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Success of LLMs for text-to-code generation

OpenAI Codex

Chen et al., Evaluating Large Language Models Trained on Code. 



Code generation from natural language + input-output examples

DeepMind AlphaCode: competitive programming

Li, …, Chen et al., Competition-level Code Generation with AlphaCode, Science 2022. 



ChatGPT generates code for calling APIs
https://writings.stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram-superpowers/

Code generation for tool use

https://writings.stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram-superpowers/


Cai, Wang, Ma, Chen, Zhou, Large Language Models as Tool Makers.

Code generation for tool making



Challenge 1: algorithmic reasoning

OpenAI, GPT-4 Technical Report.



Challenge 2: predicted code in the first round can be problematic 

• LLMs might fail to solve simple coding problems 
specified with input-output examples

• Weakness in code execution understanding



Challenge 3: compositional generalization

SCAN length split

• Compositional generalization: given basic components and a few demonstrations of their
combinations, generalize to novel combinations.

• Length generalization: generalize to longer test samples than the training ones.
• LLMs fail to achieve length generalization without proper prompt design

Shi et al., ExeDec: Execution Decomposition for Compositional Generalization in Neural Program Synthesis.
Zhou et al., Least-to-most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.



Outline

• Background: how large language models change the code generation paradigm

• AlphaCode:  large language models for competition-level code generation

• Self-debugging: teach large language models to debug their own predicted code

• Dynamic least-to-most prompting: enable compositional generalization for code generation

Li, …, Chen et al., Competition-level Code Generation with AlphaCode, Science 2022.
Chen, Lin, Schärli, Zhou, Teaching Large Language Models to Self-Debug. 
Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.



Part 1: Background on code generation

• Learning-based code generation before large language models
• Specialized models for different applications and programming languages

• Code generation with LLMs
• One model for multiple coding applications
• Enable quick adaptations to new tasks via prompting



Code generation: transition with learning-based techniques

FlashFill:
string processing in Microsoft Excel

[Gulwani 2011; Polozov et al., 2015]
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Code generation: transition with learning-based techniques

Learning probabilistic grammars
[Zettlemoyer et al., 2012; Liang et al., 2013]
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[Zhong et al., 2017; Ying et al., 2017; Yu et al., 2018]

FlashFill:
string processing in Microsoft Excel

[Gulwani 2011; Polozov et al., 2015]

SpreadsheetCoder:
formula prediction from ambiguous context

[Chen et al., 2021]

Learning-based
techniques support
more complex and
ambiguous program
specifications.



Code generation: transition with large language models

Support more complex languages
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Code generation: transition with large language models

Support more complex languages
[Zhong et al., 2017; Ying et al., 2017; Yu et al., 2018]

SpreadsheetCoder:
formula prediction from ambiguous context

[Chen et al., 2021]

GPT Bard
Code Llama

StarCoder …

Large language models enable more diverse code 
generation applications with free-form natural 
language specification.



Before LLMs: specialized model architectures to represent code structures 

Wang*, Shin* et al., RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers, ACL 2020.

• Encoder: self-attention is biased towards tokens with relations in database schemas

• Decoder: tree-structured decoding based on the SQL grammar

RAT-SQL for text-to-SQL generation



Before LLMs: encoder-decoder architecture for programming by examples

Chen, Liu, Song, Execution-Guided Neural Program Synthesis, ICLR 2019.
Chen, Song, Tian, Latent Execution for Neural Program Synthesis, NeurIPS 2021.
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Before LLMs: decoding schemes to utilize the code execution 

Chen, Liu, Song, Execution-Guided Neural Program Synthesis, ICLR 2019.
Chen, Song, Tian, Latent Execution for Neural Program Synthesis, NeurIPS 2021.

