

to California from
November 6 to 10,

2023. | have a budget of
$6,000. For lodging, |
prefer an entire room
and the accommodations

-

\must be pet-friendly. =

Travel planning
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[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML 24 (Spotlight)]



The plan must adhere to

What LLMs cannot do well yety sz

also vital to ...

User Needs (Hard Constraints)

1. Budget: $6000 e"
2. Room Type: Entire Room .
3. Room Rule: Pet-friendly

Commonsense Constraints

'?J:“

Information Collection

[Tool] CitySearch[California] 1. Reasonable City Route Q.5
[Result] San Francisco, Los g B!verse Egstatgrants O e &
. . viverse ractions
Angelesyw: 2am Diego O\ 4. Non-conflicting Transportation
- : ™\ [Tool] FlightSearch[Seattle, San Francisco, 5. Accommodation meets Minimum Night
I’'m going from Seattle 2023-11-06]
to California from .
v Result] No Flights.
<2023 I navea us o e _____ peliveryPlan
. ’ Delivery Plan
e qug ot of [Tool] FlightSearch[Seattle, Los Angeles, ry
$6,000. For lodging, |
User f » 2023'11 '06] 2023-11-06 2023-11-07 2023-11-08 2023-11-09 2023-11-10 "
Seattle -> Los Angeles Los Angeles Los Angeles -> San Diego San Diego Sa_n Diego -> Seattle
pr‘z ?;1 poeniie s ‘(’j°'t'_' [Result] Flight Number: F123, TR, | B | pmesecwel B, [ retE
anc.me accormmocations 13:40-16:12, Cost: $120 ity || e | L | e
\must be pet-friendly. ) M | e, [ SRSes  |mme
[Tool] DistanceMatrix[Los Angeles, - e, |* T
San Diego, taxi]
[Result] Duration: 1 hour 57 mins,
Distance: 193 km, Cost: $200 & Seattle -> Los Angeles

"\ | Flight: F123, (13:40-16:12), Cost: $120
~ | » Accommodation: Luxury building studio

¢ Dinner: The Attraction

facebook Artificial Intelligence [J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML 24 (Spotlight)]



Using SoTA LLMs for Travel Planning (not
great)

Even SoTA LLMs struggle for such hard planning problems

Validation (#180) Test (#1,000)
: Commonsense Hard Constraint ;s : Commonsense Hard Constraint .
Delivery Final  Delivery Final
Pass Rate Pass Rate Pass Rate Pass Rate
Rate Pass Rate  Rate Pass Rate
Micro Macro Micro Macro Micro Macro Micro Macro
Greedy Search 100 74.4 0 60.8 37.8 0 100 72.0 0 52.4 31.8 0
Two-stage
First tool use Mistral-7B-32K (Jiang et al., 2023) 8.9 5.9 0 0 0 0 7.0 4.8 0 0 0 0
! Mixtral-8x7B-MoE (Jiang et al., 2024) 49.4 30.0 0 1.2 0.6 0 51.2 32.2 0.2 0.7 0.4 0
Then plan the travel Gemini Pro (G Team et al., 2023) 289 189 0 05 06 0 391 249 0 06 0.1 0
GPT-3.5-Turbo (OpenAl, 2022) 86.7 54.0 0 0 0 0 91.8 57.9 0 0.5 0.6 0
GPT-4-Turbo (OpenAl 2023) 894 611 28 152 106 06 931 633 20 105 55
Sole-planning
DirectGpT—3.5—Turbo 100 60.2 4.4 11.0 2.8 0 100 59.5 2.7 9.5 4.4 0.6
CoTaPT—3.5—Turbo 100 66.3 3.3 11.9 5.0 0 100 64.4 253 9.8 3.8 0.4
Ground-truth tool Use,  Reactarr o5 me 822 476 39 114 6.7 0.6 816 459 25 107 3.1 0.7
Then pla n the travel Reflexiongpt—_3.5-Turbo 93.9 53.8 2.8 11.0 2.8 0 92.1 52.1 2.2 9.9 3.8 0.6
Directyfixtral—8x7B—MoE 100 68.1 5.0 3.3 120 0 99.3 67.0 3.7 3.9 1.6 0.7
DirectGemini Pro 93.9 65.0 8.3 9.3 4.4 0.6 93.7 64.7 7.9 10.6 4.7
DirectgpT—4—Turbo 100 804 172 471 22.2 4.4 100 80.6 152 443 23.1 4.4

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML 24 (Spotlight)]



How about 017

B Commonsense Micro

100

B Commonsense Macro M Hard Micro B Hard Macro B Final Pass Rate

84.4

95.3

80.1

73.5

Final &R =
- Pass Rate

GPT-40-Mini
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LLM planning is still a hard problem

B GPT-3.5 GPT-4 B GPT-40 Gemini 1.5 Flash B Gemini 1.5 Pro
0.8
Trip plannin

P pla 8
0.4
0.2 I
0.0 - I 1 R

3 4 5 6 7 8 9 10

Number of Cities

B GPT-3.5 GPT-4 B GPT-40 Gemini 1.5 Flash B Gemini 1.5 Pro

1.00
Meeting plannin

- gp g
0.50
0.25 I
0.00 I I_I Il a .

1 2 3 4 5 6 7 8 9 10

Number of People

[H.S. Zheng et al, NATURAL PLAN: Benchmarking LLMs on Natural Language Planning, arXiv'24]
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What are the Solutions?



What are the
Solutions?
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Option One: Scaling Law

I |
Deep Deep | Deep I
Models Models Models I
Call deep models Provide I +
(policy, values) data | l
l End2end
- o= =

Option Two: Hybrid System

Option Three: Emerging Symbolic
Structure from Neural network



Option One: The Scaling Law
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FLOPS

0B More data
More compute

-2.5B Larger models

-500M

-250M Very expensive

=73M

Does that work for
reasoning/planning?

