Deep Learning for
Mathematical Reasoning

Christian Szegedy
4/16/2024

What is Mathematical Reasoning

- “Informal” reasoning in natural language
- Solving a natural language question by giving a natural language answer
- Examples:
- Elementary school math problems
- Simple calculations
- Word problems
- High-school-level problems:
- Simple calculations
- Word problems
- Multiple-choice questions
- Simple Proofs
- Research level mathematics:
- Long proofs
- Diagrams
- Convincing a fellow mathematician in a long conversation

Reasoning in a fully formalized Language

- Given a fully formally specified problem in some formal theorem prover

- Create a proof
- Syntactically correct
- Akin to programming

import data.nat

open nat
definition even (a : nat) := 3 b, a = 2xb
theorem EvenPlusEven {a b : nat} (H1 : even a) (H2 : even b) : even (a + b) := Lean 4.0
exists_elim H1 (fun (wl : nat) (Hwl : a = 2%wl), Proof
exists_elim H2 (fun (w2 : nat) (Hw2 : b = 2xw2), (Code)
exists_intro (wl + w2)
(calca+b = 2xwl + b : {Hwl}
= 2%wl + 2%w2 : {Hw2}

2%(wl + w2) : eq.symm !mul.distr_left)))

Formal vs Informal

Formal Reasoning:

- 100% guaranteed,
correctness

- Fully specified

- Computer checkable

- Suitable for verifying
software

Informal Reasoning:

Semantics of correctness
is fuzzy

Problem formulation
might be fuzzy

Needs humans to verify
Cumbersome/not very
precise for verifying
software.

Formal vs Informal

Formal Reasoning: Informal Reasoning:
- 100% guaranteed, - Semantics of correctness
correctness is fuzzy
- Fully specified - Problem formulation
- Computer checkable might be fuzzy
- Suitable for verifying - Needs humans to verify
software - Cumbersome/not very
precise for verifying
software.
Very few well-accepted Several well-studied

Al-benchmarks Al-benchmarks: MATH, GSM8K, ...

Formal vs Informal

Formal Reasoning:

- 100% guaranteed,
correctness

- Fully specified

- Computer checkable

- Suitable for verifying
software

Very little unsupervised data
available.

Informal Reasoning:

- Semantics of correctness
is fuzzy

- Problem formulation
might be fuzzy

- Needs humans to verify

- Cumbersome/not very
precise for verifying
software.

Large amount of unsupervised
data: papers/books web pages.

Issues with formal proof checking

Historically: many provers, with different foundations:

- Mizar

- HOL4

- Isabelle/HOL
- HOL-Light

- Coq

- Metamath

- Lean

First order logic + axiom schemas
HOL / Higher Order

HOL

HOL

HOL /Calculus of Constructions
Own logic

HOL / Calculus of Constructions

Data: Formal vs Informal

_—
\\

DN
R

Informal

\\

-

What is Mathematics?

- Calculating some elementary arithmetic calculations?
- Solving hard problems such as the P#NP, Riemann Hypothesis or Collatz
conjecture?

What is Mathematics?

- Calculating some elementary arithmetic calculations?
- Solving hard problems such as the P#NP, Riemann Hypothesis or Collatz
conjecture?

Alternatively:

Mathematics is everything that can be done fully formally inside a
computer without real world interaction and with efficiently, independently
verifiable outcome.

Examples of “mathematics”

- What is the best move in a certain chess position?

- Is my hand likely to win given fully rational agents at given poker table and
history of bets.

- What are the most general type annotations make this program type-check?

- Does this program ever throw an exception?

- Predict tomorrow’s weather given today’s weather data

- Compute the mass of the proton using QED

- What is the highest learning rate for this neural network to train on a given
input distribution?

Examples of non-mathematics

- Self-driving

- Figuring out the laws of the universe

- Categorize today’s news on the internet

- Predict what content will a certain user enjoy
- Is there life on Europa?