!𝐼!"# 𝑂<start> !𝐼! 𝑂 !𝐼!$# 𝑂

𝐼% 𝑂

!𝐼%: (latent) execution state at step 𝑡
(𝐼&, 𝑂): input-output example



• State-of-the-art language models treat a programming language as another natural language
• Large-scale training + large-scale off-the-shelf Transformer-based architecture → 
     high-performance generative model for both text and code

• The same training recipe is applied to both text and code
• Large-scale pretraining
• Instruction tuning

After LLMs: programming languages as foreign languages?



Instruction tuning: multi-task learning generalizes to unseen tasks

Chung, Hou, Longpre, …, Chen,…, Wei, Scaling Instruction-Finetuned Language Models.

• Scaling up the model size and number of training tasks improves the performance.
• Training with chain-of-thought data triggers rationale generation by default.



Bard demo: data processing

https://blog.google/technology/ai/code-with-bard/

https://blog.google/technology/ai/code-with-bard/


Bard demo: code explanation

https://blog.google/technology/ai/code-with-bard/

https://blog.google/technology/ai/code-with-bard/


Bard demo: code debugging

https://blog.google/technology/ai/code-with-bard/

https://blog.google/technology/ai/code-with-bard/


Outline

• Background: how large language models change the code generation paradigm
• In the era of LLMs, what do we learn from techniques for developing specialized code 

generation models?

• AlphaCode:  large language models for competition-level code generation
• Leverage execution for code reranking

• Self-debugging: teach large language models to debug their own predicted code
• Leverage execution to improve the sample efficiency

• Dynamic least-to-most prompting: enable compositional generalization for code generation
• Leverage syntax structures for problem decomposition

Li, …, Chen et al., Competition-level Code Generation with AlphaCode, Science 2022.
Chen, Lin, Schärli, Zhou, Teaching Large Language Models to Self-Debug. 
Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.



Li, …, Chen et al., Competition-level Code Generation with AlphaCode, Science 2022. 

Part 2: LLMs for competition-level code generation



Competitive programming: input format

Long and complicated text description + input-output specification 



Competitive programming: sample decoded program

No direct mapping between the problem description and output code 



Challenges

• The model needs to not only understand the intended execution behavior 
specified in the long and complicated problem description, but also come up 
with an efficient implementation.

• The given input-output examples are just a few simplest illustrative examples. 
The predicted code also needs to pass many more hidden test cases, often 
more complex and larger-scale.

• New competitive programming problems are very different from existing 
problems on a surface level.



Where we are now?
Evaluation on Codeforces platform, 10 competitions with >5k participants per contest
• An ensemble of 41B and 9B models
• 10 submissions per problem Right is better

• Average ranking across 10 contests: top 54.3%
• Codeforces rating ranking among all Codeforces users: top 28%



Would scaling up the model solve the problem? 

• Performance gain becomes less 
significant with larger models

• No model achieves decent 
performance with few samples

• 10 final submissions come from 
much more samples



GPT-4 still fails on Codeforces problems

OpenAI, GPT-4 Technical Report.



AlphaCode overview



AlphaCode overview



Temporal split for training and test data construction 

• Pretraining: 715.1GB code from GitHub before 2021/07/14
• Multiple programming languages: C++, Python, Java, JavaScript, C#, etc.

• Finetuning with CodeContests, containing problem-solution pairs
• 13,328 competitive programming problems before 2021/07/14
• Human solutions in C++, Python, and Java
• ~900 solutions per problem, including correct and incorrect ones (~50% each)

• Validation set: 117 Codeforces problems in 2021/07/14-2021/09/20

• Test set: 165 Codeforces problems after 2021/09/20



Training with value prediction & conditioning

Metadata (provided in the training set)

• Training
• Metada: include rating (difficulty), tags (solution type) and language (Python3/C++)
• Value conditioning: train on both correct and incorrect solutions
• Value prediction: add an auxiliary loss to predict the solution correctness

• Evaluation
• Always condition on “CORRECT SOLUTION”
• Randomly sample rating and tags, sample both Python3 and C++ programs

• Improve the diversity of samples



AlphaCode overview

Leverage 
program 

execution



• Execute all programs on example tests in the problem description, filter out those 
samples that do not pass the tests
• Note: the solution is correct when passing both example tests and hidden tests 