®

1022

[J. Hoffmann*, S. Borgeaud*, A. Mensch* et al, Training Compute-Optimal Large Language Models]



Option Two: Hybrid Systems

| |
| |
| |
Deep Models Deep Models M Deep Models §
: :
l l
|
TooI use Prowde ! + :
data | !
. :
| |
| |
Solver Solver | Solver !
: :
|
| End2end:

_________________

facebook Artificial Intelligence



Option Two: Hybrid Systems

Deep Models
lTooI use

Solver
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Language-Driven Guaranteed Travel Planning

LLMs can not handle too many constraints? -> Combinatorial Solvers can!

Inference

“I want to go to SFO for 3 “You can take flight A134
@ / g;l(})’go I'have a budget of ] /__ departing at 6:05pm, ...”

® Realistic dataset: collect from the real world
User Agent ﬁ
® User instruction translator: Fine-tuned LLM to convert
{ {
“from”: “Seattle”, “itinerary”: [ user request into symbolic description, augmented by
to”: “San Francisco”, { )
e UL iy bR flight/hotel information from database.
constraints”: [ Al34”,
“lodging”: [“entire > “depart”: “6:05pm”,
e "03’“‘ (et il : cushorLa0n ® Impose constraints and formalize the travel planning as
Fl |g ht/hotel ”/candjdate_ﬂights”: [ {I”hotel”: “Marriott” } ) . )
G } “candidate_hotels”: [...] } ] Mixed Integer Linear Programming (MILP).
Symbolic description of Symbolic description of ® Build a combinatorial solver to give optimal solution.
the user request the optimal itinerary

facebook Artificial Inte ligence Ju et al, To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning (EMNLP’24 Demo)



Experiments (End-to-end Human Evaluation)

Response phase Time (s)

Instruction Translator 2.50840.116
MILP Solver

- Loading constraints  0.0474-0.061
- Solving 0.527+0.457
- Total 0.5754-0.507

Question Detractors % Promoters %| | Net %
...fully satisfies the...request -13.3 +53.3 +40.0
...offers good value for the money... -16.8 +52.0 +35.1
...1s efficient... -16.2 +53.1 +36.9

Net Prompter Scores (NPS) and its breakdown in three dimensions: satisfaction, value and efficiency.
Ju et al, To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning (EMNLP’24 Demo)



Multi-round Dialogs to Collect Information

Hi, I'm planning a trip with a specific itinerary in mind. Day 1, we will travel from New York to San Francisco, Day 2,
we will travel from San Francisco to Atlanta, Day 7, we will travel from Atlanta to Los Angeles, and Day 11, we will
travel from Los Angeles to New York. | have some specific preferences and constraints that I'd like to share with you.

Great! Thank you for sharing your itinerary. I'm glad to assist i That sounds a great trip! Can you tell me a bit more
© O] you. Before we proceed, can you please confirm if you are ' about your travel style? Are you looking for luxury,
= traveling with a child? g budget-friendly, or something in between? (Prioritization)
No, | am not @ I'd say I'm looking for mid-range cost.
That helps rule out some family-friendly options. Next, are [Think]: The traveler is looking for mid-range cost
@ @} you looking to book this trip as part of a frequent traveler E options, which suggests they have a budget in mind. |
= J program or would you like to earn rewards points for your : should ask about their budget next. [End Think] Can you

|

facebook Artificial Intelli

tell me what your budget is for this trip? (Clarification)

My budget is $3900.

travel in the future? (Not prioritize important questions)

User has hidden constraints,

I'd prefer to book this trip as part of ﬁ’
alRAUenlEY elen BISONED: @ [Think]: With a budget of $3900, | should ask about their

Terrific! Frequent traveler programs can definitely reward you preferred airline to see if we can find options within their

how to figure out?

for your loyalty.(No clarification) Now, in terms of budget, | budget. [End Think] Do you have a preferred airline that

you'd like to use for this trip?

want to get a better sense of what you're comfortable :
spending on this trip. Are you looking to spend under : s H I k
$1,000, between $1,000 and $2,500, between $2,500 and g yes liprotoriDetin ALinGs "1 Proactive Yy as !
$5,000, or over $5,000 per person for this trip? What type of cabin would you prefer? For example,
ﬁ g would you like economy, premium economy, business,

I'd say my budget for this trip is around $3, 900. or first class?

) How can | assist you further? (Not proactive) I'd prefer business class.

some accommodations. accommodations or transportation? (Proactiveness)

Traveler: Yes, | do have a disability that requires ﬁ @ Do you require disability access for your

] Thank you for sharing this with me. Safety and accessibility area | Yes, | do require disability access.
top priority for our guests with disabilities. :
(@) Llama3.1-8B-Instruct  Accuracy: 0.231 (b) AP EC-Trave| Age Nt Accuracy: 0.279

[Jiang et al, Towards Full Delegation: Designing Ideal Agentic Behaviors for Travel Planning]



Option Two: Hybrid Systems

Deep Models

Solver

Provide
data
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Searchformer: A* Search as a Token
Pregﬂgtlon Task

Wall

2 .

4
|

1 \ 2
Goal

©~—PpPlan step

‘ Frontier state

Closed state

facebook Artificial Intelligence [L. Lehnert, et al, Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping, COLM’24]



Searchformer: A* Search as a Token

Pregﬂgtlon Task

Wall

2 .

4
|

1 \ 2
Goal

©~—PpPlan step

‘ Frontier state

Closed state
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bos
start 0 2
goal 10
wall 12
wall 20
eos

prompt>

=

<trace><plan>

bos
create 0 2 c0 c3
create 0 1 c1 c2
create 0 0 c2 c1 create
11c2cl
create 1 0 c3 cO

plan 02
plan 01
plan 00
plan 10
eos



Training Method

Train a Transformer to predict the next token via teacher forcing.

