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Success of LLMs for text-to-code generation
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Code generation from natural language + input-output examples

Problem (input)

Problem (input)

AlphaCode

DeepMind AlphaCode: competitive programming

Li, ..., Chen et al.

Competition-level Code Generation with AlphaCode, Science 2022.

D.Backspace

You are given two strings s and 1, both consisting
of lowercase English letters. You are going to type
the string s character by character, from the first
character to the last one.

When typing a character, instead of pressing the

button corresponding

you have typed among those that aren' dele

yet (or does nothing if there are no characters in
the current string). For example, if s is "abc
and you press Backspace instead of typing the
first and the fourth characters, you will get the
string "bd" (the first press of Backspace deletes

no character, and the second press deletes the

character 'c"). Another example, if s is "abca:
and you press Backspace instead of the last two
letters, then the resulting text is

Your task is to determine whether you can obtain
the string 1, if you type the string s and press
"Backspace’ instead of typing several (maybe
2er0) characters of s.

First AlphaCode reads
the two phrases.

Backspace deletes two
letters. The letter you
press backspace instead
of, and the letter before it.

Input

The first line contains a single integer ¢
(159<105) — the number of test cases.

The first line of each test case contains
ings (1=|s Each character

of s is alowercase English letter.

The second line of each test case contains
the string ¢ (15| 10%). Each character
of tis alowercase English letter.

It is guaranteed that the total number
of characters in the strings over all test cases
does not exceed 2-10°.

Output

t case, print "v&s" if you can obtain the
typing the string s and replac
aracters with presses of ‘B

or "N0"if you cannot.

You may print each letter in any

ve answer, N0, no and

t=int(input())
for i in range(t):
s=input()
t=input()
a=[]
b=(]
for j in s:
a.append(j)
for j in t:
b.append(j)
a.reverse()
b.reverse()
c=(]
while len(b)!=0 and len(a)!=0:
if a[@)==b[0]:
c.append(b.pop(0))
a.pop(0)
elif a[@)!=b[@] and len(a
a.pop(0)
a.pop(0)
elif a[@]!=b[(0@] and len(a)
a.pop(0)
[if 1en(b)==0:
print("YES")
else:
print("NO")

Note

Consider the example
test from the statement.
In order to obtain "ba
from ” you may
press Backspace instead
of typing the first and the

fourth characters.

no way to obtain
while typing "ababa’.
no way to obtain
* while typing°
In order to obtain "“al
while typing " 2", you
have to press Backspace
instead of typing the first
character, then type all
the remaining characters.

If the letters at the end
of both phrases don’t
match, the last letter
must be deleted. If
they do match we can
move onto the second
last letter and repeat.

If we've matched every
letter, it's possible and
we output that.



Code generation for tool use

Find the alkali metal with the highest resistivity

Used Wolfram v

Among the alkali metals, cesium (Cs) has the highest resistivity. Here is the Wolfram

Language code | used to find this result:

wolfram ] Copy code

alkaliMetals = {Entity["Element", "Lithium"], Entity["Element", "Sodium"],
resistivities = EntityValue[alkaliMetals, "Resistivity"];

maxResistivity = Max[resistivities];
position = Position[resistivities, maxResistivity];
alkaliMetals[[position[[1, 1]]11]

This code defines a list of alkali metal entities (excluding francium due to its instability and

lack of data), retrieves their resistivity values, finds the maximum resistivity, and then

identifies the alkali metal with the highest resistivity.

ChatGPT generates code for calling APIs

https://writings.stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram-superpowers/



https://writings.stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram-superpowers/

Code generation for tool making

//

Tool making template
(One-time ¢’)
solve three training samples.
samples into function call and validate the correctness.

and the examples of how to convert problems to function
from the verification stage into a reusable Wrapped Tool.

Tool proposing: Write a generic Python function (the Tool) to
Tool verification: Write unit tests to convert three validation

Tool wrapping: Gather the function from the proposing stage

N

calls

/

&

@\

Tool Maker (e.g., GPT-4):
Strong performance but
slow and expensive a

\

/

/

Tool using template

g 4
I < I 1 (Reusable &)

Convert problem into
Tool User (e.g., GPT-3.5 Turbo): | function call according to
Weaker performance but much the Wrapped Tool

K faster and cheaper

\\

=

Cai, Wang, Ma, Chen, Zhou, Large Language Models as Tool Makers.

s Wrapped Tool



Challenge 1: algorithmic reasoning

Exam

GPT-4

Uniform Bar Exam (MBE+MEE+MPT)
LSAT
SAT Evidence-Based Reading & Writing
SAT Math
Graduate Record Examination (GRE) Quantitative
Graduate Record Examination (GRE) Verbal

298 /400 (~90th)
163 (~88th)
710/ 800 (~93rd)
700 / 800 (~89th)
163 /170 (~80th)
169 /170 (~99th)

Graduate Record Examination (GRE) Writing 4/ 6 (~54th)
USABO Semifinal Exam 2020 87 /150 (99th - 100th)
USNCO Local Section Exam 2022 36 /60
Medical Knowledge Self-Assessment Program 75 %
| Codeforces Rating 392 (below 5th) |

OpenAl, GPT-4 Technical Report.



Challenge 2: predicted code in the first round can be problematic

+! GPT-4

Write a function that gives loss amount if the given amount has loss else return None. Your
Python function should pass the following assertions: assert loss_amount(1500,
1200)=None, assert loss_amount(100, 200)=-100, assert loss_amount(2000, 5000)=-3000

To determine the loss amount, you need to subtract the current value from the original value.

If the result is negative, it means there was a loss. If the result is positive or zero, return ° LLMS mlght fall tO SOlve Simple COding prOblemS
"None " specified with input-output examples
Here's the Python function that follows this logic:

* Weakness in code execution understanding

[c_'] Copy code

(original, current):
difference = current - original
1f difference <

rn difference

rt loss_amount(
loss_amount(

loss_amount(

This function should pass the provided assertions.



Challenge 3: compositional generalization

Length Compose Different

Generalization Concepts

OO 00600 Method Standard prompting Chain-of-Thought
Train eee 0 code-davinci-002 16.7 16.2

O OO0 text—-davinci-002 6.0 0.0

@@ 00000 code—davinci-001 04 0.0

SCAN length split

e00® 00000
Test

0:0,0,0 o000

0,0,0, 0, O L

 Compositional generalization: given basic components and a few demonstrations of their
combinations, generalize to novel combinations.

* Length generalization: generalize to longer test samples than the training ones.

e LLMs fail to achieve length generalization without proper prompt design

Shi et al., ExeDec: Execution Decomposition for Compositional Generalization in Neural Program Synthesis.
Zhou et al., Least-to-most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.



Outline

Background: how large language models change the code generation paradigm
AlphaCode: large language models for competition-level code generation
Self-debugging: teach large language models to debug their own predicted code

Dynamic least-to-most prompting: enable compositional generalization for code generation

Li, ..., Chen et al., Competition-level Code Generation with AlphaCode, Science 2022.
Chen, Lin, Scharli, Zhou, Teaching Large Language Models to Self-Debug.
Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.



Part 1: Background on code generation

* Learning-based code generation before large language models
* Specialized models for different applications and programming languages

 Code generation with LLMs
* One model for multiple coding applications
* Enable quick adaptations to new tasks via prompting



Code generation: transition with learning-based techniques

. |

| Input v1 | Input vo || Output |

Albania | 355 case 355: return “Albania”;
Algeria | 213 case 213: return “Algeria”;
String Program:

Concatenate(ConstStr(“case”),v2, ConstStr(“: return “”),
v1, ConstStr(“”;”))

FlashFill:

string processing in Microsoft Excel
[Gulwani 2011; Polozov et al., 2015]



Code generation: transition with learning-based techniques

What states border the state that borders the most states
Azx.state(z) A borders(x,arg max(A\y.state(y),
Ay.count(Az.state(z) A borders(y, z))))

Learning probabilistic grammars
[Zettlemoyer et al., 2012; Liang et al., 2013]

| |

. |

| Input v1 | Input vo || Output |

Albania | 355 case 355: return “Albania”;
Algeria | 213 case 213: return “Algeria”;
String Program:

Concatenate(ConstStr(“case”),v2, ConstStr(“: return “”),
v1, ConstStr(“”;”))

FlashFill:

string processing in Microsoft Excel
[Gulwani 2011; Polozov et al., 2015]



Code generation: transition with learning-based techniques

What states border the state that borders the most states
Azx.state(z) A borders(x,arg max(A\y.state(y),
Ay.count(Az.state(z) A borders(y, z))))

Learning probabilistic grammars
[Zettlemoyer et al., 2012; Liang et al., 2013]

| |

+ I

‘ Support more complex languages
(Tnput ;| Input v; || Outpu | [Zhong et al., 2017; Ying et al., 2017; Yu et al., 2018]

Albania | 355 case 355: return “Albania”; Which countries in Europe have at least 3 car
Algeria | 213 case 213: return “Algeria”; manufacturers?