(not included in the problem description)

• >99% of samples do not pass example tests (1-2 example tests per problem)

Filtering via execution on example tests



• Recall: hidden tests for test problems are not available
• Train a separate model to generate new test inputs

Clustering by execution on generated inputs

• Execute sampled programs on all generated inputs
• Cluster all programs with the same outputs together
• Sample 1 program from each of the 10 largest clusters

Text description
…

Example tests
…

Generated 
Inputs …



Solve rate scales log-linearly with more compute & model size



Solve rate scales log-linearly with more samples



Ablation studies: pretraining

1B encoder-decoder model

• MassiveText: an English text corpus with 3% GitHub code
• Pretraining with multiple programming languages achieves the best performance

Rae et al., Scaling Language Models: Methods, Analysis & Insights from Training Gopher.



Ablation studies: finetuning

1B encoder-decoder model

• Value conditioning and prediction significantly improves the performance, 
especially with fewer samples

• Clustering via execution selects better samples for final evaluation



Ablation studies: filtering and clustering
Oracle sample selection

1B encoder-decoder model

• Filtering with execution is crucial

• Clustering with generated inputs can 
provide more gain than scaling up models

• Still a gap from the oracle sample selection



Breakdown on different algorithms

• Solve rate of 10@10k on most popular problems types
• Dynamic programming and constructive algorithms are particularly 

challenging, even if there are a lot of related training problems



Takeaway

● Scaling enables language models to go beyond memorization and solve 
unseen challenging algorithmic reasoning problems.

● Leveraging execution results improves the complexity of synthesized 
programs with input-output examples.

● Still a huge gap to top human programmers.



Part 3: Self-debugging with LLMs

Chen, Lin, Schärli, Zhou, Teaching Large Language Models to Self-Debug. 



Part 3: Self-debugging with LLMs

Chen, Lin, Schärli, Zhou, Teaching Large Language Models to Self-Debug. 



Recall: LLM-generated code in the first round can be problematic 



AlphaCode’s approach: code selection using execution results

Oracle sample selection

AlphaCode 1B

Limitation: sub-optimal sample efficiency
■ Require a lot of model samples
■ Does not utilize wrong predictions that can 

be partially correct



● This is why debugging is an important skill for human programmers!

● Good programmers are able to identify bugs by themselves, usually via investigating the execution results and 
reasoning about the code semantic meaning.

● Self-debug: teach large language models to debug their own predicted code via rubber duck debugging

Human-written code in the first round also might not be perfect

Chen, Lin, Schärli, Zhou, Teaching Large Language Models to Self-Debug. 



Self-debugging overview



Demo with Bard: code generation



Demo with Bard: debugging with code execution



● Challenges
○ Require cross-domain generalization

■ Each question can ask about 
different databases

○ No unit tests
■ The model needs to infer the 

code correctness by itself

● Approach: self-debugging by explaining 
the potential inconsistency between the 
code and the question

Self-debugging without unit tests: text-to-SQL generation



Step 1: explain the question and the generated code



Step 2: self-debugging with the generated explanations



All unit tests are available 
for debugging.

LLM does not need to 
infer the code 
correctness, can focus on 
fixing the wrong code.

Application 2: code translation



Simple: a short universal feedback 
for all wrong code.

Unit test feedback: include the 
execution results.

