
Using LlamaIndex to build Advanced Retrieval in 
your LLM App

Jerry Liu, LlamaIndex co-founder/CEO 



RAG



Context

● LLMs are a phenomenal piece of technology for knowledge generation and 
reasoning. They are pre-trained on large amounts of publicly available data.

Use Cases
Question-Answering

Text Generation
Summarization

Planning

LLM’s



Context

● How do we best augment LLMs with our own private data?

Use Cases
Question-Answering

Text Generation
Summarization

Planning

LLM’s

API’sRaw Files

SQL DB’sVector Stores

?



LlamaIndex: A data framework for LLM applications

● Data Management and Query Engine for your LLM application
● Offers components across the data lifecycle: ingest, index, and query over data

Data Ingestion 
(LlamaHub 🦙) Data Structures Queries

● Connect your existing 
data sources and data 
formats (API’s, PDF’s, 
docs, SQL, etc.)

● Store and index your 
data for different use 
cases. Integrate with 
different db’s (vector 
db, graph db, kv db)

● Retrieve and query over 
data

● Includes: QA, 
Summarization, Agents, 
and more



Data Connectors: powered by LlamaHub 🦙 

● Easily ingest any kind of data, from anywhere 
○ into unified document containers 

● Powered by community-driven hub
○ rapidly growing (100+ loaders and counting!)

● Growing support for multimodal documents (e.g. with inline images)

<10 lines of code to 
ingest from Notion

https://llamahub.ai/


Data Indices + Query Interface

Your source 
documents are 
stored in a data 
collection

In-memory, 
MongoDB

Our data indices 
help to provide a 
view of your raw 
data

Vectors, 
knowledge 
graphs, 
keywords

A retriever helps to 
retrieve relevant 
documents for your 
query

A query engine 
manages retrieval 
and synthesis 
given the query. 



Storage Abstractions
KV Stores:

● In-memory
● MongoDB
● S3

Vector Stores:
● Pinecone
● Weaviate
● Chroma
● Milvus
● Faiss
● Qdrant
● Redis
● Deeplake
● Metal
● DynamoDB
● LanceDB
● Opensearch
● etc.





LLM Apps over Data (Use Cases)

Simple
reasoning

Complex/multistep 
reasoning

Passive Interactive

● Q&A over document(s)
● Generative search 

(retrieval augmented 
generation)

● Conservational agent
● Structured analytics

● Headless agent

● Summarization
● Translation 
● Schema extraction



LLM Apps over Data (Use Cases)

Simple
reasoning

Complex/multistep 
reasoning

Passive Interactive

● Q&A over document(s)
● Generative search 

(retrieval augmented 
generation)

● Conservational agent
● Structured analytics

● Headless agent

● Summarization
● Translation 
● Schema extraction

Challenge: Data Management & Orchestration



Naive RAG Stack for building a QA System

Vector 
Database

Doc

Chunk

Chunk

Chunk

Chunk

ChunkChunkChunk LLM

Data Ingestion / Parsing Data Querying

5 Lines of Code in LlamaIndex!



Naive RAG Stack (Data Ingestion/Parsing)

Vector 
Database

Doc

Chunk

Chunk

Chunk

Chunk

Naive State: 
● Split up document(s) into even chunks. 
● Each chunk is a piece of raw text.
● All chunks are stored in the same collection 

in a vector database.



Naive RAG Stack (Querying)

Vector 
Database

ChunkChunkChunk LLM

Naive State: 
● Find top-k most similar chunks from vector 

database collection
● Plug into LLM response synthesis module 



Challenges with Naive RAG

● Failure Modes
○ Quality-Related (Hallucination, Accuracy)
○ Non-Quality-Related (Latency, Cost, Syncing)



Challenges with Naive RAG (Response Quality)

● The most common reason for bad response quality is bad retrieval
○ If the retrieved results are bad, there’s no way the LLM can synthesize a proper response 

without hallucinating! 



Challenges with Naive RAG (Response Quality)

● Aspects of Bad Retrieval
○ Low Precision: Not all chunks in retrieved set are relevant

■ Hallucination + Lost in the Middle Problems
○ Low Recall: Now all relevant chunks are retrieved.

■ Lacks enough context for LLM to synthesize an answer
○ Outdated information: The data is redundant or out of date.



Challenges with Naive RAG (Other)

● How do you deal with updates in the source document?
○ How do you update stored chunks in the vector database? 

● How do you ingest hundreds/thousands of documents? 



What do we do? 

● Data: Can we store additional information beyond raw text chunks?
● Embeddings: Can we optimize our embedding representations?
● Retrieval: Can we do better than top-k embedding lookup?
● Synthesis: Can we use LLMs for more than generation? 