Siri . SELECT Tl.country name

tring Program: _ - _

Concatenate(ConstStr(“case "), va, ConstStr(“: return “”), FROM countries AS Tl JOIN continents
v1, ConstStr(“”;”)) AS T2 ON Tl.continent = T2.cont id

JOIN car makers AS T3 ON

FlashFill: Tl.country id = T3.country
string processing in Microsoft Excel WHERE T2.continent = 'Europe'
[Gulwani 2011; Polozov et al., 2015] GROUP BY Tl.country name

HAVING COUNT (*) >= 3




Code generation: transition with learning-based techniques

What states border the state that borders the most states
Azx.state(z) A borders(x,arg max(A\y.state(y),
Ay.count(Az.state(z) A borders(y, z))))

Learning probabilistic grammars
[Zettlemoyer et al., 2012; Liang et al., 2013]

|

. |

| Input vy | Input vy || Output

Albania | 355

case 355: return “Albania”;

Algeria | 213

case 213: return “Algeria”;

String Program:

Concatenate(ConstStr(“case”), v, ConstStr(“: return “”),

v1, ConstStr(“”;”))

FlashFill:

string processing in Microsoft Excel
[Gulwani 2011; Polozov et al., 2015]

A B C D E F G
U Index Test item Score Status
2 0 VAL_P3_A | 29 C
3 1 VAL_P3 A_ll 15B
4 2 VAL_P3 A Il 4.6[5IF(ca<=1,"A" IF(C4<=2,"B",If(C4<=3,"C",If(C4<=4,"D","E"))))|
5 3 VAL_P3_A IV 3.2 . IF(C4<=1,"A",IF(C4<=2,"B",If(C4<= |
6 4 VAL_P3_A_V 01 ° 3,C" IF(CA<=4,"D","E")))) P ®
7 Total Score

SpreadsheetCoder:

formula prediction from ambiguous context
[Chen et al., 2021]

*‘ I

Support more complex languages

[Zhong et al., 2017; Ying et al., 2017; Yu et al., 2018]

Which countries in Europe have at least 3 car
manufacturers?

SELECT Tl.country name

FROM countries AS Tl JOIN continents
AS T2 ON Tl.continent = T2.cont id
JOIN car makers AS T3 ON
Tl.country id = T3.country

WHERE TZ2.continent = 'Europe'

GROUP BY Tl.country name

HAVING COUNT (*) >= 3

A



Code generation: transition with learning-based techniques

What states border the state that borders the most states
Azx.state(z) A borders(x,arg max(A\y.state(y),
Ay.count(Az.state(z) A borders(y, z))))

Learning probabilistic grammars
[Zettlemoyer et al., 2012; Liang et al., 2013]

|

. |

| Input vy | Input vy || Output

Albania | 355

case 355: return “Albania”;

Algeria | 213

case 213: return “Algeria”;

String Program:

Concatenate(ConstStr(“case”), v, ConstStr(“: return “”),

v1, ConstStr(“”;”))

FlashFill:

string processing in Microsoft Excel
[Gulwani 2011; Polozov et al., 2015]

A B (] D E F G
Ul Index Test item Score Status
2 0 VAL_P3 A | 29 C
3 1 VAL_P3 A_ll 15 B
4 2 VAL_P3_A_lIl 4.6|drF(ca<=1,"A", IF(C4<=2,"B",If(C4<=3,"C",If(C4<=4,"D","E"))))|
5 3 VAL_P3_A IV 82 IF(Ca<s1,"A",IF(CAS=2, 8", IF(Cac=
6 4 VAL_P3_A_V 01 ° 3,C" IF(CA<=4,"D","E")))) P ®
7 Total Score

SpreadsheetCoder:

formula prediction from ambiguous context
[Chen et al., 2021]

*‘ I

Support more complex languages

[Zhong et al., 2017; Ying et al., 2017; Yu et al., 2018]

Which countries in Europe have at least 3 car
manufacturers?

SELECT Tl.country name

FROM countries AS Tl JOIN continents
AS T2 ON Tl.continent = T2.cont id
JOIN car makers AS T3 ON
Tl.country id = T3.country

WHERE TZ2.continent = 'Europe'

GROUP BY Tl.country name

HAVING COUNT (*) >= 3

A

Learning-based
techniques support
more complex and
ambiguous program
specifications.



Code generation: transition with large language models

A B (o3 D E E G
LI Index Test item Score Status
2 0 VAL_P3_A | 29 C
3 1 VAL_P3_A_ll 15 B
4 2 VAL_P3_A_lll 4_5|=t1F(c4<:1,"A",IF(C4<:2,"B",If(C4<:3,"c",1f(c4<:4,"D","E"))))|
5 3 VAL_P3_A IV 3.2 ) IF(C4<=1,"A",IF(C4<=2,"B",If(C4<= |
6 4 VAL_P3 AV 04 ™ 3 ncv IF(Ca<=4, D", "EM)))) P ®
7 Total Score

SpreadsheetCoder:
formula prediction from ambiguous context = Ay

[Chen et al., 2021]

A —

|
: CODEGEN StarCoder
|
Support more complex languages | @
|
|
|

[Zhong et al., 2017; Ying et al., 2017; Yu et al., 2018]

Which countries in Europe have at least 3 car
manufacturers?

\ 2

GPT Bard

SELECT Tl.country name

FROM countries AS Tl JOIN continents
AS T2 ON Tl.continent = T2.cont id
JOIN car makers AS T3 ON
Tl.country id = T3.country

WHERE T2.continent = 'Europe'

GROUP BY Tl.country name

HAVING COUNT (*) >= 3

0N

Code Llama



Code generation: transition with large language models

A B C D E F G

U Index Test item Score Status
2 0 VAL_P3 A | 29 C
3 1 VAL_P3_A_lI 15 B
4 2 VAL_P3_A_lIl 4.6[=fIF(Ca<=1,"A", IF(C4<=2, "B",If(C4<=3,"C",If(C4<=4,"D", "E"))))]|
5 3 VAL_P3_ A IV 3.2 ) IF(C4<=1,"A"  IF(C4<=2,"B"  If(C4<= |

T: H
6 4VA|__P3_A_V 01 @ 3’|lc|l'1f( <=4’uDu’uEu)))) . ®
7 Total Score

SpreadsheetCoder:

formula prediction from ambiguous context
[Chen et al., 2021]

|
|
4 l s
|

Support more complex languages :
|

|

|

7
CODEGEN StarCoder

,,[;\\

[Zhong et al., 2017; Ying et al., 2017; Yu et al., 2018] )’ m
Which countries in Europe have at least 3 car ‘ Code Llama
manufacturers? GPT Bard
SELECT Tl.country name
FROM countries AS Tl JOIN continents L I d I bl d. d
AS T2 ON Tl.continent = T2.cont id arge language models enapble more diverse code
JOIN car_makers AS T3 ON generation applications with free-form natural
Tl.country id = T3.country . .
WHERE T2.continent = 'Europe' language specification.

GROUP BY Tl.country name
HAVING COUNT (*) >= 3




Before LLMs: specialized model architectures to represent code structures

Tree-structured
decoder

SELECT

count(*) WHERE— =

e reccoo—wtTlo o
Table-Ques Co— T-Table Cel .Column?
f (Table-Q[Pri. Key) ~= j ] 04701 0.8

How many airlines airline airline airports city
id name

airlines airline airline airports city

How many
id name

RAT-SQL for text-to-SQL generation
Encoder: self-attention is biased towards tokens with relations in database schemas

Decoder: tree-structured decoding based on the SQL grammar

Wang*, Shin* et al., RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers, ACL 2020.

siahe)
uonuaye-jes >



Before LLMs: encoder-decoder architecture for programming by examples

program tokens D1 '"""""": py, T i D3
hy — h, — —— h; —
1 7y i ? 7'y i T 7'y
<start> e ;
I O
| | |

input-output examples

Chen, Liu, Song, Execution-Guided Neural Program Synthesis, I[CLR 2019.
Chen, Song, Tian, Latent Execution for Neural Program Synthesis, NeurIPS 2021.



Before LLMs: decoding schemes to utilize the code execution

v
v

<start> ft_l 0 it 0 [,+1 O

I, -0

I;: (Iatent) execution state at step t
(I, 0): input-output example

Chen, Liu, Song, Execution-Guided Neural Program Synthesis, I[CLR 2019.
Chen, Song, Tian, Latent Execution for Neural Program Synthesis, NeurIPS 2021.



After LLMs: programming languages as foreign languages?

e State-of-the-art language models treat a programming language as another natural language
e Large-scale training + large-scale off-the-shelf Transformer-based architecture -
high-performance generative model for both text and code

* The same training recipe is applied to both text and code
e Large-scale pretraining
* [nstruction tuning



Instruction tuning: multi-task learning generalizes to unseen tasks

Instruction finetuning
\\}
)

\
N '

What is the boiling point of Nitrogen?
=

[ Please answer the following question.

Chain-of-thought finetuning

4 )

Answer the following question by
reasoning step-by-step.