Code explanation: line-by-line 
explanation of the implementation

Trace: line-by-line simulation of the 
execution trace

Self-debugging with different feedback formats



Self-debugging with different feedback formats



● MBPP: 1 unit test in the prompt, 2 hidden unit tests for evaluation
● Passing the given unit test does not necessarily mean that the predicted code is correct
● The model still needs to infer the code correctness when the predicted code passes the 

given unit test

Application 3: text-to-Python generation



Results

● StarCoder: 15.5B open-source coding LLM
● Self-debugging consistently boosts the performance across different LLMs



More informative feedback improves self-debugging performance

● Note: simple feedback also utilizes code 
execution to indicate the code correctness

● Adding execution results (UT) consistently 
improves the performance over the 
generic simple feedback

● LLM-generated code explanation can 
provide additional gain



● Codex performs the best at SQL with 
few-shot prompting

● GPT-4’s performance gain using self-
debugging is on par with Codex

Self-debugging can be triggered with few-shot prompting



Self-debugging from greedy decoding can match the baseline performance which utilizes 
>10x samples

Self-debugging improves sample efficiency



What error types can be fixed by self-debugging?

● 9% improvement on the 
hardest SQL tasks 

● Self-debugging fixes subtle 
mistakes in code; e.g., missing 
WHERE conditions in complex 
SQL queries

● Note: self-debugging does not 
improve the fundamental 
coding capability of LLMs



Importance of code execution for self-debugging

● Self-debugging improvement is less 
significant w/o code execution, but can 
still bring up to 5% performance gain 
using Codex and GPT-4

● Trace feedback simulates the execution 
outcome and provides helpful 
information for self-debugging

Self-debugging without code execution



Discussion: valid external feedback is crucial for self-correction

Huang, Chen, Mishra, Zheng, Yu, Song, Zhou, Large Language Models Cannot Self-Correct Reasoning Yet.

● Oracle: utilize the ground truth 
answer for correction

● Without oracle feedback for 
correction, LLMs can wrongly 
judge the correctness of its 
predictions for reasoning 
problems, leading to worse 
performance after self-correction

● Code execution provides natural 
external feedback: humans often 
debug better within an IDE 



Takeaway

● We can teach LLMs to self-debug via few-shot prompting, even if the LLM 
itself was not specifically tuned for debugging

● Significant improvement across several coding tasks, including those that 
do not have unit tests

● Self-debugging is not just an approach: it is another indicator of the LLM 
coding capability



Part 4: Compositional generalization for code generation

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.



Compositional generalization for sequence-to-sequence learning
• Compositional generalization: given basic components and a few demonstrations of their

combinations, generalize to novel combinations.

• Primitive generalization: generalize to novel combinations of primitives, where the test
inputs and outputs have similar lengths to the training samples.

• Example:
• Training on how to translate “walk”, “walk twice”, and “jump”.
• Testing on how to translate “jump twice”.

• Length generalization: generalize to longer test samples than the training ones.
• Example:

• Training on how to parse “while (x) {x = x + 1;}”, “x = x + 1; y = y + x;”.
• Testing on how to parse “while (x) {x = x + 1; y = y + x;}”.



Neural controller: predicts the execution traces to produce the output sequences.

+
Symbolic stack machine: supports symbolic execution of sequence manipulation operations.

Chen, Liang, Yu, Song, Zhou, Compositional Generalization via Neural-Symbolic Stack Machines, NeurIPS 2020.
Chen, Liu, Song, Towards Synthesizing Complex Programs from Input-Output Examples, ICLR 2018.

Prior successful attempts mainly come from neural-symbolic learning



Demonstration of the symbolic machine



Can LLMs improve compositional generalization without symbolic execution?

• YES, when:
• with few-shot demonstrations of reasoning rationales
• the language model has good prior knowledge of both text and code

Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.
Wei et al., Chain of Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022.

SCAN length split



Least-to-most prompting

Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.



Least-to-most prompting for compositional generalization

Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.  

• Stage 1: command reduction



Least-to-most prompting for compositional generalization

Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023. 

• Stage 2: command mapping



Compositional generalization for code generation

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.
Keyers et al., Measuring Compositional Generalization: A Comprehensive Method on Realistic Data, ICLR 2020.  

