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Part I 
Understanding Attention Mechanism



Understanding Attention in 1-layer Setting

Contextual tokens

𝑥! 𝑥" 𝑥#$! 𝑥# 𝑥#%!
Last/query token Next token

Self-attention

Normalization

Decoding & Softmax

"𝒖# = %
&'!

#$!

𝑏&#𝒖(! = 𝑈#𝑋#𝒃#

Self-attention

𝑈 = 𝒖!, 𝒖", …𝒖) #:  token embedding matrix

Normalized version ,𝒖# = 𝑈#LN(𝑋#𝒃#)

max
#!,#",##,%

𝐽 = 𝔼& 𝒖'$%&	
) 𝑊*)𝒖) − log.

+

exp(𝒖+	)𝑊*)𝒖))
Objective:

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]



Reparameterization

• Parameters 𝑊1 ,𝑊2 ,𝑊3 , 𝑈 makes the dynamics complicated. 

• Reparameterize the problem with independent variable 𝑌 and 𝑍
• 𝑌 = 𝑈𝑊*

)𝑈)

• 𝑍 = 𝑈𝑊,𝑊-
)𝑈) (pairwise logits of self-attention matrix)

• Then the dynamics becomes easier to analyze



Training dynamics of Y and Z

Here 𝑍	 = 𝒛., 𝒛/, … , 𝒛0 ), each 𝒛1 ∈ ℝ0 is the attention score for query/last token 𝑚:

Training Dynamics:

𝑍 = 𝒛!

𝒛!: All logits of the contextual tokens 
when attending to last token 𝑥" = 𝑚�̇� = 𝜂*LN 𝑋#𝒃# 𝒙#%! − 𝜶 #

�̇� = 𝜂+𝒙# 𝒙#%! − 𝜶 #𝑌#
𝑃,"𝒃"
.

𝑋#𝒃# "
𝑋#diag 𝒃# 𝑋



Major Assumptions

• No positional encoding
• Sequence length 𝑇 → +∞
• Learning rate of decoder 𝑌 larger than self-attention layer Z (𝜂@ ≫ 𝜂A) 
• Other technical assumptions 



Data Distribution

ℙ(𝑙|𝑚#, 𝑛#)
𝑚#

𝑛#
𝑛$

𝑚$
𝑛%
𝑛&

Last token 𝑥"  Next token 𝑥"'# 
Contextual tokens 𝑥( (1 ≤ 𝑡 ≤ 𝑇 − 1)

Sequence 
Classes

Question: Given the data distribution, how does the self-attention layer behave?

Assumption: 𝑚 = 𝜓(𝑛), i.e., no next token shared among different last tokens

ℙ 𝑙 𝑚, 𝑛 = ℙ 𝑙 𝑛  is the 
conditional probability of 
token 𝑙 given last token 𝑥! = 𝑚 
and 𝑥!"# = 𝑛 

𝑥( ∈ [𝑀] for 1 ≤ 𝑡 ≤ 𝑇
𝑥"'# ∈ [𝐾]
𝐾 ≪ 𝑀

Common tokens: There exists multiple 𝑛 so that ℙ(𝑙|𝑛) > 0
Distinct tokens: There exists unique 𝑛 so that ℙ(𝑙|𝑛) > 0



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

Distinct 
Token

Common 
Token

�̃�+|D&

�̃�+|D.

�̃�+|D& : = ℙ 𝑙 𝑚, 𝑛. exp(𝑧1+)

At initialization

Initial condition: 𝑧1+ 0 = 0

𝑍 = 𝒛!

𝒛!: All logits of the contextual tokens 
when attending to last token 𝑥" = 𝑚

Co-occurrence probability 



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

Common Token Suppression

(a) ̇𝑧JK < 0, for common token 𝑙



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

(a) ̇𝑧JK < 0, for common token 𝑙

(b) ̇𝑧JK > 0, for distinct token 𝑙

Winners-emergence

Learnable TF-IDF (Term Frequency, 
Inverse Document Frequency)



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

Winners-emergence

(a) ̇𝑧JK < 0, for common token 𝑙

(b) ̇𝑧JK > 0, for distinct token 𝑙

(c) 𝑧JK(𝑡) grows faster with 
larger ℙ 𝑙 𝑚, 𝑛

Attention looks for discriminative tokens that 
frequently co-occur with the query.