The cafeteria had 23 apples. If they i
used 20 for lunch and bought 6 more,

The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more

\how many apples do they have? ) Language apples, so they have 3 + 6 = 9.
b model
Multi-task instruction finetuning (1.8K tasks)
Inference: generalization to unseen tasks
Geoffrey Hinton is a British-Canadian
. computer scientist born in 1947. George

Q: Can Geoffrey Hinton have a Washington died in 1799. Thus, they
conversation with George Washington? could not have had a conversation
Give the rationale before answering. together. So the answer is “no”.

«  Scaling up the model size and number of training tasks improves the performance.

- Training with chain-of-thought data triggers rationale generation by default.

Chung, Hou, Longpre, ..., Chen,..., Wei, Scaling Instruction-Finetuned Language Models.



Bard demo: data processing

https://blog.google/technology/ai/code-with-bard/



https://blog.google/technology/ai/code-with-bard/

Bard demo: code explanation

https://blog.google/technology/ai/code-with-bard/



https://blog.google/technology/ai/code-with-bard/

Bard demo: code debugging

https://blog.google/technology/ai/code-with-bard/



https://blog.google/technology/ai/code-with-bard/

Outline

Background: how large language models change the code generation paradigm
* Inthe era of LLMs, what do we learn from techniques for developing specialized code
generation models?

AlphaCode: large language models for competition-level code generation
* Leverage execution for code reranking

Self-debugging: teach large language models to debug their own predicted code
* Leverage execution to improve the sample efficiency

Dynamic least-to-most prompting: enable compositional generalization for code generation
* Leverage syntax structures for problem decomposition

Li, ..., Chen et al., Competition-level Code Generation with AlphaCode, Science 2022.
Chen, Lin, Scharli, Zhou, Teaching Large Language Models to Self-Debug.
Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.



Part 2: LLMs for competition-level code generation

Problem (input)

Problem (input)

AlphaCode

Li, ..., Chen et al.

Competition-level Code Generation with AlphaCode, Science 2022.

D.Backspace

You are given two strings s and 1,
of lowercase English letters. You are going to type
the string s character by character, from the first
character to the last one.

When typing a character, instead of pressing the
button corresponding to it, you can press the
"Backspace’ button. It deletes the last character
you have typed among those that arenit deleted
yet (or does nothing if there are no characters in
the current string). For example, if s is d
and you press Backspace instead of typing the
first and the fourth characters, you will get the
string "od" (the first press of Backspace delet

no character, and the second press deletes the

Your task is to determine whether you can obtain
the string 1, if you type the string s and press
*Backspace’ instead of typing several (maybe
zero) characte

First AlphaCode reads
the two phrases.

Backspace deletes two
letters. The letter you
press backspace instead
of, and the letter before it.

Input

The first line contains a single integer g
(15¢510%) — the number of te:

The first line of each tes
the string s (1<|s| <10). Each character
of s is a lowercase English letter.

The second line of each test case conta
o string ¢ (15]¢] £10%). Each character
of tis a lowercase English letter.

For eact ase, print "v&s" if you can obtain the
string ¢ by typing the string s and repl
characters with presses of ‘Backspace” button,

or 50" if you cann

You may print each letter in any case (ES
wil all be recognized as
will all be recognized

t=int(input())
for i in range(t):
s=input()
t=input()
a=(]
b=(]
for j in s:
a.append(3)
for j in t:
b.append(j)
a.reverse()
b.reverse()

c=(]

while len(b)!=0 and len(a)!=l

if a(0@ [0]):
c.append(b.pop(0@))
a.pop(0)

elif a[0)!=b[@) and len(a)!=1:

a.pop(0)
a.pop(0)

elif a[0]!=b[0) and len(a)==1:

a.pop(0)
if len(b)==(
print("YES")
else:
print("NO")

Note

Consider the example

you may
press Backspace instead
of typing the first and the
fourth cha
no way to obtain
while typing
There's no way to obtain

while typing "

In order to obtain "

while typing “aaba

have to press

instead of typing the first
character, then type all
the remaining characters,

If the letters at the end
of both phrases don't
match, the last letter
must be deleted. If
they do match we can
move onto the second
last letter and repeat.

If we've matched every
letter, it's possible and
we output that.



Competitive programming: input format

D.Backspace

You are given two strings s and ¢, both consisting
of lowercase English letters. You are going to type
the string s character by character, from the first
character to the last one.

When typing a character, instead of pressing the
button corresponding to it, you can press the
"Backspace” button. It deletes the last character
you have typed among those that aren't deleted
yet (or does nothing if there are no characters in
the current string). For example, if s is "abcbd"
and you press Backspace instead of typing the
first and the fourth characters, you will get the
string "bd" (the first press of Backspace deletes
no character, and the second press deletes the
character 'c'). Another example, if s is "abcaa"
and you press Backspace instead of the last two
letters, then the resulting text is "a".

Your task is to determine whether you can obtain
the string ¢, if you type the string s and press
"Backspace” instead of typing several (maybe
zero) characters of s.

Input

The first line contains a single integer ¢
(1=¢<10°) — the number of test cases.

The first line of each test case contains
the string s (1<|s|<10%). Each character

of s is a lowercase English letter.

The second line of each test case contains
the string ¢t (1<|#|<10°). Each character
of ¢ is a lowercase English letter.

It is guaranteed that the total number
of characters in the strings over all test cases
does not exceed 2-10°5.

Output

For each test case, print "YES" if you can obtain the
string ¢t by typing the string s and replacing some
characters with presses of "Backspace” button,

or "NO" if you cannot.

You may print each letter in any case (YES, yes, Yes
will all be recognized as positive answer, NO, no and

nO will all be recognized as negative answer).

Input

4
ababa
oF:]
ababa
bb

aaa
aaaa
aababa
ababa

Output

YES
NO
NO

Problem (input)

AlphaCode

Note

Consider the example
test from the statement.

In order to obtain "ba"
from "ababa’, you may
press Backspace instead
of typing the first and the
fourth characters.

There's no way to obtain
“bb" while typing "ababa".

There's no way to obtain

"aaaa” while typing “aaa".

In order to obtain "ababa"
while typing “aababa”, you
have to press Backspace
instead of typing the first
character, then type all
the remaining characters.

Long and complicated text description + input-output specification




Problem (input)

AlphaCode

Competitive programming: sample decoded program

t=int(input()) J
for i in range(t):
s=input()
t=input()
First AlphaCode reads a=[]
the two phrases. b=[]
for j in s:
a.append(j)
for j in t:
b.append(j)
(a.reverse()
b.reverse() If the letters at the end
c=[] of both phrases don’t
match, the last letter
must be deleted. If

they do match we can
move onto the second

while len(b)!=0 and len(a)!=0:
if a[@)==b[0]:
c.append(b.pop(0))

a.pop(0) last letter and repeat.
elif a[0]!=b[@] and len(a)!=1:
Backspace deletes two SR
letters. The letter you
press backspace instead SEEOR)
of, and the letter before it. elif a(0]!=b[0] and len(a)==1:
a.pop(0)
(if len(b)==0: \
print("YES") If we've matched every
else: letter, it's possible and
orint("NO") we output that.

No direct mapping between the problem description and output code



Challenges

The model needs to not only understand the intended execution behavior

specified in the long and complicated problem description, but also come up
with an efficient implementation.

The given input-output examples are just a few simplest illustrative examples.
The predicted code also needs to pass many more hidden test cases, often
more complex and larger-scale.

New competitive programming problems are very different from existing
problems on a surface level.



Where we are now?

Evaluation on Codeforces platform, 10 competitions with >5k participants per contest
- An ensemble of 41B and 9B models
- 10 submissions per problem

N 2500 -
________/————_'—__—_- — |
1591 1608
2000
—’/‘——-_-’-/\// £
a 1613 1615 B
«=1500
()]
— PR 8
— — S
- 1617 S %1000
__——’_/ §
.__—'”__—_——/ —
1619 1620 500 -
_/\-—'—/ ____,._/
- . 1622 N . 1623 0 . . . . .
Competition ranking Competition ranking 0% 20% 40% 60% 80% 100%

%competitors = rating

- Average ranking across 10 contests: top 54.3%
- Codeforces rating ranking among all Codeforces users: top 28%



Would scaling up the model solve the problem?

pass@k

0.4

0.3

0.2

0.11

101

102

103
Sample budget

104

105

106

Performance gain becomes less
significant with larger models
No model achieves decent
performance with few samples
10 final submissions come from
much more samples



GPT-4 still fails on Codeforces problems

Exam

GPT-4

Uniform Bar Exam (MBE+MEE+MPT)
LSAT
SAT Evidence-Based Reading & Writing
SAT Math
Graduate Record Examination (GRE) Quantitative
Graduate Record Examination (GRE) Verbal

298 /400 (~90th)
163 (~88th)
710/ 800 (~93rd)
700 / 800 (~89th)
163 /170 (~80th)
169 /170 (~99th)

Graduate Record Examination (GRE) Writing 4/ 6 (~54th)
USABO Semifinal Exam 2020 87 /150 (99th - 100th)
USNCO Local Section Exam 2022 36 /60
Medical Knowledge Self-Assessment Program 75 %
I Codeforces Rating 392 (below 5th) I

OpenAl, GPT-4 Technical Report.
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AlphaCode overview
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Temporal split for training and test data construction

Pretraining: 715.1GB code from GitHub before 2021/07/14
Multiple programming languages: C++, Python, Java, JavaScript, C#, etc.