Question: Did M1 star M2 , star M3 , and star a art director and editor of M0?
SPARQL:    SELECT count(*) WHERE
   { ?x0 edited M0 . ?x0 art directed M0 . M1 starred ?x0 . M1 starred M2 . M1 starred M3 }

Question: What was produced by a art director that M1 and M2 employed?
SPARQL:    SELECT DISTINCT WHERE
  { ?x0 produced by ?x1 . ?x1 a art director . M0 employed ?x1 . M1 employed ?x1 }

Examples in CFQ (Compositional Freebase Questions) benchmark

• Challenge: more complicated grammar with a larger vocabulary
• Single prompt is insufficient to cover all grammar rules



Question: Did M1 star M2 , star M3 , and star a art director and editor of M0?
SPARQL:    SELECT count(*) WHERE
   { ?x0 edited M0 . ?x0 art directed M0 . M1 starred ?x0 . M1 starred M2 . M1 starred M3 }

Question: What was produced by a art director that M1 and M2 employed?
SPARQL:    SELECT DISTINCT WHERE
  { ?x0 produced by ?x1 . ?x1 a art director . M0 employed ?x1 . M1 employed ?x1 }

Examples in CFQ (Compositional Freebase Questions) benchmark

• Challenge: more complicated grammar with a larger vocabulary
• Single prompt is insufficient to cover all grammar rules
• Context-dependent constituent translation

Compositional generalization for code generation

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.
Keyers et al., Measuring Compositional Generalization: A Comprehensive Method on Realistic Data, ICLR 2020.  



Our approach: problem decomposition with syntactic parsing

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.

• Tree-structured decomposition with LLM prompting

• Each node represents a subproblem linearized as a well-formed sentence



Our approach: dynamic exemplar selection for each subproblem

• Single prompt is insufficient to cover all grammar rules

• Exemplar selection based on subtree matching



Overview: dynamic least-to-most prompting

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.



Evaluation on CFQ

Herzig et al., Unlocking Compositional Generalization in Pre-trained Models Using Intermediate Representations.
Liu et al., Learning Algebraic Recombination for Compositional Generalization, ACL Findings, 2021.
Guo et al., Hierarchical Poset Decoding for Compositional Generalization in Language, NeurIPS 2020.



Evaluation on COGS

Kim and Linzen, COGS: A Compositional Generalization Challenge Based on Semantic Interpretation, EMNLP 2020.
Liu et al., Learning Algebraic Recombination for Compositional Generalization, ACL Findings, 2021.
Qiu et al., Improving Compositional Generalization with Latent Structure and Data Augmentation, NAACL 2022.

Question: James said that a manager liked that Aiden appreciated that Emily believed that the girl was 
posted a cake beside a table by Olivia. 
Parse:       say ( agent = James , ccomp = like ( agent = manager , ccomp = appreciate (
                    agent = Aiden , ccomp = believe ( agent = Emily , ccomp = post (
                    recipient = * girl , theme = cake ( nmod . beside = table ) , agent = Olivia ) ) ) ) ) DONE



Prompting without exemplar design: analogical prompting

Yasunaga, Chen, Li, Pasupat, Leskovec, Liang, Chi, Zhou, Large Language Models as Analogical Reasoners.



Analogical prompting for code generation

Generated example problems can be much simpler than the testing problem 



Evaluation on Codeforces problems

• To prevent test set contamination, the test set contains level-A (simplest) 
problems in 2023 Codeforces contests

• Self-generated exemplars outperform zero-shot prompting and CoT with 
manually-designed exemplars

• Self-generated knowledge further improves the performance



Evaluation on other reasoning problems

Mathematical reasoning

Big-Bench tasks 



Takeaway

● LLMs can be taught to elicit the compositional generalization capability, 
via demonstrations of problem reduction steps.

● Code pretraining is not only critical for doing code generation tasks, but 
also plays a key role in achieving compositional reasoning



Summary

● Large language models provide a unified natural language interface for 
general-purpose code generation

● Language models show promising progress on solving challenging coding 
problems, with room for improvement on sample efficiency

● Self-debugging enables the LLM to leverage code execution and reflect on 
the code semantic meaning to fix its own prediction

● Joint pretraining of text and code empowers both code generation and 
other reasoning capabilities
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