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

Theorem 3 Relative gain 𝑟)/)!|, 𝑡 ≔
̃."|$
% (
̃."!|$
% (

− 1 has a 

close form:

𝑟+/+/|D 𝑡 = 𝑟+/+/|D 0 𝜒+(𝑡)

If 𝑙/ is the dominant token: 𝑟)&/)|, 0 > 0 for all 𝑙 ≠ 𝑙/ 
then
 

𝑒/L012
. (M)N0 O ≤	𝜒+2(𝑡) ≤ 𝑒/N0 O

where 𝐵, 𝑡 ≥ 0 monotonously increases, 𝐵, 0 = 0

(c) 𝑧1+(𝑡) grows faster with larger ℙ 𝑙 𝑚, 𝑛
Winners-emergence



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

Theorem 3 Relative gain 𝑟)/)!|, 𝑡 ≔
̃."|$
% (
̃."!|$
% (

− 1 has a 

close form:

𝑟+/+/|D 𝑡 = 𝑟+/+/|D 0 𝜒+(𝑡)

If 𝑙/ is the dominant token: 𝑟)&/)|, 0 > 0 for all 𝑙 ≠ 𝑙/ 
then
 

𝑒/L012
. (M)N0 O ≤	𝜒+2(𝑡) ≤ 𝑒/N0 O

where 𝐵, 𝑡 ≥ 0 monotonously increases, 𝐵, 0 = 0

(c) 𝑧1+(𝑡) grows faster with larger ℙ 𝑙 𝑚, 𝑛Contextual 
Sparsity
(query-dependent)

Winners-emergence



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

Attention frozen
Theorem 4 When 𝑡 → +∞, 

𝐵/ 𝑡 ∼ ln 𝐶0 + 2𝐾
𝜂1
𝜂*
ln"

𝑀𝜂*𝑡
𝐾

Attention scanning: 
          When training starts, 𝐵/ 𝑡 = 𝑂(ln 𝑡)

Attention snapping: 
           When 𝑡 ≥ 𝑡0 = 𝑂 "2 34)

5$
, 𝐵/ 𝑡 = 𝑂(ln ln 𝑡)

(1) 𝜂0 and 𝜂1 are large, 𝐵, 𝑡  is large and attention is sparse

(2) Fixing 𝜂0, large 𝜂1 leads to slightly small 𝐵, 𝑡  and 
denser attention 

Contextual 
Sparsity
(query-dependent)



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

Attention frozen

Larger learning rate 𝜂% leads to faster phase transition

𝐵, 𝑡 ∼ ln 𝐶/ + 2𝐾
𝜂0
𝜂1
ln$

𝑀𝜂1𝑡
𝐾



Overall strategy of the theoretical analysis

Here

• The power of infinite sequence length 𝑇 → +∞

Define 𝒇,: = 𝒇!,,: = 𝒄!,,/ 𝒄!,, $ a ℓ$-normalized version of 𝒄!,,.

Y

Z

𝒇,

normalize



Overall strategy of the theoretical analysis

• Since 𝜂@ ≫ 𝜂A , we analyze the dynamics of decoder Y first, treating the 
output of Z as constant. 

• The analysis gives backpropagated gradient:



Overall strategy of the theoretical analysis

• Given the backpropagated gradient, we can analyze the behavior of the 
self-attention layer. 



Simple Real-world Experiments
WikiText2 (original parameterization)



How to get rid of the assumptions?

• A few annoying assumptions in the analysis
• No residual connections
• No embedding vectors
• The decoder needs to learn faster than the self-attention (𝜂] ≫ 𝜂^). 
• Single layer analysis

• How to get rid of them?

• New research work: JoMA



JoMA: JOint Dynamics of MLP/Attention layers

MLP 
(lower layer)

Self-
attention

MLP 
(upper layer)

Nonlinearity

Modified 
MLP 

(lower layer)

MLP 
(upper layer)

Nonlinearity

MLP 
(lower layer)

Self-
attention

MLP 
(upper layer)

Nonlinearity

MLP 
(lower layer)

Self-
attention

MLP 
(upper layer)

Nonlinearity

Layer 0 Layer 1 Layer 2

Modified 
MLP 

(lower layer)

MLP 
(upper layer)

Nonlinearity

Modified 
MLP 

(lower layer)

MLP 
(upper layer)

Nonlinearity

Layer 0 Layer 1 Layer 2

[Y. Tian et al, JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention, ICLR’24]

JoMA



JoMA Settings
ℎ6 = 𝜙(𝒘6

7𝒇)