- Robotics

- Curing cancer

These problems require:
- Real world interaction/information acquisition
- Non-specified rules
Correctness is not verifiable formally (due to lack of rules).

Is Mathematics = Computation?

What is computation?

- Local changes
- Using well-defined, finite rules
- On arbitrary sized objects.

What is Computation?

Most common models of computation:

- Turing Machine
- Lambda Calculus

What is Computation?

Most common models of computation:

- Turing Machine
- Ugly:

- Relatively complex and obscure

- Uses actual infinity for modeling potential infinity
- Overly complex to model with actual code

- Cumbersome to formalize precisely

- Lambda Calculus
- Assumes a lot of ad hoc structure

What is computation

- Local changes
- Using well-defined rules
- On arbitrary sized objects.

Circular Turing Machine:

Finite state machines on the prefix/postfix pairs of strings

Simple model of computation

Let A be a finite alphabet and fand g two maps from A&} to A2UAUR, HALT},

(Q denotes the empty string), then a “circular” Turing machine is a deterministic
process that iterates the following function from A* to A*:

F(xl T xn) — f(xla xn)le T $n—19(331, xn)
Python implementation (iterate “step” until a HALT state is produced by for g.
def step(f, g, w):

x = w[:1], w[l:][-1:]
return f[x] + w[l:-1] + g[x]

The formalization of formalization

Let’s imagine a proof checking program (verifier). “p is a proof of s” iff:
V(p) =s

We also want the verifier to run in polynomial (close-to-linear) time.

The goal of theorem proving is to find such a “proof” p.

We also require that there is another (easy to compute) program “negation” N,
such that {N(s), s}< Im(V).

What is semantics?

We request a self-modeling ability:

- We want an Embedding algorithm, encoding of the process of computation
into such a language:

If T=TM(f,9) is a (circulant) Turing machine, then we require to have a computable
“embedding E”

E(f,g,x,y) in Im(V) iff T(x) stops with output y, and there should be a polynomial
time algorithm (in the execution time of T(x)) to compute V(p) = E(f, g, X, y).

Also we require another computable embedding F(f, g, x) such that if F(f, g,
x) in Im(V), then T never halts.

What is mathematics

Mathematics is everything that can be described fully formally:

- Uses computation only
- Using a finite set of locally applied rules
- On arbitrarily long inputs
- Formal system
- Efficiently verifiable
- With self-referential semantics
- Can represent computation by any Turing machine efficiently
- Can prove the non-halting property of some Turing machines

The Vision of Al for mathematics

- Creating an artificial mathematician that (potentially) exceeds the
problem-solving capability of any human mathematician.

Formal or Informal?

Formal vs Informal

Formal only:

- Ifitis fully formal, we have much less training data to bootstrap from

- Hard to create a curriculum as even most theorems are not formalized.
- Self play?
- Even if we figure out what is interestingness, how would we communicate with a
fully-formal system that uses a completely alien “code base”

Informal only:

- How do we trust whether the system produces correct answers?
- How do we bootstrap its reasoning and evaluate its progress?

The Vision of Autoformalization

Neural Net Formal

Reasoner < (Neural) Language Model

Formal Verifier (Formal

prover, SMT solver) Informal Corpus

i

Formal Corpus

Autoformalization

Informal

Autoformalizer

No grounding

5

Math Environment

(Proof assistant)

[AWN

&
o)
¥

B —

Interacting

Formal

-
-

Autoformalization

It's not easy...

- Task itself is extremely difficult.
- Many missing information from informal proofs.

- We lack datasets to train machine learning models.
- Very little amount of aligned pairs of “informal <-> formal”.

Hmmm, what if LLM is so powerful...