Model Solution-Only Model Search-Augmented Model

Decoder

A

<prompt>

Srampt>

<plan <trace><p\an>

(100-400 tokens)

facebook Artificial Intelligence



Search-Augmented vs. Solution-Only
Models

=
oo -
O -

I I

)
o O
[ I

Correctly Solved
N
-
|

Test Tasks [in %]

0= 1
50k 100k 500k 1M

Number of Training Sequences



Search-Augmented vs. Solution-Only
Models

100 — P 30x30 Maze Navigation

T o
O > 30 —
= \
O i=
U _&Q 60—
>
- U
§ |c_t5 40
S5 @ 20—
O = Solution Only, 175M

0= —

50k 100k 500k 1M

Number of Training Sequences



Search-Augmented vs. Solution-Only

Models
o —100- - 30x30 Maze Navigation
o
> i 80— Search Augmented, 15M
0 =
Dy 60- Search Augmented, 46M
2 0
8 IC—U e Search Augmented, 175M
S5 @ 20—
O = Solution Only, 175M
0= —
50k 100k 500k 1M

Number of Training Sequences
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Search-Augmented vs. Solution-Only
Models

o —100- - 30x30 Maze Navigation
o
> i 80— Search Augmented, 15M
D =
Dy 60- Search Augmented, 46M
2 %
8 IC—U e Search Augmented, 175M
S5 @ 20—
) 12 Solution Only, 175M

0= —

50k 100k 500k 1M

Search-augmented is much

Number of Training Sequences
J=¢4 more parameter & data efficient!

facebook Artificial Intelligence



Search-Augmented vs. Solution-Only
Models

e Search Augmented

m—— Solution Only

®© ™ W W W VY
N DS N E D
L1 1 1 1 |

Optimally Solved
Test Tasks [in %]

oo
AN

I | I
46M 175M 747M

Model Parameters

Sokoban

Search-augmented is much more parameter & data efficient!



How to go beyond?

Imitation : :
‘ Fine-tuning

Learning
Using solver’s trace to train the Fine-tune the model to achieve shorter
Transformer with teacher forcing trace but still leads to optimal plan!

(Reinforcement Learning task)

e N

Search-augmented Models Searchformer

facebook Artificial Intelligence



Beyond A™ o — T —
Improving search | | |
dynamics via 5 e
. ¢»  Searchformer— | | | | , |
bootstrapping . . .
c;_ A% —] |_| |: I_l
% Searchformer— | [ g | ]
2 e
% Searchformer— | i -
(I) 50I00 10(I)00

Sequence Length Averaged per Test Task



Improving search dynamics via
bootstrapping

Params. Model ILR-on-solved ILR-on-optimal
Solution only - -
Search augmented 0.908 +0.020 0.919 +0.019

45M  Searchformer, step 1  1.054 +0.025 1.062 +0.015
Searchformer, step 2 1.158 +0.025 1.181 +0.012
Searchformer, step 3  1.292 +0.044 1.343 +0.067

175M Solution only - -
Search augmented 0.925 +0.010 0.933 +0.011

757M  Solution only - —

Repeated bootstrapping increases the
Improved Length Ratio (ILR)

facebook Artificial Intelligence



Improving search dynamics via
bootstrapping

Params. Model Solved (%) Optimal (%)

Solution only 90.3 +1.0 86.8 +0.3

Search augmented 92.5 +1.0 90.8 +1.6

45M  Searchformer, step 1  95.5 +1.0 03.5 +1.0
Searchformer, step 2  96.0 +0.5 03.4 +0.6
Searchformer, step 3  95.5 +0.8 03.7 +1.6

175M Solution only 05.7 +0.2 90.0 +0.8
Search augmented 95.2 +0.9 03.2 +1.0

757M  Solution only 96.5 +0.1 02.2 +1.2

facebook Artificia

‘ rneenieernce

Fine-tuning improves
performance initially.



Improving search dynamics via
bootstrapping

Params. Model Solved (%) Optimal (%)

Solution only 90.3 +1.0 86.8 +0.3

Search augmented 92.5 +1.0 90.8 +1.6

45M  Searchformer, step 1  95.5 +1.0 03.5 +1.0
Searchformer, step 2  96.0 +0.5 03.4 +0.6
Searchformer, step 3  95.5 +0.8 03.7 +1.6

175M Solution only 05.7 +0.2 90.0 +0.8
Search augmented 95.2 +0.9 03.2 +1.0

757TM_ Solution only 06.5 0.1 92.2 1.

facebook Artificial Intelligence

Searchformer
outperforms largest
solution-only model.



DualFormer (Searchformer
v2)

bos / Structured Trace Dropping Strategies
(create 0 2 0 a3

5 CIOSENNUNINcUNC: . Dildroplclclosclclaii-c) LvL 1 = bl // drop all the close clauses

S create 0 1 cl c2

|: close 0 1 cl c2 ILvL 2 = D1 + D2 // drop all the close clauses

'(C_; create 0 0 e2 ¢l D2 (drop cost tokens in + all the cost tokens

® create 1 1 c2 cl a clause)

8 close 0 0 c2 cl Lvl 3 = D1 + D2 + sampled D3 // Lvl 2 + drop some

< \create 1 0 c3 c0«——p3 (drop a create clause) create clauses
close 1 0 €3 0 vl 4 =

Q = drop the entire trace /

facebook Artificial Intelligence [D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, arXiv’'24]



DualFormer (Searchformer

v2)

Method Avg Trace Length  1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC  Diversity
Dualformer (auto) 222 99.7 / 994 99.9 / 99.8 0.999 12.52
Maze 15x 15 Complete-Trace 495 94.6/90.1 96.7/93.0 0.964 7.60
Solution-Only - 72.0/68.9 82.7/80.1 0.610 1.52
Dualformer (auto) 351 99.5 / 98.6 99.9 / 99.3 0.997 20.28
Maze 20 x 20 Complete-Trace 851 98.3/95.5 98.8/93.0 0.987 14.53
Solution-Only - 56.3/52.0 71.9/67.5 0.690 1.52
Dualformer (auto) 427 98.6 / 96.9 99.8 / 99.0 0.998 24.81
Maze 25 x 25 Complete-Trace 1208 95.2/85.7 97.0/90.4 0.968 18.85
Solution-Only - 39.7/34.7 60.3/55.4 0.570 1.9
Dual former (auto) 617 96.6 / 92.1 984 / 97.7 0.989 2442
Maze 30 x 30 Complete-Trace 1538 93.3/82.4 95.9/88.1 0.964 7.60
Solution-Only - 30.0/26.0 54.1/47.8 0.500 1.86
Dualformer (auto) 494 94.0 / 90.0 97.4 / 94.7 0.979 497
Sokoban Complete-Trace 3600 929/84.4 94.7789.0 0.944 291
Solution-Only - 86.8/83.4 92.8/90.0 0.919 1.24