Finetuning with CodeContests, containing problem-solution pairs
13,328 competitive programming problems before 2021/07/14

Human solutions in C++, Python, and Java
~900 solutions per problem, including correct and incorrect ones (~50% each)

- Validation set: 117 Codeforces problems in 2021/07/14-2021/09/20

Test set: 165 Codeforces problems after 2021/09/20



Training with value prediction & conditioning

RATING: 1200
TAGS: dp,implementation| etadata (provided in the training set)
LANGUAGE IS python3

CORRECT SOLUTION

Polycarp must pay exactly n burles at the checkout ... (rest of the description)

- Training
« Metada: include rating (difficulty), tags (solution type) and language (Python3/C++)
« Value conditioning: train on both correct and incorrect solutions

« Value prediction: add an auxiliary loss to predict the solution correctness

- Evaluation
« Always condition on “CORRECT SOLUTION”

-« Randomly sample rating and tags, sample both Python3 and C++ programs
« Improve the diversity of samples



AlphaCode overview
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Filtering via execution on example tests

Execute all programs on example tests in the problem description, filter out those
samples that do not pass the tests
Note: the solution is correct when passing both example tests and hidden tests
(not included in the problem description)

>99% of samples do not pass example tests (1-2 example tests per problem)

% Problems with > 1 Average Ppass example tests Average Ppass example tests
Model samples pass example tests on all problems on solved problems
300M 82.05% 0.39% 1.18%
1B 87.18% 0.59% 1.40%
3B 87.18% 0.49% 0.98%
9B 89.74% 0.76% 1.52%

41B 92.31% 0.73% 1.47%




Clustering by execution on generated inputs

Recall: hidden tests for test problems are not available
Train a separate model to generate new test inputs

Text description p

— —p | Generated |||
Example tests Inputs ’

Execute sampled programs on all generated inputs
Cluster all programs with the same outputs together
Sample 1 program from each of the 10 largest clusters



Solve rate scales log-linearly with more compute & model size

— 10@1K — 300M
0.30{ — 10@10K 0.301 — 18
—— 10@100K — 3B
— 10@1M 0.25{ — 9B
0.251 - 41B
0.20
® ®
0.20
S S 0.151
0.15- 0.10;
0.05
0.10-
0.00
102 103 10* 1071 10° 10 102 10®° 104 105 106
Training TPU-days Sampling TPU-seconds per problem

(@) Solve Rate vs. Training Compute (b) Solve Rate vs. Sampling Compute



Solve rate scales log-linearly with more samples

— 3B 0.4- — 3B
0.25{ =—— 9B — OB
— 41B — 41B
0.201 0.3
©
Y4
© a
S 0.15 8
0.21
0.101
D05 . 01 /
0.00 =" . =
10° 10! 102 103 10% 10° 106 400 10! 102 103 10* 10° 106
Sample budget Sample budget

(@) 10 attempts per problem (b) Unlimited attempts per problem



Ablation studies: pretraining

Solve rate
10@1K 10@10K 10@100K

Pre-training dataset

No pre-training 4.5% 7.0%
GitHub (Python only) 5.8% 11.1%
MassiveText 9.7% 16.1%

GitHub (all languages) 12.4% 17.3%

10.5%
15.5%
21.2%
21.5%

1B encoder-decoder model

- MassiveText: an English text corpus with 3% GitHub code

- Pretraining with multiple programming languages achieves the best performance

Rae et al., Scaling Language Models: Methods, Analysis & Insights from Training Gopher.



Ablation studies: finetuning

Fine-tuning setting

10@1K

Solve rate

10@10K

10@100K

10@1M

No Enhancements

+ MLM
+ Tempering

6.7% (6.5-6.8)
6.6% (6.2-7.0)
7.7% (7.2-8.5)

10.4% (9.6-11.0)
12.5% (12.1-12.7)
13.3% (12.5-13.8)

+ Tags and Ratings
+ Value

6.8% (6.4-7.0)

10.6% (9.8-11.1)

13.7% (12.8-14.9)
16.6% (16.4-16.9)

+ GOLD

+ Clustering

12.4% (12.0-13.0)
12.2% (10.8-13.4)

17.3% (16.9-17.6)
18.0% (17.3-18.8)

15.2% (14.3-15.9)
17.0% (16.5-17.2)
18.7% (18.0-19.2)
19.3% (18.1-20.0)
20.2% (19.6-20.7)

19.6% (18.2-20.4)
20.7% (19.1-21.3)
21.9% (20.7-22.6)
22.4% (21.3-23.0)
23.2% (21.7-23.9)

21.5% (20.5-22.2)
24.1% (23.2-25.0)

24.2% (23.1-24.4)
28.4% (27.5-29.3)

1B encoder-decoder model

Value conditioning and prediction significantly improves the performance,

especially with fewer samples

Clustering via execution selects better samples for final evaluation




Ablation studies: filtering and clustering

Oracle sample selection

0.35{ — Pass@k
10@k with filtering + clustering
0.30, — 10@k with filtering
—— 10@k no filtering . _ . _ . .

0.25 - Filtering with execution is crucial
% 0.20" . . .
E - Clustering with generated inputs can
wn 0.151 . . .

provide more gain than scaling up models

0.10"

0.05/ - Still a gap from the oracle sample selection

0.00 — i . ] : i

101 102 103 104 10° 106
Sample budget
1B encoder-decoder model

A h Validation Set Test Set

pproac 10@1k 10@10k 10@100k 10@1M |10@1k 10@10k 10@100k
9B 16.9% 22.6%  27.1%  30.1% | 14.3% 21.5%  25.8%
41B 16.9% 23.9%  28.2%  31.8% | 15.6% 23.2%  27.7%
41B + clustering | 21.0% 26.2%  31.8%  34.2% | 16.4% 25.4%  29.6%




Breakdown on different algorithms

Model Greedy Math | DP COIIStI‘.UCtIVC Brute  Data Imple.m- Graphs Bitmasks Sortings
Algorithms | Force Structures entation

300M 13.1% 19.3% |4.5% 7.5% 9.8%  8.8% 500 0.2% 22.2% 16.9%

1B 19.7% 22.7% |4.5% 9.1% 12.0% 10.5% 14.1% 5.9% 26.8% 21.5%

3B 19.9% 22.7%(4.9% 11.2% |13.2% 11.9% 134% 8.8% 254% 23.8%

9B 23.7% 29.4%(7.1% 13.8% |19.5% 16.9% 16.4% 16.6% 27.4% 27.8%

41B 25.0% 28.2%|8.8% 14.9% |20.4% 15.7% 16.5% 13.6% 33.8% 25.5%

- Solve rate of 10@10k on most popular problems types
- Dynamic programming and constructive algorithms are particularly

challenging, even if there are a lot of related training problems



Takeaway

« Scaling enables language models to go beyond memorization and solve
unseen challenging algorithmic reasoning problems.

« Leveraging execution results improves the complexity of synthesized
programs with input-output examples.

« Still a huge gap to top human programmers.



Part 3: Self-debugging with LLMs

Step 2: Code execution

Step 1: Code
generation

Feedback

Problem Explanation

$

Step 3: Code explanation

)
= |

Chen, Lin, Scharli, Zhou, Teaching Large Language Models to Self-Debug.
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Step 2: Code execution
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generation
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Step 3: Code explanation
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Chen, Lin, Scharli, Zhou, Teaching Large Language Models to Self-Debug.



Recall: LLM-generated code in the first round can be problematic

+ GPT-4

Write a function that gives loss amount if the given amount has loss else return None. Your
Python function should pass the following assertions: assert loss_amount(1500,
1200)=None, assert loss_amount(100, 200)=-100, assert loss_amount(2000, 5000)=-3000

To determine the loss amount, you need to subtract the current value from the original value.
If the result is negative, it means there was a loss. If the result is positive or zero, return

“None".

Here's the Python function that follows this logic:

G Copy code

(original, current):
difference = current - original
1T difference <

rn difference

- loss_amount(
- loss_amount(

loss_amount(

This function should pass the provided assertions.



Solve rate

AlphaCode’s approach: code selection using execution results

Oracle sample selection

0.35{ = pass@k
10@k with filtering + clustering

0.30, — 10@k with filtering

T 10@khofiltering Limitation: sub-optimal sample efficiency
0.25+ .

« Require a lot of model samples

0.20 « Does not utilize wrong predictions that can
0.15- be partially correct
0.101
0.051
0.00 +— ] : : ; .

10! 102 103 104 10° 106

Sample budget
AlphaCode 1B



Human-written code in the first round also might not be perfect

e This is why debugging is an important skill for human programmers!

Good programmers are able to identify bugs by themselves, usually via investigating the execution results and
reasoning about the code semantic meaning.

o Self-debug: teach large language models to debug their own predicted code via rubber duck debugging

Chen, Lin, Scharli, Zhou, Teaching Large Language Models to Self-Debug.