/:‘ ‘ = e
4““ . ? 3
;

Autoformalization with LLMs

Autoformalization with LLMs (NeurlPS 2022):

W. Albert Jiang, Wenda Li, Charles Staats, Markus Rabe, Mateja Jamnik, Christian
Szegedy.

— First proof of concept of autoformalization with LLMs.
- Autoformalization of statements

Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal

Proofs:

W. Albert Jiang*, Sean Welleck*, Jin Zhou*, Timothy Lacroix, Gary Liu, Wenda Li, Mateja
Jamnik, Guillaume Lample.

— Autoformalization of proofs

Case studies: Main takeaways

1. LLMs can formalize despite little data in the pre-training corpus.
2. Capable of formalization completely out of domain problems!

3. We can teach the model to do better by showing relevant
examples in the prompt.

Autoformalization of problem statements

Start with a 2-shot examples prompt:

Natural language version: "Let z = %, find (31, 2(2"")) - 5 2(7};)) The final
answer is 36." Translate the natural language version to an Isabelle version:

theorem
fixes z::complex
assumes h0: "z = (Complex (1/sqrt 2) (1/sqrt 2))"
shows " (\<Sum>k::nat=1..12. (z~(k~2)))
* (\<Sum> k::nat=1..12. 1/(z"~(k"2)))=36"

Natural language version: "Determine the value of ab if logg a + log, b2 = 5 and logg b +
log, a? = 7. The final answer is 512". Translate the natural language version to an Isabelle
version:

theorem
fixes a b ::real
assumes "(In a) / (In 8) + (In (b~2)) / (1n 4)
"(lnb) / (In 8) + (1n (2a~2)) / (1n 4)
shows "a * b = 512"

5"
7"

Case Study 1

Wow!
- “thereis no function f...” formalized to “assuming there is such a function proving “False”.
- The model understands what it means by the phrase “to itself”.

7

Case Study 1 Question:
"Prove that there is no function f from the set of non-negative integers into itself
such that f(f(n)) = n + 1987 for every n."

Codex Output:
theorem

fixes f :: "nat \<Rightarrow>nat"
assumes "\<forall>n. f (f n) =n + 1987"

shows False

Case Study 2

Wow!
- Grade school math problem! Such a statement is completely out-of-distribution!
- The model did it perfectly.

Case Study 2 Question:

Natural Language version: "When all the girls at Madeline’s school line up in rows of eight,
there are seven left over. If instead they line up in rows of four, how many are left over? The
final answer is 3." Translate the natural language version to an Isabelle version:

PalLM output:
theorem

fixesn: :nat
assumes "nmod 8=7"
shows "nmod 4 = 3"

Case Study 3

A failure case:
- It fails to formalize the concept of “linear function”. It made up a name: linear f.

Case Study 3 Question:
Natural language version: "Let f be a linear function for which f(6) — f(2) = 12. What is
f(12) — f(2)? The final answer is 30." Translate the natural language version to an Isabelle

version:

Codex output:
theorem
fixes f :: "real \<Rightarrow> real"
assumes "linear f"
"f6-f2=12"
shows "f 12 - £ 2=30"

Teaching the model “what is a line” in the prompt

Add this new example to the prompt that explains a “line”.

'4 N\
Natural language version: "What is the z-coordinate for the a-intercept of the line containing
the points (7,4) and (6, 3)? The final answer is 3". Translate the natural language version to
an Isabelle version:

theorem

fixes a b :: real
and f :: "real \<Rightarrow> real"

assumes hO : "\<And>x. f x = a * x + b"
and hl1 : "f 7 = 4"
and h2 : "f 6 = 3"

shows "f 3 = 0"

\ J

The model can now formalize a “linear function”!

Question:

Natural language version: "Let f be a linear function for which f(6) — f(2) = 12. What is
f(12) — f(2)? The final answer is 30."

Translate the natural language version to an Isabelle version:

Codex Output:
theorem
fixesab :: real
and f :: "real \<Rightarrow> real"

assumes hO : "\<And>x. fx=a*x+Db"
andhl : "f6-f2=12"
shows "f 12 - £ 2 = 30"

More evals: Human Evals

- Codex is capable of translating 38 out of 150 MATH problems perfectly.