Techniques for Better Performing RAG



Decouple Embeddings from Raw Text Chunks

Raw text chunks can bias your embedding representation with filler content (Max Rumpf, sid.ai) 



Solutions:

● Embed text at the 
sentence-level - then 
expand that window 
during LLM synthesis

Decouple Embeddings from Raw Text Chunks



Solutions:

● Embed text at the 
sentence-level - then 
expand that window during 
LLM synthesis

Decouple Embeddings from Raw Text Chunks

Sentence Window Retrieval (k=2)

Naive Retrieval (k=5)

Only one out of the 5 chunks is relevant 
- “lost in the middle” problem



Solutions:

● Embed “references” to text chunks instead of the text 
chunks directly.

● Examples
○ Smaller Chunks
○ Metadata
○ Summaries

● Retrieve those references first, then the text chunks.

Decouple Embeddings from Raw Text Chunks



Organize your data for more structured retrieval
(Metadata)
● Metadata: context you can inject into 

each text chunk
● Examples

○ Page number
○ Document title
○ Summary of adjacent chunks
○ Questions that chunk can answer (reverse 

HyDE)
● Benefits

○ Can Help Retrieval
○ Can Augment Response Quality
○ Integrates with Vector DB Metadata Filters

We report the development of GPT-4, 
a large-scale, multimodal…

{“page_num”: 1, “org”: “OpenAI”} Metadata

Text Chunk

Example of Metadata



Simple use 
case: adding 
page numbers 
to PDF’s 
allows for 
in-line 
citations



Simple use 
case: adding 
page numbers 
to PDF’s 
allows for 
in-line 
citations



Using LLMs for 
Automatic 
Metadata 
Extraction



Organize your data for more structured retrieval
(Metadata Filters)
Question: “Can you tell me about Google’s R&D initiatives from 2020 to 2023?”

● Dumping chunks to a single collection doesn’t work.

Single Collection of 
all 10Q Document 

Chunks

2020 10Q chunk 4

top-4 2020 10Q chunk 7

2021 10Q chunk 4

2023 10Q chunk 4

No guarantee you’ll 
return the relevant 
document chunks!

query_str: 
<query_embedding>



Question: “Can you tell me about Google’s R&D initiatives from 2020 to 2023?”

● Here, we separate and tag the documents with metadata filters.
● During query-time, we can infer these metadata filters in addition to semantic query.

2020 10Q

2021 10Q

2022 10Q

2023 10Q

2020 10Q chunk 4

2021 10Q chunk 4

2022 10Q chunk 4

2023 10Q chunk 4

query_str: 
<query_embedding>

Metadata tags: 
<metadata_tags>

Organize your data for more structured retrieval
(Metadata Filters)



● Organize your data hierarchically 
○ Summaries → documents
○ Documents → embedded objects 

(Tables/Graphs)

Organize your data for more structured retrieval
(Recursive Retrieval)



Summaries → documents

● Embed larger documents via summaries. First retrieve 
documents by summaries, then retrieve chunks within those 
documents

Organize your data for more structured retrieval
(Recursive Retrieval)



Documents → Embedded Objects

● If you have embedded objects in your PDF 
documents (tables, graphs), first retrieve 
entities by a reference object, then query 
the underlying object.

Organize your data for more structured retrieval
(Recursive Retrieval)



Production RAG Guide
https://gpt-index.readthedocs.io/en/latest/end_to_end_tutorials/dev_practices/production_rag.html

https://gpt-index.readthedocs.io/en/latest/end_to_end_tutorials/dev_practices/production_rag.html


Evaluation



Synthetic Dataset Generation for Retrieval Evals
1. Parse / chunk up text corpus
2. Prompt GPT-4 to generate questions 

from each chunk (or subset of chunks)
3. Each (question, chunk) is now your 

evaluation pair! 
4. Run question through retriever. 

Compare against ground-truth with 
ranking metrics.

36



Fine-Tuning



Fine-tuning

You can choose to fine-tune the embeddings or the LLM



Fine-tuning (Embeddings)

Generate a synthetic query dataset from raw text chunks using LLMs



Fine-tuning (Embeddings)

Use this synthetic dataset to finetune an embedding model.

● Directly finetune sentence_transformers model
● Finetune a black-box adapter (linear, NN, any neural network)



Fine-tuning a Black-box Adapter



Fine-tuning (LLMs)

Use OpenAI to distill GPT-4 
to gpt-3.5-turbo

● Final response 
generation

● Agent intermediate 
reasoning



Finetuning Abstractions in LlamaIndex
https://gpt-index.readthedocs.io/en/latest/end_to_end_tutorials/finetuning.html

https://gpt-index.readthedocs.io/en/latest/end_to_end_tutorials/finetuning.html


Notebook Walkthroughs



Quickstart Walkthrough
https://colab.research.google.com/drive/1knQpGJLHj-LTTHqlZhgcjDH5F_nJIiY0?usp=sharing

https://colab.research.google.com/drive/1knQpGJLHj-LTTHqlZhgcjDH5F_nJIiY0?usp=sharing


Advanced Retrieval: Node References
https://colab.research.google.com/drive/1JazWHjk-_KWm-_o0pcRtpwtJ8TwFu2aH?usp=sharing

https://colab.research.google.com/drive/1JazWHjk-_KWm-_o0pcRtpwtJ8TwFu2aH?usp=sharing