Dualformer automatically switches between fast mode (System 1) and slow mode (System 2)
and works better for dedicated models on either modes.
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Fast mode performance

Method 1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC  Diversity

Maze 15x15 Dualformer (fast) 91.8 / 87.6 97.1 / 94.8 0.960 9.05
Solution-Only 72.0/68.9 82.7/80.1 0.610 1.52

Maze 20x20 Pualformer (fast) 90.9 / 84.0 97.0 / 94.0 0.960 17.27
Solution-Only 56.3/52.0 71.9/67.5 0.690 1.52

Maze 25x25 Dualformer (fast) 839 / 729 95.5 /7 90.6 0.940 21.23
Solution-Only 39.7/34.7 60.3/55.4 0.570 1.9

Maze 30x30 Dualformer (fast) 80.0 / 66.0 91.8 / 85.7 0.906 18.23
Solution-Only 30.0/26.0 54.1/47.8 0.500 1.86

Soioha Dualformer (fast) 973 / 944 94.8 / 90.0 0.970 4.92
Solution-Only 86.8/83.4 92.8/90.0 0919 1.24

Slow mode performance

Method Avg Trace Length 1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC  Diversity
Maze 15 x 15 Dualformer (slow) 278 99.6 / 99.2 8999 / 999 0.999 12.54
Complete-Trace 495 94.6/90.1 96.7/93.0 0.964 7.60
Maze 20 x 20 Dualformer (slow) 439 98.9 / 97.8 99.91 / {997 0.998 18.86
Complete-Trace 851 98.3/95.5 98.8/93.00 0.987 14.53
Maze 25 x 25 Dualformer (slow) 589 99.9 / 97.2 99.7 / 99.3 0.997 25.05
Complete-Trace 1208 95.2/85.7 97.0/90.4 0.968 18.85
Dualformer (slow) 854 976 /1932 99.5 / 98.2 0.993 2540
Maze 30 x 30
Complete-Trace 1538 93.3/82.4 95.9/88.1 0.964 7.60
Dualformer (slow) 1482 94.5 / 87.6 97.4 / 94.1 0.970 4.66
Sokoban Complete-Trace 3600 929/84.4 94.7/89.0 0.944 291
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Math Problems

Llama-3-Aug (baseline) Here is a detailed
step-by-step explanation of the reasoning:

» Step 1: Understand the problem and the
given information. We are asked to find
the sum of the elements in the tenth row
of Pascal’s Triangle, given that the third
row has four elements and their sum is 8.

» Step 2: Recall the formula for the sum of
the elements in a row of Pascal’s Triangle.
The sum of the elements in the nth row is
given by the formula: (7) + (7) + (5) +

()=

* Step 3: Identify the relationship between
the sum of the elements in a row and the
sum of the elements in the previous row.
Since the sum of the elements in the nth
row is 2", the sum of the elements in the
(n-1)th row is 271,

» Step 4: Recognize that the sum of the ele-
ments in the third row is 8, which is equal
to 23. This is because the sum of the ele-
ments in the third row is (8) + (‘?) - (g) =
1+ 3+ 3 =7, and the extra 1 comes from
the top row, which is counted as the Oth
TOW.
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Question 1

In Pascal’s Triangle, the third row has four elements, and the sum of these elements is 8. What is the
sum of the elements in the tenth row? (Note that we are counting the top row with a single 1 as the

Oth row).

Step 5: Use the relationship between the
sums of the elements in consecutive rows
to find the sum of the elements in the tenth
row. Since the sum of the elements in
the third row is 23, and the sum of the
elements in the (n-1)th row is 2”1, we
can set up the equation: 23 = 2101,

Step 6: Solve the equation for n. Tak-
ing the logarithm of both sides, we get:
3log2 = (10 — 1) log 2. Simplifying, we
get: 3log 2 = 9log 2, which implies that
log 2 = 0. This is a contradiction, since
log 2 is a positive number.

Step 7: Conclude that the equation 23 =
2101 has no solution, and therefore, the
sum of the elements in the tenth row is not
equal to 2101,

Step 8: Recognize that the sum of the ele-
ments in the tenth row is still given by the

formula: (g) + () + (%) +++ (1) =
210

The answer is: 1024.

Baseline

Llama-3-Aug (p=0.4, ours) Here is a de-
tailed step-by-step explanation of the reason-
ing:

* Step 1: Understand the problem and the

given information. We are asked to find
the sum of the elements in the tenth row of
Pascal’s Triangle, given that the third row
has four elements and their sum is 8.

Step 2: Recall the properties of Pascal’s
Triangle. The elements in each row of
Pascal’s Triangle are the binomial coeffi-
cients, which represent the number of ways
to choose k items from a set of n items. The
sum of the elements in each row is equal to
2™ where n is the row number.

Step 3: Identify the relationship between
the sum of the elements in the third row
and the sum of the elements in the tenth
row. Since the sum of the elements in each
row is equal to 2", we can write the sum
of the elements in the third row as 23 = 8.
Similarly, the sum of the elements in the
tenth row is 210,

Step 4: Calculate the sum of the elements
in the tenth row. 210 = 1024.

The answer is: 1024.