- Majority of the failures: misalignment of definitions!

- the greatest possible value” vs. “Greatest/Max”
- “Factorial of n” vs. “fact n”

Failure cases \ Subjects algebra number_theory inter_alg
Perfect translation 13 17 8
Incomplete/ill-formed/unclear prompt 9 3 14
Fail to align definitions or concepts 10 18 18
Inconsistent/missing assumption 8 9 9
Syntactical/type error 4 2 11
Missing definition in Isabelle 0 12 3
Wrong application of functions 6 13 16
Other 6 2 1

DSP framework

Informal statement Formal statement

theorem mathd numbertheory 100:

Statement -
¢ odtn 4 — 1 and fixes n :: nat
If ged(n, 4) =1an assumes "gcd n 4 = 1"
lem(n, 4)=.28, and "lcm n 4 = 28"
showthitn|s7. shows "n = 7"
Informal
Proof Writer o ffo
N Draft Verified formal proof

have cl: “1%28 = n*4"
using assms

Informal proof Prove by (smt (2z3) prod_gcd_lcm_nat)

We know that gcd(a, b) - lem(a, b) = ab, then have c2: “n = 1%28/4"

hencel-28 =n - 4. by auto
Sketch PP A A PP ;
Thenn=1-28/4=1, then show ?thesis :

Formal sketch

have cl: “1*28 = n*4”
using assms
<proof>

- o Off-the-shelf
Autoformalizer then have c2: “n = 1%28/4 Prover
<proof>
@ ‘then show ?thesis /;3%

<proof>

Example — Minerva solves an IMO Problem

Statement: Prove that the fraction ﬂzig is irreducible for every natural number n.

Informal Proof (Minerva 62B):
We must show that ged(21n + 4,14n + 3) = 1.
The Euclidean algorithm gives

2ln+4=1-(14n+3)+Tn+1
14n+3=2.-(Tn+1) +1.
Since ged(7n + 1,1) = 1, we have ged(21n + 4, 14n + 3) = 1.

Formal Proof:
theorem imo_ 1959 _pl:

fixes n :: nat
shows "gcd (21xn + 4) (14%n + 3) = 1"
proof -

(* The Euclidean algorithm gives

21nt+4=1\cdot (14n+3) +Tn+1

14n+3=2\cdot (Tn+1)+1. *)

have c0: "21sn + 4 = 1x(14*n + 3) + 7+n + 1"
<ATP> by auto </ATP>

have cl: "14xn + 3 = 2% (7*n + 1) + 1" using c0
<ATP> by auto </ATP>

(* Since \ged(7ntl,1)=1, we have \gcd(21n+4, 14nt+3)=1. *)
then have "gcd (7*xn + 1) 1 = 1"
using cl
<ATP> by auto </ATP>
then have "gcd (21+n + 4) (14xn + 3) = 1"
using cl
<ATP> by (smt (z3) BitM plus_one ab_semigroup_add class.add_ac(l)
add.assoc c0 gcd.commute ged_add2 gecd _add mult mult_numeral 1
numeral_One numeral_eq Suc numerals(l) semiring norm(3)) </ATP>
then ?thesis
using cl
<ATP> by blast </ATP>
qged

Autoformalization with LLMs

Informal Autoformalizer Formal

LLMs + @
Few-shot!

No grou nding Theorems, definitions, proofs
_ Math Environment Interacting Little Data

(Proof assistant)

Future of mathematics

Informal Autoformalizer

8 1y
"

LLMs +
Few-shot!