Self-debugging overview

Step 2: Code execution

0
| Executor
Step 1: Code
generation K
Feedback

Code  Explanation

Model P afa ©
Step 3: Code explanation —p
)

Figure 1: SELF-DEBUGGING for iterative debugging using a large language model. At each debug-
ging step, the model first generates new code, then the code is executed and the model explains the
code. The code explanation along with the execution results constitute the feedback message, which
is then sent back to the model to perform more debugging steps. When unit tests are not available,
the feedback can be purely based on code explanation.



Demo with Bard: code generation

ﬂ Write a function that gives loss amount if the given amount has loss else return none. Your Python function should pass the following
assertions: assert loss_amount(1500,1200)==None, assert loss_amount(100,200)==100, assert loss_amount(2000,5000)==3000.

Sure, here is the Python function that gives loss amount if the given amount has loss else return none:

Python

def loss_amount(cost_price, selling_price):

This function calculates the loss amount if the given amount has loss.

Args:
cost_price: The cost price of the item.
selling _price: The selling price of the item.

Returns:
The loss amount, if any.

loss_amount = selling_price - cost_price

if loss_amount < 0:
return loss_amount
else:
return None



Demo with Bard: debugging with code execution

| Eﬁb With the above function, loss_amount(1500,1200)==-300. The assertion is " assert loss_amount(1500,1200)==None". So the code does not
pass the assertion. Please fix it.

View other drafts v

'ﬁ You are correct. The code does not pass the assertion because the function returns -300 instead of None when the cost price is greater than the
selling price. To fix this, we can change the if statement to:

Python

if loss_amount < @:
return None

else:
return loss_amount

Use code with caution. Learn more 0

This will return None when the cost price is greater than the selling price, and the loss amount when the cost price is less than the selling price.



Self-debugging without unit tests: text-to-SQL generation

Problem description

CREATE TABLE customers (

customer_id number ,

customer_name text ,

customer_details text ,

primary key ( customer_id )

)

insert into customers (customer_id, customer_name, customer_details) values (1,
’Savannah’, ’rerum’) ;

CREATE TABLE orders (

order_id number ,

customer_id number ,

order_status text ,

date_order_placed time ,

order_details text ,

primary key ( order_id ),

foreign key ( customer_id ) references customers ( customer_id )

)

insert into orders (order_id, customer_id, order_status, date_order_placed,
order_details) values (1, 2, ’Shipped’, ’2009-02-21 15:26:19°, NULL);

Question: Which customers have both "On Road" and "Shipped" as order status?
List the customer names.

Output SQL

SQL: SELECT customers.customer_name FROM customers JOIN orders ON customers.
customer_id = orders.customer_id

WHERE orders.order_status = "On Road"

INTERSECT SELECT customers.customer_name FROM customers JOIN orders ON
customers.customer_id = orders.customer_-id

WHERE orders.order_status = "Shipped"

« Challenges
o Require cross-domain generalization
» Each question can ask about
different databases
o No unit tests
= The model needs to infer the
code correctness by itself

« Approach: self-debugging by explaining
the potential inconsistency between the
code and the question



Step 1: explain the question and the generated code

Step 1: Question explanation
Infer the return type of the question.
[Question]
Which customers have both "On Road" and "Shipped" as order status? List the customer names.
[Question Explanation]
"List the customer names" returns 1 column. The question returns the customer names who have both "On Road" and "Shipped" as
order status. So the question returns 1 column.

Step 2: Code explanation
Summarize the return type of the execution.
[SQL]
SELECT ustomers.customer name FROM customers JOIN orders ON customers.customer id = orders.customer id
WHERE orders.order_status = "On Road" OR orders.order status = "Shipped"
Execution:
| George |
[SQL Explanation]
The execution of the SQL query above would return a table with 1 column.
The first column, "customers.customer name" would contain the customer names.
With "customers JOIN orders", the table would contain the data about customers with orders.
With "WHERE orders.order status = 'On Road' OR orders.order status = 'Shipped"', the table filters the records to only include
customers who have order status "On Road" or "Shipped".
So the SQL query returns a table with 1 column, the customer names who have the order status "On Road" or "Shipped".




Step 2: self-debugging with the generated explanations

Step 3: Self-Debugging with explanation

[Question]

[Explanation summary]|

As 1n your explanation, the SQL query returns a table with 1 column, the customer names who have the order status "On Road" or
"Shipped". The question returns 1 column, the customer names who have both "On Road" and "Shipped" as order status.
[Feedback]

So the SQL prediction above is wrong. Please fix the SQL.

[Revised SQL #1]

SELECT customers.customer name FROM customers JOIN orders ON customers.customer_id = orders.customer_id

WHERE orders.order_status = "On Road" AND orders.order status = "Shipped"

[Explanation summary #1 |

As in your explanation, the SQL query returns an empty table, because the "WHERE" clause contains mutually exclusive conditions.
The question returns 1 column, the customer names who have order status of both "On Road" and "Shipped”.

[Feedback #1]

So the SQL prediction above is wrong. Please fix the SQL.

[Revised SQL #2]

SELECT customers.customer_name FROM customers JOIN orders ON customers.customer_id = orders.customer_id WHERE
orders.order_status = "On Road" INTERSECT SELECT customers.customer name FROM customers JOIN orders ON
customers.customer_1d = orders.customer _1d WHERE orders.order_status = "Shipped"

[Explanation summary #2]

As 1n your explanation, the SQL query returns a table with 1 column, the customer names who have the order status "On Road" and
"Shipped". The question returns 1 column, the customer names who have order status of both "On Road" and "Shipped". So the
question returns 1 column.

[Feedback #2]

So the SQL prediction above is correct!




Application 2: code translation

Pybon Progam

string caesar_cipher ( string text, def caesar_cipher(text, s):
int s ) { result = ?°
string result = ""; for i in range(len(text)): All unit tests are available
for ( int i = 0; char = text[i] _
i < text . length ( ); if char.isupper(): for debugging.
i++ ) { result += chr(((((ord(char
if ( disupper ( text [ i ] ) ) ) + s) - 65) % 26) + 65))
result += char ( int ( text [ i ] else: LLM does not need to
+s - 65 ) % 26 + 65 ); result += chr(((((ord(char | infer the code
else result += char ( int ( text [ ) + s) - 97) % 26) + 97)) correctness. can focus on
il +s-97) %26+ 97 ); return result o !
} fixing the wrong code.
return result;
}

Unit Tests

assert caesar_cipher(’35225904°’, 2) == ’ikhhkofj’
(8 unit tests omitted)
assert caesar_cipher(’11’, 93) == ’tt’




Self-debugging with different feedback formats

[C+H] =
int count_trailing_zeroes_factorial_number ( int
n) {
int count = @;
for (inti=5; n/i>=1; 1i*=5)
count +=n / i;
return count;

}
[Original Python]| =
def count_trailing_zeroes_factorial_number(n):
cnt = 0
i=25
while ((n / i) >= 1):
cnt = (ent + (n / i))
i*=35
return cnt
[Simple Feedback] =

The above Python translation does not do the same
thing as the C++ code. Correct the Python
translation.

[UT Feedback] =

The Python translation does not do the same thing as
the C++ code. These are the results of failed unit
tests that test whether the Python translation's
outputs match the C++ program's outputs:

Failed: assert
count_trailing_zeroes_factorial_number(9) ==

Actual Result: 1.8
Correct the translation.

[Revised Python #n] =
def count_trailing_zeroes_factorial_number(n):
cnt = 0
i=35
while ((n / i) >= 1):
cnt = (ent + (n // 1))
i*=5
return cnt

[C++ Explanation] =
The code is an implementation of counting the number of trailing

zeroes in the factorial of a given number.
int count = @;

The variable count is used to record the number of trailing zeroes.
for (int 4.=5; W 7d 5= 1; 4 %= 5")
The loop iterates until the quotient of the given number and i (the

divisor) is greater than or equal to 1.
count +=n / 1i;

When the loop is executed, the quotient of the given number and 1

will be added to the variable count.
return count;

Finally, the function returns the number of trailing zeroes.
[Python Explanation] =
The code is an implementation of counting the number of trailing

zeroes in the factorial of a given number.
cnt = 0;

The variable cnt is used to record the number of trailing zeroes.
i=5

The variable 1 is used as the divisor.

while ((n / i) >= 1):

The loop iterates until the quotient of the given number and i (the

divisor) is greater than or equal to 1.
cnt = (ent + (n / 1))

When the loop is executed, the quotient of the given number and i

will be added to the variable cnt.
i*=5
The variable 1 will be multiplied by 5.

return cnt

Finally, the function returns the number of trailing zeroes.
[Trace] =

1. Initialize 'n* as 9, ‘cnt’ as 0, 1" as 5.

2. Enter the while loop since *(9/5)" is greater or equal to 1.

3. “ent’ is assigned ‘ent + (9 / 5)" which evaluates to 1.8.

4.°1" is multiplied by 5, becomes 25.