Dualformer



Math Problems

Model Dataset & Dropping Prob | Greedy@1(%) (slow / fast) Trace Length | Pass@20(%) (slow / fast) Trace Length
Aug-MATH (baseline) 16.9 / 9.6 527 / - 59.6 / 29.8 521 / -
Aug-MATH (p=0.1) 186 /11.3 508 / - 61.6 / 32.0 479 / -

Mistral-7B Aug-MATH (p=0.2) 17.8 / 11.2 477 / - 61.4 / 31.9 470 / -
Aug-MATH (p=0.3) 17.8 / 11.8 497 / - 61.9 / 31.7 466 / -
Aug-MATH (p=0.4) 17.0 / 11.0 434 / - 56.4 / 28.9 397 / -
MATH 13.1 / 8.5 290 / - 53.0 / 29.4 227 / -
Aug-MATH (baseline) 19.7 / 13.1 548 / - 62.7 / 35.6 535 / -
Aug-MATH (p=0.1) 20.1 / 13.3 544 / - 63.4 / 36.2 522 / -

Llama-3-8B  Aug-MATH (p=0.2) 20.5 / 13.8 525 / - 63.9 / 36.7 497 / -
Aug-MATH (p=0.3) BN / 13.5 515 / - 63.4 / 37.5 474 / -
Aug-MATH (p=0.4) 20.4 / 13.5 490 / - 63.4 / 37.2 450 / -
MATH 13.3 / 12.6 432 / - 52.8 / 35.5 332 / -




DualFormer

Dualformer ol-preview (OpenAl)

N
o

N
oo
!

i

D Empty Cel
. Wall

N
~
1

N
(o2}

N
(6]
L

N
~

N
w
!

N
N
!

N
=

N
(=}

=
o
i

,_.
©
A

[
~
[

=
(o))
!

fa
(O]
L

=
N

=
w

=
N

=
=

-
o

O N WU O N WY

01234567 8 91011121314151617181920212223242526272829




Option Two: Hybrid Systems

Deep Models

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
End2end 1

Solver

_________________

facebook Artificial Intelligence



Nonlinear objective with combinatorial

constraints

Nonlinear + differentiable
)’ objective £ (x)

 Real-world domains:

« Computer system
planning

* Designing photonic
devices

* Throughput optimization
* Antenna design
* Energy grid

Combinatorial D 4
feasible region




Example: Embedding Table Placeme +_-

@iven: Naive Sharding
* k tables 1 i
. . . 2 5 (2 15[9)| 10
* n identical devices 3/— ; /
4 i
* Table i has memory requirement m; 5) — 10 | — 2]6[7) | 10
.. : 6 . :
* Device j has memory capacity M; 7 \,— ) ; \
8 7]8]9) {15! i (8] 3]4]8)| 10
9 H 9]
Bottleneck

Find
* Allocation of tables to devices observing device memory limits

* Minimize latency which is estimated by a neural network (capturing nonlinear
interactions)

facebook Artificial Intelligence




Example: Embedding Table Placeme

Given: -
* k tables |
* n identical devices $
* Table i has memory requirement m; °
* Device j has memory capacity M; GPU4

35.95

1 1 1 1 1
10 20 30 40 50
Timestamp (millisecond)

Formulation
Minx L({xu}) S.t. Zi xijmi < MJ, Z] xl-j = 1, x,;j (S {0,1}

L is nonlinear due to system issues (e.g., batching, communication, etc)



Solve the Combinatorial Problem in the Latent
Space

N
Original Space | Latent Space
Nonlinear optimization with o
combinatorial constraints Surrogate optimization
min f(x; y) x*(y) = argminc(y)Tx
X ° ° °
x

Predict surrogate cost ¢ = ¢(y)

s.tx€e= o — st xe

combinatorial solved by existing combinatorial solvers

constraints

x*(y) optimizes f (x; y) as much as possible

[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML 23 and outstanding paper in SODS workshop]



Solve the Combinatorial Problem in the Latent
Space

Original Space Latent Space

Nonlinear optimization with
combinatorial constraints

Surrogate optimization

min f(x; y) x*(y) = argminc(y)Tx
X 0 Predict surrogate cost ¢ = ¢(y) x
Sixea:& O stxeq
combinatorial solved by existing combinatorial solvers
constraints

x*(y) optimizes f (x; y) as much as possible

Proposal: gradient-based optimization



SurCo: Surrogate combinatorial opt &

« Use surrogate MILP to solve original problem

* Find linear coefficients ¢ such that argmin f (x) = argmin ¢’ x
xX€E) x €

Problem Surrogate Solution Loss
description y 5 Coefficients ¢ x*(c) f(x*)
Description Solver .
S ) Objective
) | coefficients: | NENSENEN) | - () — argmin Ty | M) pooia >
c=c(y) xX€Q

[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML'23 and outstanding paper in SODS workshop]




Gradient-based Optimization

« Use surrogate MILP to solve original problem
* Find linear coefficients ¢ such that argmin f (x) = argmin ¢’ x

xX€() x €]
Problem Surrogate Solution Loss
description y 5 Coefficients ¢ x*(c) f(x*)
Description Solver .
S ) Objective
) | coefficients: | NENSENEN) | - () — argmin Ty | M) o >
c=c(y) xX€Q
V() S vwe S Vof (%)
Assumed Recent work on differentiable optimization Assumed
differentiable Differentation of blackbox optimizers differentiable
CVXPYLayers
MIiPaal

facebook Artificial Intelligence Etc.




t

GPU1

|
» GPU2

Embedding Table Sharding ‘-

GPU4 35.95
L

1 1 L 1
10 20 30 a0 50 60
Timestam p (millisecon d)

* Public Deep Learning Recommendation Model (DLRM dataset) placing
between 10 to 60 tables on 4 GPUs

* Baseline: Greedy
* SOoTA: RL approach Dreamshard?