. Interactin
Math Environment teracting

(Proof assistant)

v‘\\e

6 | N

Premise Selection from Knowledge Base

Goal Potential Premise
l l Embedding Network:
Embedding network Embedding network e Convolutional
network
\/ e Recurrent LSTM
: t K network
SellaliI=t (el e \WaveNet style network
l e Graph Neural Network
e Transformer

Classifier/Ranker

Alemi, A. A at al, DeepMath-Deep Sequence Models for Premise Selection, NIPS 2016

Paliwal, A et al, Graph Representations for Higher-Order Logic and Theorem Proving, AAAI
2020

MAGNUSHAMMER: A TRANSFORMER-BASED
APPROACH TO PREMISE SELECTION

Maciej Mikuta* Szymon Tworkowski* Szymon Antoniak*
Google DeepMind' xAI Mistral AI

Bartosz Piotrowski Albert Qiaochu Jiang Jin Peng Zhou Christian Szegedy
IDEAS NCBR University of Cambridge Cornell University* xAI*

F.ukasz Kucinski Piotr Milo$ Yuhuai Wu

IDEAS NCBR IDEAS NCBR xAI*

ICLR 2024: Premise selection via Transformers for
Isabelle

Sledgehammer

|

Relevance filter

!

Translation to appropriate logics

\4

Vampire

Reconstruction in Isabelle (only for successful proofs)

Ordered

Premises
(SELECT) |
Textual
; representation
(‘.')o.sm.e of top premises
Similarity <—‘
Premise Proof State
Embedding Embedding
i £
SELECT Premise SELECT State
Projection Projection
‘P
4 N
Transformer Transformer
Backbone Backbone
\ J
Available Proof State
Premises

Ordered
Premises
(RERANK)

i

Sigmoid

A

RERANK
Projection

1

7

~
Transformer
Backbone

Proof State | Premise

A

Algorithm 1 Premise selection with Magnushammer.

Require:

P

= O P B O R e

proof_state, premises > proof state to retrieve premises for and database of available premises
Ks,Kr > number of premises to retrieve with SELECT and RERANK, respectively
state_embedding < get_embeddings(proof_state) > SELECT stage starts
premises_embeddings < get_embeddings(premises)
Cache(premises_embeddings)
sim_scores — state_embedding - premises_embeddings
selected = premises[argsort(—sim scores)[: Kg]]
batch = || > RERANK stage starts
for premise in selected do

batch.append((proof_state, premise))

rerank_scores < get_rerank_scores(batch)
top_premises = selected|argsort(—rerank scores)[: Kg]]
return top_premises

Results on PISA benchmark

Task Method Proof rate (%)
BM25 30.6
TF-IDF 31.8

Single-step OpenAl embed. (Neelakantan et al., 2022) 36.1
Sledgehammer 38.3
Magnushammer (ours) 59.5
LISA (Jiang et al., 2021) 33:2

Multi-step Thor (Jiang et al., 2022a) 57.0

Thor + Magnushammer (ours) 71.0

Results on MiniF2F

Task Method Valid (%) Test (%)
Sledgehammer 9.9 10.4

Single-step Sledgehammer + heuristics 18.0 20.9
Magnushammer (ours) 33.6 34.0
Thor + Sledgehammer (Jiang et al., 2022a) 28.3 29.9

Multi-step Thor + Sledgehammer + auto (Wu et al., 2022a) 37.3 35.2
Thor + Magnushammer (ours) 36.9 37.3
DSP (Jiang et al., 2022b) 43.9 39.3

Scalability

60 v
x X *
50
e
—_ s %o
X x"
o0 & S &
+ L 4
o &
o 30 [% i A
§ \ g MA A
A # Magnushammer
' ¢ Sledgehammer
10 A A BM25

0 100 200 300 400 500 600 700 800
Compute Budget

Scaling

Proof Rate (%)

51.5
55:0
825
50.0
47.5
45.0
42.5
40.0
37:5

Pre-trained
A A Non pre-trained
- == Sledgehammer
106 10’ 10°

#Parameters

The Vision of Autoformalization

Neural Net Formal

Reasoner < (Neural) Language Model

Formal Verifier (Formal

prover, SMT solver) Informal Corpus

i

Formal Corpus