5. Check the condition again *(9 / 25)" is not greater or equal to 1.
Exit the while loop.

6. Return “cnt’ which is 1.8.

The incorrect translation fails because the division 'n /1" in Python
returns a float value, whereas in C++ it returns an integer value.
This issue affects the value assigned to “cnt’ and results in an
incorrect output.

Simple: a short universal feedback
for all wrong code.

Unit test feedback: include the
execution results.

Code explanation: line-by-line
explanation of the implementation

Trace: line-by-line simulation of the
execution trace



Self-debugging with different feedback formats

Simple Feedback
Below are C++ programs with incorrect
Python translations. Correct the
translations using the provided
feedback.
[C+]
[Original Python]
[Simple Feedback]

[Simple Feedback]

Unit Test (UT) Feedback

Below are C++ programs with incorrect
Python translations. Correct the
translations using the provided
feedback.

[C++]
[Original Python]
[UT Feedback]
[Revised Python #1]
[UT Feedback]

Unit Test + Explanation
(+Expl.)
Below are C++ programs with incorrect
Python translations. Explain the original
code, then explain the translations line
by line and correct them using the

provided feedback.
[C++]
[C++ Explanation]
[Original Python]
[Python Explanation]
- [UT Feedback]
[Revised Python #1]
[Python Explanation]
[UT Feedback]

[Python Explanation]

Unit Test + Trace (+Trace)
Below are C++ programs with
incorrect Python translations. Using the
provided feedback, trace through the
execution of the translations to
determine what needs to be fixed, and
correct the translations.

[C++]
[Original Python]
[UT Feedback]
[Trace]
[UT Feedback]
[Trace]




Application 3: text-to-Python generation

# These are the assertions for your function:
assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)

""" Write a function to find the similar elements from the given two tuple

lists. "

def similar_elements(test_tupl, test_tup2):
res = tuple(set(test_tupl) & set(test_tup2))
return (res)

« MBPP: 1 unit test in the prompt, 2 hidden unit tests for evaluation
« Passing the given unit test does not necessarily mean that the predicted code is correct
« The model still needs to infer the code correctness when the predicted code passes the

given unit test



Results

(a) Results on the Spider development set. (b) Results on TransCoder.
Spider Codex GPT-3.5 GPT-4 StarCoder  TransCoder Codex GPT-3.5 GPT-4 StarCoder
Baseline  81.3 71.1 73.2 64.7 Baseline 80.4 89.1 77.3 70.0
Simple ~ 81.3 72.2 73.4 64.9 Simple 89.3 91.6 80.9 72.9
+Expl. 84.1 72.2 73.6 64.9 UT 91.6 92.7 88 8 76.4
+ Expl. 92.5 92.7 90.4 76.6
+ Trace. 87.9 92.3 89.5 73.6
(c) Results on MBPP.
MBPP Codex GPT-3.5 GPT-4 StarCoder
Baseline 61.4 67.6 72.8 47.2
Simple 68.2 70.8 78.8 50.6
UT 69.4 72.2 80.6 52.2
+ Expl. 69.8 74.2 80.4 52.2

+ Trace.  70.8 72.8 80.2 53.2

« StarCoder: 15.5B open-source coding LLM
« Self-debugging consistently boosts the performance across different LLMs



More informative feedback improves self-debugging performance

(b) Results on TransCoder.

TransCoder Codex

GPT-3.5 GPT-4 StarCoder

Baseline 80.4 89.1 77.3 70.0
Simple 89.3 91.6 80.9 72.9
UT 91.6 92.7 88.8 76.4
+ Expl. 92.5 92.7 90.4 76.6
+ Trace. 87.9 92.3 89.5 73.6
(c¢) Results on MBPP.

MBPP Codex GPT-3.5 GPT-4 StarCoder
Baseline 614 67.6 72.8 47.2
Simple 68.2 70.8 78.8 50.6
UT 69.4 72.2 80.6 52.2
+ Expl. 69.8 74.2 80.4 52.2
+ Trace. 70.8 72.8 80.2 53.2

Note: simple feedback also utilizes code
execution to indicate the code correctness

Adding execution results (UT) consistently
improves the performance over the
generic simple feedback

LLM-generated code explanation can
provide additional gain



Self-debugging can be triggered with few-shot prompting

(a) Results on the Spider development set.

Spider  Codex

GPT-3.5 GPT-4 StarCoder

Baseline 81.3 71.1 73.2 64.7
Simple 81.3 72.2 73.4 64.9
+Expl. 84.1 72.2 73.6 64.9

(c¢) Results on MBPP.
MBPP Codex GPT-3.5 GPT-4 StarCoder
Baseline 614 67.6 72.8 47.2
Simple 68.2 70.8 78.8 50.6
UT 69.4 72.2 80.6 52.2
+ Expl. 69.8 74.2 80.4 52.2
+ Trace. 70.8 72.8 80.2 53.2

Codex performs the best at SQL with
few-shot prompting

GPT-4’s performance gain using self-
debugging is on par with Codex



Self-debugging improves sample efficiency
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—— Self-debugging
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Self-debugging from greedy decoding can match the baseline performance which utilizes
>10x samples



What error types can be fixed by self-debugging?

80

NN
o

1

Spider accuracy

N
o
1

(o))
o
1

90.7 92.3

80.5

Easy Medium Hard

B w/o debugging
iz self-debugging

Extra hard

9% improvement on the
hardest SQL tasks

Self-debugging fixes subtle
mistakes in code; e.g., missing
WHERE conditions in complex
SQL queries

Note: self-debugging does not
improve the fundamental
coding capability of LLMs



Importance of code execution for self-debugging

(a) Results on Transcoder.

TransCoder Codex GPT-3.5 GPT4
Baseline 80.4 89.1 77.3

Simple 3.4 89.1 782 « Self-debugging improvement is less
+ Expl. 83.9 89.1 78.0 significant w/o code execution, but can
+ Trace. 83.9 89.1 78.4 still bring up to 5% performance gain
(b) Results on MBPP using Codex and GPT-4
MBPP Codex GPT3.5 GPT4 o Trace feedback simulates the execution
Baseline 614 676 73 3 outcome and provides helpful
Simple 57 6 68.2 76.0 information for self-debugging

+ Expl. 64 .4 68.2 76.0
+ Trace. 66.2 69.2 76.4

Self-debugging without code execution



Discussion: valid external feedback is crucial for self-correction

GSM8K CommonSenseQA HotpotQA
GPT3.5 Standard Prompting 75.9 75.8 26.0
' Self-Correct (Oracle) 84.3 89.7 29.0
GPT-4 Standard Prompting 95.5 82.0 49.0
Self-Correct (Oracle) 97.5 85.5 59.0

\ # calls ] GSM8K CommonSenseQA  HotpotQA
Standard Prompting 1 75.9 75.8 26.0
GPT-3.5 Self-Correct (round 1) 3 75.1 38.1 25.0
Self-Correct (round 2) 5 74.7 41.8 25.0
Standard Prompting 1 95.5 82.0 49.0
GPT-4 Self-Correct (round 1) 3 91.5 79.5 49.0
Self-Correct (round 2) 5 89.0 80.0 43.0

Huang, Chen, Mishra, Zheng, Yu, Song, Zhou, Large Language Models Cannot Self-Correct Reasoning Yet.

Oracle: utilize the ground truth
answer for correction

Without oracle feedback for
correction, LLMs can wrongly
judge the correctness of its
predictions for reasoning
problems, leading to worse
performance after self-correction

Code execution provides natural
external feedback: humans often
debug better within an IDE



Takeaway

« We can teach LLMs to self-debug via few-shot prompting, even if the LLM
itself was not specifically tuned for debugging

« Significant improvement across several coding tasks, including those that
do not have unit tests

« Self-debugging is not just an approach: it is another indicator of the LLM
coding capability



Part 4: Compositional generalization for code generation

Problem Reduction (Syntactic Parsing)

7

What was produced by a art director that M1

L and M2 employed and was directed by M3

-

L and was directed by N3

What was produced by N1 that N2 employed

:What was produced by (a art director) that (M1 A

'\ and M2) employed and was directed by (M3)

_(What was produced by (N1 that (N2 employed)) |

'\ and was directed by N3

J

Selected exemplar

Exemplar | _ _ _
’[ M1 and M2 employed

Sequentially Solve Subproblems

Vs

-

| Exemplars ]

Q: Who edited a film that M1 and M2 produced

> LM
-
'
> LM
J N
Dynamically Select Exemplars for Each Subproblem
Retrieve using constituent from decomposition
)
—»[ LM

A: <Exemplar Answer> ...

( Subproblems |

Q: What was directed by M3
A: <Predicted Answer> ...

[ Input )

Q: What was produced by an art director that

M1 and M2 employed and was directed by M3
>

—

H Who edited a film that M1 and M2 produced }

s N

( Output )

A: SELECT DISTINCT WHERE {
?x0 produced_by ?x1 . ?x1 a art_director .
M1 employed ?x1 . M2 employed ?x1 .
?x0 directed_by M3 }

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.



Compositional generalization for sequence-to-sequence learning

* Compositional generalization: given basic components and a few demonstrations of their
combinations, generalize to novel combinations.