* SurCo: Surrogate NN model learned via CVXPYLayers (differentiable LP
Solver)

1Zha et al. NeurlPS 2022
Dataset: https://github.com/facebookresearch/dlrm datasets



https://github.com/facebookresearch/dlrm_datasets

Results — Table Sharding

Table Sharding Solution Loss (Latency) Table Sharding Deployment Runtime (s)
50 2.5
7 2
B / =
o 40 7/ B 2.0
% 4 5 B Domain Heuristic E
= f 0 Greedy g
o 30 ; B SurCo-zero (o e
3 / -
. 5
= 20 - = 1.0
o /,
: / 3
2 ; 7, a,
o 10 7 o 05
" hialta h )
o 0.0 ,. :
DLRM-10 DLRM-20 DLRM-30 DLRM-40 DLRM-50 DLRM-60 DLRM-10 DLRM-20 DLRM-30 DLRM-40 DLEM-50 DLEM-60
Setting Setting
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E, magnitude E, magnitude
first wavelength ~ secon d wavelength

Inverse Photonic Desig

= Design physically-viable devices that take light waves and routes

different wayrlnnathe #n cavcack Incatinae
SI2 — |Seutost|? ’
L(S) :( softplus(g| | . [Seutoft ) )
min(wWyalid) 5

* Device design misspecification loss f (x) computed by differentiable
electromagnetic simulator

* Feasible solution: the design must be the union of brush pattern
* x = binary_opening(x, brush)
* X = ~binary_opening(~x, brush)




Inverse Photonic Design

Waveguide

» Dataset: Ceviche Challenges’

 Most baselines don’t work here due to combinatorial
constraints

» SOoTA: Brush-based algorithm *

» SurCo: Surrogate learned via blackbox differentiation? of
brush solver

1Schubert et al. ACS Photonics 2022
2Vlastelica et al. ICLR 2019

Dataset: https://github.com/google/ceviche-challenges

Wavelength division multiplexe


https://github.com/google/ceviche-challenges

Inverse photonics Convergence
comparison + Solution exampl~ ...

Inverse Photonics Loss Convergence

Method

== Pass-Through

—
e}

— SurCo-zero

S ST o hybid

<
[0 ¢]
s

o
o

Design Misspecification
e
'S

<
o

\

0 25 50 75 100 125 150 175 200
Step

e
=)

Takeaways:
- SurCo-Zero finds loss-0 solutions quickly
- SurCo-Hybrid uses offline training data to get a head start

E, magnitude E, magnitude

first wavelength second wavelength

Wavelength division
multiplexer



Limitation of SurCo

Recall SurCo: Update linear coefficients ¢ such that x*(c) improves objective f(x*(c))

Surrogate Solution Loss
Coefficients ¢ x*(¢) fx®)

Solver Objective
) = e — £ —>
X€EQN

L A Y

V.x*(c) Vef(x)

N
min £(Y, Z) := ; f (go(yi); 2:)

g0 (Y) = arg milyxc( XTCO (Y)

* Requires V.. f (x) > Does not apply to nondifferentiable functions
* Requires V.gg(c) =2 Solver is backpropagatable

[A Zharmagambetov et al, Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information, NeurlPS’23]
€ [A. Ferber et al, GenCO: Generating Diverse Solutions to Design Problems with Combinatorial Nature, ICML’24]



Option Three: Does Deep Model Actually
Converge to Anything Symbolic?

Emerging Symbolic
Structure

Deep Models

facebook Artificial Intelligence



Debate: Is LLM doing retrieval or true
reasoning?

LLM shows emergent behaviors!!

https://medium.com/@fenjiro/large-language-models-lims-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a



https://medium.com/@fenjiro/large-language-models-llms-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a

facebook Artificial Intelligence

Debate: Is LLM doing retrieval or true

reasoning?
% \@(Darlm LeCun & «

Do LLMs perform reasoning or approximate retrieval?

There is a continuum between the two, and Auto-Regressive LLMs are
largely on the retrieval side.

7.2\ Subbarao Kambhampati (o025oar¢3 e yooe)) @

€ @rao2z

Emergent Abilities (noun): The preferred euphemism for what your LLM
does, when saying "approximate retrieval" sounds too unsexy.

#AIAphorisms

LLM is just doing retrievals!!

Models

ol-preview -17.5

Gemma-7h-it  |-20.6
Mistral-7b-v0.3-24.0
Mistral-7b-v0.1 ~ -28.3|

01-mini -29.1|
Mistral-7b-instruct-v0.1 | -29.6
Gemma2-2b-it -31.8]
GPT-40 -32.0)
Gemma2-2b —38.6|
GPT-40-mini -40.0 |
Mistral-7b-instruct-v0.3 -40.3|
Phi-2 —44.9|
Llama3-8b-instruct
Phi-3-medium-128k-instruct
Mathstral-7b-v0.1

Gemma2-27b-it
Phi-3.5-mini-instruct
Gemma2-9b-it

Gemma2-9b
Phi-3-small-128k-instruct
Phi-3-mini-128k-instruct

-57.4]
-57.8|
-59.7|
-59.7|
-62.5|
-63.0|
-63.0|
-64.0
-65.7|

0 —10 -20 —30 —40 50 —60
GSM8K — GSM-NoOp Accuracy Drop(%)



Concrete Example: Modular Addition

a+b=cmodd

Does neural network have an implicit table to do retrieval?

[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition]



Concrete Example: Modular Addition

Logits for Top Fourier Components

6 —— Period 520.00 |
" ' —— Period 47.27
| b —_ d d " —— Period 10.00
Cl . C mO 2| | —— Period 5.00
)
= ‘ | —— Period 2.00
2, ' ’ | |
(@) i
g :
2 _2] ‘ | ‘ \
| o E
' ‘e 3l i
Learned representation = Fourier basis 007 _6 i
85 90 95 100 108 115 120 125 130
Number Space
W hy? R (a) Final logits for top Fourier components

facebook Artificial Intelligence
[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition]



Problem Setup

MSE Loss:

Top layer

Bottom layer

Min ||Output —one-hot(c)||,

ij

J

O-0O-0O--- g hidden nodes

(Quadratic Activation)

ij

One-hot(a)

One-hot(b) a+b=cmodd

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



(Scaled) Fourier Transform
k: frequency

d—1
— imk/d
Zopi = E Wam i€
akj amj {W,, Wy, W.} are real

m=0

d—1 o '
—_— m
Zpkj = E Whmj€ /

m=0 Hermitian condition holds
d-1 N Zakj = Za,—k,j
—_— m
Zckj = E Wemje ™/ g = T
m=0 bkj = Zb,~k,j

Zckj = Zc,—k,j

facebook Artificial Intelligence



What a Gradient Descent Solution look
like?

12, d=74q=20
0
2
X
4
6
Frequency 0 2 4 6 8 10 12 14 16 18
J

Hidden node index

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



What a Gradient Descent Solution look
like?

Order-6
solutions

Symmetry due to
Hermitian condition 0 2 4 6 8 ,10 12 14 16 18

J

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



What a Gradient Descent Solution look
like?

|zc| at t =2900

Order-6
Order-4

0 2 4 6 8 10 12 14 16 18
J

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



MSE Loss

More Statistics on Gradient Descent
Solutions

Training/test loss/accuracy ford = 23 Distribution of Solution order at 10k epochs
17 - - 1.0 6 -
1.0 4 - 0.8 5 o
- -== test loss -
> -—- trair:_loss [ 0:6 g § ‘
0.6 - — tes't_acc —_ E o 3 -
9:41 = A 27 Order-4 and order-6
0.2 5 o e 1- solutions really happen!
0.0 - . . —— --'-l----—o.o . | | B B | |
0 50 100 150 200 0 2 4 6 8 10
Epoch Solution order at all frequencies

facebook Artificial Intelligence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Effect of Weight

Decay

Stronger

d=23, wd=1e-05

40 4

20 A

Counts

d=71, wd=1e-05

50 A

Counts

d=127, wd=1e-05

200 A

100 A

Counts

Solution order

facebook Artificial Intelligence

d=23, wd=5e-05

20 A

d=23, wd=0.0001

20 A

10 -

d=71, wd=5e-05

100 -

50 A

d=71, wd=0.0001

100 A

50 1

d=127, wd=5e-05

200 -

100 A

0 5 10

Solution order

d=127, wd=0.0001

100 A

0 5 10
Solution order

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]

d=23, wd=0.0002

P weight decay

d=23, wd=0.0005

20 - 20 -
0 0
d=71, wd=0.0002 d=71, wd=0.0005
1 o
100 - : P
: ool
50 + 1 I 1
1 1
1 1
0 - 0 —
d=127, wd=0.0002 d=127, wd=0.0005
R I
1 1 1 1
200 - ¥ 1 200 - r 3
1 1 1 1
1 | | 1
1 1 1 1
1 1 1 1
0 - 1 T 1 T 0' 1 T 1 T

0 5 10
Solution order

0 5 10
Solution order






Structure of Loss Functions

MSE loss £(2) =d 1 Y0k (2) + 1 —1/d

IR

p€{a,b} k'

2
1

2
{’k(z) = —2rkkk + Z |rk1k2k| +Z
k1ks

R

m+0 p€{a,b}

Z o k! m—k' k

kl

Term 7y k,k(2) = X Zak, jZbk, jZckj AN Tpk, i,k (Z) = 2j Zpk, jZpk, jZck]

facebook Artificial Intelligence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



Structure of Loss Functions

MSE loss #(2) = d 1Y .0fk(2) +1—1/d

IR

p€{a,b} k'

2

EEDID)

m+0 p€{a,b}

Z Tp k' m—k' k

kl

2 1
i (2) = —21pp + Z T k| + 1
kiky

Term 1y, 1,k (2) = X Zak, jZbk, jZckj aNd Tpk, k,k (Z) = 2} Zpk, jZpk, jZckj

Sufficient conditions of Global Optimizers:

facebook Artificial Intelligence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv'24]



How to Optimize?

The objective is highly nonlinear !!
However, nice algebraic structures exist!



How to Optimize?

The objective is highly nonlinear !!
However, nice algebraic structures exist!

r . N r ‘ N r ) . N
N\ 7N /7 {
-\,_f,:' { . * ) )
\"/L{,-"J’
< oF > < > < 2 X X
/,- A\ ,\L_'\‘\\ N\ //- L//V
C)C)C)C) C ) () ) , )
\_ N " U . _ N, N — ) \_ . Yy,

24

Z = quo Zq: All 2-layer networks with different number of hidden nodes



How to Optimize?

The objective is highly nonlinear !!
However, nice algebraic structures exist!

- ‘ N ‘ N D
N 5 Wik
Nee e s/ N ,&\}:/
\ / /
\ [ L/N AL
< (2 OO XX
- ,} _‘\<\\7/ \ , :/ L/ ) I N »\y
L { ) } /
o ) y,
24

Z = Ugs0Zq: All 2-layer networks with different number of hidden nodes
Ring addition +: Concatenate hidden nodes
Ring multiplication *: Kronecker production along the hidden dimensions

(Z,+, *)is a semi-ring



Ring Homomorphism

A function r(z): Z ~ C is a ring homomorphism, if
r(1) =1
r(z, + 2z3) = 1r(z1) + 7r(22)
r(z, * 2;) = 1(21)7(27)



Ring Homomorphism

cg Tk, k,k (Z) and 7,5 1 (Z) are ring homomorphisms!