* Primitive generalization: generalize to novel combinations of primitives, where the test
inputs and outputs have similar lengths to the training samples.

 Example:
* Training on how to translate “walk”, “walk twice”, and “jump”.
e Testing on how to translate “jump twice”.

* Length generalization: generalize to longer test samples than the training ones.
 Example:

* Training on how to parse “while (x) {x = x+ 1;}", “x=x+ 1,y =y + X"

’

* Testing on how to parse “while (x) {x=x+1,y=y +x;}".



Prior successful attempts mainly come from neural-symbolic learning

Target Category 1
Target Category Predictor

A

Source Category 3 “—» Operator
—> Predictor

Source Category Predictor
A

G , )
[LTURN] turn opposite ‘ twice ‘
and Machine Status | Argument
Encoder Predictors
Memory Stack Next Token
S .

Machine Status

Neural controller: predicts the execution traces to produce the output sequences.

.

Symbolic stack machine: supports symbolic execution of sequence manipulation operations.

Chen, Liang, Yu, Song, Zhou, Compositional Generalization via Neural-Symbolic Stack Machines, NeurIPS 2020.
Chen, Liu, Song, Towards Synthesizing Complex Programs from Input-Output Examples, ICLR 2018.



Demonstration of the symbolic machine

Input Queue Step 1
...... Ippyt_ AU jugp alzou'ad right SHIFT around right - REDUCE [JUMP] S arli)und right :
:. . — tac emory L, Stack Memory : » tac Memory
-jump around right : . : :
e it I Y ump] A NV —
Step3: | Input Queue stepa | input Queue Step 5 Inpurti Q;'T)#eue Step 6 InputE ggeue
around right right : :
PUSH Stack lglemory . SHIFT Stack J Memory : PUSH Stack Memory :_ SHIFT Stack Memory :
I around | [T : |—] right (I
[JUMP] ; [JUMP] ; *| around around :
.................................................... [JUMP] [JUMP]
T Input Queue . 7] INPUL QUEUE . e
Step 7: : EOS : Step 8: EOS . Step 9 Input Queue :
REDUCE [RTURN] :  Stack Memory: CONCAT M[0] : Stack Memory : POP EOS " :
> [[RTURN]| > [around] [[RTURN]]: : Stack emory
around : . [JUMP] : :| [DUMP] around | [[RTURN] | :
[JUMP] e O
Step 10: ....... InPUt Queue ......... ': Step 11: ........ Input Queue ..... Step 12: ) output B
CONCAT M2, 0] % EOS : CONCAT.S[1,1,1,1] EOS FINAL ‘RTURN, JUMP;:
": Stack Memory g Stack Memory : ":RTURN, JUMP,’

Input Queue

:|around| [[RTURN, JUMP] |

Step 2:

Input Queue

'[[RTURN, JUMP,
:| RTURN, JUMP,
‘| RTURN, JUMP,
:|RTURN, JUMP]

‘RTURN, JUMP,:
:RTURN, JUMP:




Can LLMs improve compositional generalization without symbolic execution?

Method Standard prompting | Chain-of-Thought | Least-to-Most
code-davinci-002 16.7 16.2 99.7
text-davinci-002 6.0 0.0 76.0
code—davinci-001 0.4 0.0 60.7

SCAN length split

* YES, when:
* with few-shot demonstrations of reasoning rationales
* the language model has good prior knowledge of both text and code

Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.
Wei et al., Chain of Thought Prompting Elicits Reasoning in Large Language Models, NeurlPS 2022.



Least-to-most prompting

Subquestion 1

Append model
answer to -
Subquestion 1

Problem Reduction

A: To solve “How many times
can she slide before it
closes?”, we need to first
solve: “How long does each
trip take?”

Q: It takes Amy 4 minutes to climb to the top
of a slide. It takes her 1 minute to slide down.
The water slide closes in 15 minutes. How
many times can she slide before it closes?

Language

Sequentially Solve Subguestions

It takes Amy 4 minutes to climb to the top of a
slide. It takes her 1 minute to slide down. The
slide closes in 15 minutes.

A: It takes Amy 4 minutes to
climb and 1 minute to slide
down. 4 + 1 =5. So each trip
takes 5 minutes.

Language
Model

Q: How long does each trip take?

It takes Amy 4 minutes to climb to the top of
a slide. It takes her 1 minute to slide down.
The slide closes in 15 minutes. A: The water slide closes in

Q: How long does each trip take? L 15 minutes. Each trip takes 5
| A! It takes Amy 4 minutes to climb and 1 al\r)lglcjjalge minutes. So Amy can slide
minute to slide down. 4 + 1 = 5. So each trip ace 15 + 5 = 3 times before it

takes 5 minutes. closes.

P

| Q: How many times can she slide before it

Subquestion 2 —

Qloses? /

Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.



Least-to-most prompting for compositional generalization

e Stage 1: command reduction

Q: “look opposite right thrice after walk”™

A: “look opposite right thrice” can be solved by: “look opposite right”, “look opposite right
thrice”. “walk” can be solved by “walk”. So, “look opposite right thrice after walk” can be
solved by: “look opposite right”, “look opposite right thrice”, “walk”.

Q: “yump around right”
A: “Jump around right” can be solved by: “qump right”, “jump around right”. So, “jump around
right” can be solved by: “jump right”, “jump around right”.

Q: “look around right thrice and walk”

A: “look around right thrice” can be solved by: “look right”, “look around right”, “look around
right thrice”. “walk” can be solved by “walk”. So, “look around right thrice and walk” can be
solved by: “look right”, “look around right”, “look around right thrice”, “walk”.

Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.



Least-to-most prompting for compositional generalization

e Stage 2: command mapping

Q: “jump right”

A: The output of “jump right” concatenates: the output of “turn right”, the output of “jump”.
“turn right” outputs “TURN_RIGHT”. “jump” outputs “JUMP”. So concatenating the output of
“turn right” and the output of “JUMP” leads to “TURN_RIGHT” + “JUMP”. So the output of

“sump right” is “TURN_RIGHT” + “JUMP”.

Q: “yump right twice”

A: The output of “jump right twice” concatenates: the output of “jump right”, the output of
“oump right”. “jump right” outputs “TURN_RIGHT” + “JUMP”. So repeating the output of
“jump right” two times leads to (“TURN_RIGHT” + “JUMP”) * 2. So the output of “jump right
twice” is (“TURN_RIGHT” + “JUMP”) * 2.

Q: “jump right twice after walk”

A: The output of “jump right twice after walk concatenates: the output of “walk”, the output of
“yump right twice”. “walk” outputs “WALK”. “jump right twice” outputs (“TURN_RIGHT” +
“JUMP”) * 2. So concatenating the output of “walk” and the output of “jump right twice” leads
to “WALK” + (“TURN_RIGHT” + “JUMP”) * 2. So the output of “jump right twice after walk”
is “WALK” + (“TURN_RIGHT” + “JUMP”) * 2.

Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.



Compositional generalization for code generation

Examples in CFQ (Compositional Freebase Questions) benchmark

Question: Did M1 star M2, star M3, and star a art director and editor of MO?

SPARQL: SELECT count(*) WHERE
{ ?x0 edited MO . ?x0 art directed MO . M1 starred ?x0 . M1 starred M2 . M1 starred M3 }

Question: What was produced by a art director that M1 and M2 employed?

SPARQL: SELECT DISTINCT WHERE
{ ?x0 produced by ?x1 . ?x1 a art director . MO employed ?x1 . M1 employed ?x1 }

* Challenge: more complicated grammar with a larger vocabulary
* Single prompt is insufficient to cover all grammar rules

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.
Keyers et al., Measuring Compositional Generalization: A Comprehensive Method on Realistic Data, ICLR 2020.



Compositional generalization for code generation

Examples in CFQ (Compositional Freebase Questions) benchmark

Question: Did M1 star M2, star M3, and star a art director and editor of M0O?

SPARQL: SELECT count(*) WHERE
{ ?x0 edited MO . ?x0 art directed MO0 . M1 starred ?x0 . M1 starred M2 . M1 starred M3 }

Question: What was produced by a art director that M1 and M2 employed?

SPARQL: SELECT DISTINCT WHERE
{ ?x0 produced by ?x1 . ?x1 a art director . MO employed ?x1 . M1 employed ?x1 }

* Challenge: more complicated grammar with a larger vocabulary
* Single prompt is insufficient to cover all grammar rules
* Context-dependent constituent translation

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.
Keyers et al., Measuring Compositional Generalization: A Comprehensive Method on Realistic Data, ICLR 2020.



Our approach: problem decomposition with syntactic parsing

What (was produced by ((a art director) that (M1 and M2 employed)) and (was directed by M3))

Y

N

What (was produced by ((a art director) that (M1 and M2 employed))) What (was directed by M3)

Y

N

What (was produced by (a art director))

What (was produced by ((a art director) that (M1 employed)))

* Tree-structured decomposition with LLM prompting

* Each node represents a subproblem linearized as a well-formed sentence

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.




Our approach: dynamic exemplar selection for each subproblem

Retrieve using constituent from decomposition Selected exemplar

gzzrlnplar} -- _.[ M1 and M2 employed ]—»[ Who edited a film that M1 and M2 produced ]

* Single prompt is insufficient to cover all grammar rules

 Exemplar selection based on subtree matching



Overview: dynamic least-to-most prompting

Problem Reduction (Syntactic Parsing)

(What was produced by a art director that M1 : LM ) ‘[What was produced by (a art director) that (M1 A
L and M2 employed and was directed by M3 '\ ) '\ and M2) employed and was directed by (M3)
(What was produced by N1 that N2 employed ( LM A :(What was produced by (N1 that (N2 employed)) )
L and was directed by N3 ) L ) L and was directed by N3 )
Dynamically Select Exemplars for Each Subproblem
Retrieve using constituent from decomposition Selected exemplar

= -{ M1 and M2 employed H Who edited a film that M1 and M2 produced J

Sequentially Solve Subproblems
g R e R

( Exemplars J ( Output ]

Q: Who edited a film that M1 and M2 produced —»{ LM }—» A: SELECT DISTINCT WHERE {
A: <Exemplar Answer> ... ?x0 produced_by ?x1 . ?x1 a art_director .

M1 employed ?x1 . M2 employed ?x1 .
(Subproblems | 2x0 directed_by M3}

Q: What was directed by M3 L P

A: <Predicted Answer> ...

[ Input ]
Q: What was produced by an art director that
M1 and M2 employed and was directed by M3
57

&

Drozdov*, Scharli*, Akyurek, Scales, Song, Chen, Bousquet, Zhou, Compositional Semantic Parsing with Large Language Models, ICLR 2023.



Evaluation on CFQ

MCD1 | MCD2 | MCD3 | Ave.
Fully Supervised
TS5-base (Herzig et al., 2021) 58.5 27.0 18.4 34.6
TS-large (Herzig et al., 2021) 65.1 32.3 25.4 40.9
T5-3B (Herzig et al., 2021) 65.0 41.0 42.6 49.5
HPD (Guo et al., 2020) 79.6 59.6 67.8 69.0
TS5-base + IR (Herzig et al., 2021) | 85.8 64.0 53.6 67.8
TS5-large + IR (Herzig et al., 2021) | 88.6 79.2 | 727 80.2
T5-3B + IR (Herzig et al., 2021) 88.4 85.3 71.9 83.9
LeAR (Liu et al., 2021) 91.7 89.2 91.7 90.9
Prompting
(Ours) Dynamic Least-to-Most 94.3 95.3 95.5 95.0

Herzig et al., Unlocking Compositional Generalization in Pre-trained Models Using Intermediate Representations.

Liu et al., Learning Algebraic Recombination for Compositional Generalization, ACL Findings, 2021.

Guo et al., Hierarchical Poset Decoding for Compositional Generalization in Language, NeurlPS 2020.
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Evaluation on COGS

Question: James said that a manager liked that Aiden appreciated that Emily believed that the girl was
posted a cake beside a table by Olivia.
Parse:  say (agent=James, ccomp = like ( agent = manager, ccomp = appreciate (

agent = Aiden , ccomp = believe ( agent = Emily , ccomp = post (

recipient = * girl, theme = cake ( nmod . beside = table ), agent = Olivia) ) ) ) ) DONE

Gen.
Fully Supervised
LeAR (Liu et al., 2021) 7.7
T5-base (Qiu et al., 2022a) 89.8
T5-base + CSL (Qiu et al., 2022a) | 99.5
Prompting
(Ours) Dynamic Least-to-Most 99.2

Kim and Linzen, COGS: A Compositional Generalization Challenge Based on Semantic Interpretation, EMNLP 2020.
Liu et al., Learning Algebraic Recombination for Compositional Generalization, ACL Findings, 2021.
Qiu et al., Improving Compositional Generalization with Latent Structure and Data Augmentation, NAACL 2022.



Prompting without exemplar design: analogical prompting

Our Prompt: Self-generate Exemplars + Knowledge

Your goal is to write Python3 code to solve competitive programming problems. Given a problem, explain the core concepts in it and provide
other relevant problems. Then solve the original problem.

# Problem:
You are given a sequence a_1, a_2, .., a_n. Each element of a is 1 or 2. Find out if an integer k exists so that the following conditions are
met. 1 <k £n-1, and a_1 - a_2 .. a_k = a_{k+1} .. a_n. If there exist multiple k that satisfy the given condition, print the smallest.

# Instruction:
## Algorithms:
Identify the core concepts or algorithms used to solve the problem.

## Tutorial:
Write a tutorial about these algorithms.

## Example Problems:
Provide three examples of relevant competitive programming problems that involve these algorithms. For each problem, describe the problem,
explain the solution in detail, and then write the correct Python3 code.

## Python3 code to solve the original problem:

- Explanation of the solution:
- Python3 code to solve the problem:

Yasunaga, Chen, Li, Pasupat, Leskovec, Liang, Chi, Zhou, Large Language Models as Analogical Reasoners.



Analogical prompting for code generation

Output by GPT3.5-turbo

¥ Klgorithws: Tha core algorithn For solving this problen is the prefix product algorithm, T Self-generated Knowledge -~

by initializing a variable "prefix" to 1, and then iterating through the array from left to right. At each iteration, the current element is
multiplied with the prefix, and the result is stored in the prefix variable. This way, the prefix variable keeps track of the product of all
the elements in the prefix of the array. The time complexity of this algorithm is 0(n), where n is the size of the input array. ......

T Example Problems: T Self-generated Exemplars -~~~ -

## Tutorial: The prefix product algorithm is used to calculate the product of all the elements in a prefix of an array. The algorithm works

1. Problem: Given an array of integers, find the product of all the elements in each subarray of size k.
Solution: We can use the prefix product algorithm to solve this problem. We initialize a prefix variable to 1, and then iterate through
the array from left to right. At each iteration, we multiply the current element with the prefix, ......

i def product_of_subarrays(arr, k): i
E prefix = 1 i
| result = []

E for i in range(len(arr)): i
i prefix = prefix * arr[i] i
l if 1 >= k-1: |
E result.append(prefix)

E prefix = prefix // arr[i-k+1] i
i return result

2. Problem: Given an array of integers, find the longest subarray with a product less than or equal to a given target.
Solution: ......

3. Problem: Given an array of integers, find the smallest k such that the product of all the elements in the prefix of the array is equal to

the product of all the elements in the suffix of the array.
Solution: ......

Generated example problems can be much simpler than the testing problem



Evaluation on Codeforces problems

Prompting Method GPT3.5-turbo-16k GPT4
Acc@]l Acc@10 Acc@]l Acc@10
0-shot 8% 24% 16% 30%
0-shot CoT 9% 27% 16% 29%
3-shot CoT 11% 27% 17% 31%
Ours: Self-generated Exemplars 13% 25% 17% 32%
Ours: Self-generated Knowledge + Exemplars 15% 29% 19% 37%

* To prevent test set contamination, the test set contains level-A (simplest)
problems in 2023 Codeforces contests

* Self-generated exemplars outperform zero-shot prompting and CoT with
manually-designed exemplars

* Self-generated knowledge further improves the performance



Evaluation on other reasoning problems

Prompting Method GSMBS8K Accuracy MATH Accuracy
GPT3.5-turbo text-davinci-003 PalLM2 GPT3.5-turbo  PalLM2
0-shot 75.0% 14.8% 60.8% 33.0% 27.1%
0-shot CoT 75.8% 50.3% 78.2% 33.9% 29.8%
5-shot CoT 76.7% 54.0% 80.7% 34.9% 34.3%
Ours: Self-generated Exemplars 77.8% 61.0%" 81.7% 37.3% 34.8%

Mathematical reasoning

. Word Logical deduction Temporal Reasoning about Formal
Prompting Method sorting  five objects sequences  colored objects fallacies
0-shot 66.8% 30.0% 40.4% 50.4% 53.6%
0-shot CoT 67.6% 35.2% 44.8% 61.6% 55.6%
3-shot CoT 68.4% 36.4% 58.0% 62.0% 55.6%
Ours: Self-generated Exemplars  75.2% 41.6% 57.6% 68.0% 58.8%

Big-Bench tasks



Takeaway

« LLMs can be taught to elicit the compositional generalization capability,
via demonstrations of problem reduction steps.

« Code pretraining is not only critical for doing code generation tasks, but
also plays a key role in achieving compositional reasoning



Summary

« Large language models provide a unified natural language interface for
general-purpose code generation

« Language models show promising progress on solving challenging coding
problems, with room for improvement on sample efficiency

« Self-debugging enables the LLM to leverage code execution and reflect on
the code semantic meaning to fix its own prediction

« Joint pretraining of text and code empowers both code generation and
other reasoning capabilities



Xinyun Chen

Thanks! Google DeepMind
xinyunchen@google.com

« Large language models provide a unified natural language interface for
general-purpose code generation

« Language models show promising progress on solving challenging coding
problems, with room for improvement on sample efficiency

« Self-debugging enables the LLM to leverage code execution and reflect on
the code semantic meaning to fix its own prediction

« Joint pretraining of text and code empowers both code generation and
other reasoning capabilities