Ring Homomorphism

2

MSE Loss
1

2
t(2) = =21 + Z Irk1k2k| + 2
K1k,

EEID)

m+0 p€{a,b}

Z Z rp,k,,_k,’k

p€{a,b} k'

Z T'p k! m—k'k

kl




Ring Homomorphism

MSE Loss
1

2
t(2) = =21 + Z |7‘k1k2k| + 2
K1k,

2

E)

m+0 p€{a,b}

Z Z rp’k,,_k,’k

pe€{a,b} k'

Z T'p k! m—k'k

kl

Partial solution z, satisfies 73, . (21) = 0

Partial solution z, satisfies 7+ ;. ,(z,) = 0



Ring Homomorphism

2

MSE Loss
1

2
t(2) = =21 + Z |rk1k2k| + 2
K1k,

E)

m+0 p€{a,b}

Z Z rp’k’,_k,’k

pe€{a,b} k'

Z T'p k! m—k'k

kl

Partial solution z, satisfies 73, . (21) = 0 o
z = z, x 7, satisfies both 7y, ., (2) =7,/ 7, (2) =0
Partial solution z, satisfies 7,/ _,7,(z,) =0



Composing Global Optimizers from Partial
Ones

facebook Artificial Intel Iigence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



Composing Global Optimizers from Partial
Ones

Compositing
solutions using
ring multiplication *

A

facebook Artificial Intelli gence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



Composing Global Optimizers from Partial
Ones

Compositing Compositing
solutions using solutions using
ring multiplication * ring addition +

N

facebook Artificial Intelli gence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



Exemplar constructed global

optimizers
(d—1)/2
Order-6 zp¢ (2*3) Zpg = Z 2(F) 5 2(F) &

syn



Exemplar constructed global

optimizers
1 (d—1)/2
Order-6 zg (2*3) 2r6 = o Y 2« 2P x oy,
6 k=]
. 1 1 (d—1)/2
Order‘4 ZF4~/6 (2 2) — " "(kO) o Z zg‘il)

ZF4/6 = Zpe T
(mixed with order-6) V6 V4 k=1,k+£ko



Exemplar constructed global

optimizers

Order-6 z5 (2*3)

Order-4 Zp, 6 (2%2)
(mixed with order-6)

Perfect memorization
(order-d per frequency)

(d—1)/2
Zpg = Z zs(’}fr)l x zF) %y
1 1 (d—1)/2
« (k k
Zpaje = S—Gz%é’) + B Z zgm)
k=1,k+£kq
d—1 d—1
za:ZuZL’ Zb—zu'g
p=0) =)



Gradient Descent solutions matches with
construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/"":)i * zék) z,(]‘"‘:)i * zs(;cr)w 5 25 « zs(;“r)l others
23 || 0.040.0 [0.00+0.00|5.71+5.71{|0.054+0.01|4.80+0.96||47.07+1.88| 11.31+1.76 |[39.80+2.11|1.82+1.82
71 || 0.040.0 {0.0040.00[{0.00+0.00{[0.03+0.00|5.02+0.25||72.57+0.70| 4.00+1.14 [21.14+2.14(2.29+1.07
127|| 0.040.0 [1.5040.92|0.00+0.00{[{0.26+0.14|0.93+0.18[|82.96+0.39| 2.25+0.64 [14.13+0.87/0.66+0.66

g=7512,wd =5-1075



Gradient Descent solutions matches with
construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/""‘:)i * zék) z,(]‘"‘:)i * zs(;“r)w 5 25 « zs(;“r)l others
23 || 0.040.0 10.00+0.00|5.71+5.71{|0.054+0.01|4.80+0.96||47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 || 0.040.0 |0.0040.00[{0.00+0.00{[0.03+0.00|5.02+0.25||72.57+0.70| 4.00+1.14 [21.14+2.14(2.29+1.07
127] 0.040.0 |1.5040.92|0.00+0.00{[{0.26+0.14|0.93+0.18[|82.96+0.39| 2.25+0.64 [14.13+0.87/0.66+0.66

100% of the per-freq
solutions are order-4/6




Gradient Descent solutions matches with
construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/""‘:)i * zék) z,(]‘"‘:)i * zs(;“r)w 5 25 « zs(;“r)l others
23 || 0.040.0 10.00+0.00|5.71+5.71|0.054+0.01|4.80+0.96||47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 || 0.040.0 |0.0040.00[{0.00+0.00[l{0.03+0.00|5.02+0.25||72.57+0.70| 4.00+1.14 [21.14+2.14(2.29+1.07
127|| 0.040.0 |1.5040.92|0.00+0.00l{0.26+0.14|0.93+0.18[|82.96+0.39| 2.25+0.64 [14.13+0.87(0.66+0.66

95% of the solutions are
factorizable into “2*3” or “2*2”




Gradient Descent solutions matches with
construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/""‘:)i * zék) z,(]‘"‘:)i * zs(;“r)w 5 25 « zs(;“r)l others
23 || 0.040.0 [0.00+0.00|5.71+5.71(10.054+0.01|4.80+0.96)|47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 || 0.040.0 {0.0040.00[{0.00+0.00{]0.03+0.00|5.02+0.25|| 72.57+0.70| 4.00+1.14 [21.14+2.14(2.29+1.07
127|| 0.04+0.0 [1.5040.92|0.00+0.00(]0.26+0.14|0.93+0.18|82.96+0.39| 2.25+0.64 [14.13+0.87|0.66+0.66

Factorization error is very small




Gradient Descent solutions matches with
construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/"":)i * zék) z,(]‘"‘:)i * zs(;“r)w 5 25 « zs(% others
23 || 0.040.0 [0.00+0.00|5.71+5.71{|0.054+0.01|4.80+0.96{|47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 || 0.040.0 {0.0040.00[{0.00+0.00{[0.03+0.00|5.02+0.25)| 72.57+0.70| 4.00+1.14 [21.14+2.14(2.29+1.07
127|| 0.040.0 {1.5040.92|0.00+0.00{[{0.26+0.14|0.93+0.18)| 82.96+0.39| 2.25+0.64 [14.13+0.87(0.66+0.66

98% of the solutions can be
factorizable into the constructed forms




Gradient Descent solutions matches with
construction

Distribution of the parameters in the solutions
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Possible Implications

Do neural networks end up learning more efficient
symbolic representations that we don’t know?

Does gradient descent lead to a solution that
can be reached by advanced algebraic operations?

Will gradient descent become obsolete, eventually?
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