𝒇 = 𝑈8𝒃 + 𝒖9 
        𝑈8 and 𝒖9	are embeddings

𝒃 = 𝜎 𝒛9 ∘ 𝒙/𝐴
Self-

attention

Nonlinearity 𝜙(⋅)

MLP 
(lower layer)

𝒙

𝒖3
𝑥3  

𝒃

ExpAttn: 𝑏: = 𝑥:𝑒1&'

SoftmaxAttn: 𝑏: =
(';

(&'

∑' (';
(&'

LinearAttn: 𝑏: = 𝑥:𝑧9:

𝒇

“This is an apple”

𝒘4
5𝒇

ℎ4



Assumption (Orthogonal Embeddings [𝑈! , 𝑢"])
Cosine similarity between embedding vectors at different layers.



JoMA Dynamics

There is residual connection.
Joint dynamics works for any learning rates between self-attention and MLP layer.
No assumption on the data distribution. 

Modified 
MLP 

(lower layer)
�̇� = 𝚫1 ∘ exp 𝒛1 = 𝚫1 ∘ exp

𝒗/

2
+ 𝒄



Comparison between Scan&Snap and JoMA

𝒉 = 𝜙(𝑊7𝒇) 𝒇 = 𝜓(𝑈(𝑋𝒃 + 𝒙#)) 𝒃 = 𝜎 𝑋7𝑍𝒙# ∈ ℝ#	

Self-attention

Nonlinearity 𝜙(⋅)
MLP (lower layer)

Tokens 𝑋 ∈ ℝ6×" 	

𝒃

𝒇

𝒉

Per-layer objective 𝐽 = 𝒈7𝒉
We can get gradient dynamics via computing differential d𝐽 

𝒈

Normalization 𝜓(⋅)

1. 𝑊 and 𝑍 are trainable parameters
2. 𝑈 is fixed and column orthogonal
3. 𝑋 = 𝒙!, 𝒙", … , 𝒙# ∈ ℝ)×# contains one-hot column vectors

A General Formulation:

1. Input tokens 𝑋 ∈ ℝ)×#
2. Pairwise attention logits 𝑍 ∈ ℝ)×)

Embedding Layer 𝑈
Common assumptions

Notations



JoMA
1. 𝜓 = id (no normalization),
2. 𝜙 =	linear	or	nonlinear	(homogenous,	e.g.,	ReLU)	
3. 𝒃 = exp(X7𝑍𝑥#)/𝐴 
4. 𝒈 constant

Scan&Snap 
1. 𝜓 = ℓ" normalization
2. 𝜙 =	linear	
3. 𝒃 = soQmax
4. 𝒈 from cross-entropy
5. 𝑊 learns much faster than 𝑍 

Comparison between Scan&Snap and JoMA

Self-attention

Nonlinearity 𝜙(⋅)
MLP (lower layer)

Tokens 𝑋 ∈ ℝ6×" 	

𝒃

𝒇

𝒉𝒈

Normalization 𝜓(⋅)

Embedding Layer 𝑈



JoMA derivation in a few lines  

�̇� = (𝑋𝒃 + 𝒙))𝒈′h
�̇� = 𝑋diag 𝑏 𝑋h𝑉𝒈i𝒙)h

�̇� ∘ 𝑉 1𝒙)h = �̇� + diag 𝒙) 𝑉𝒈i𝒙)h

𝜓 = id, 𝒈i ≔ 𝜙i𝒈, 𝑉 ≔ 𝑈h𝑊

𝑋’s columns are one-hot vectors

𝑥" = 𝑚
∑j ̇𝒗j ∘ 𝒗j = �̇�1 + 0, 0, 𝑉 𝑚, : 𝒈i, 0 h 

𝑧!! = 0
𝑉 0 ! = 0

∑j ̇𝒗j ∘ 𝒗j = �̇�1 (JoMA Thm. 1)



Verification of JoMA dynamics

𝒛1 𝑡 : Real attention logits
a𝒛1 𝑡 : Estimated attention logits by JoMA a𝒛1 𝑡 =

1
2
.
j

𝒗j/ 𝑡 − 𝒗j 𝑡 /
/b𝒃1 + 𝒄

a𝒛1. 𝑡 a𝒛1/ 𝑡



JoMA for Linear Activation Modified 
MLP 

(lower layer)

Linear

�̇� = 𝚫> ∘ exp
𝒗"

2

erf 𝑣+(𝑡)/2
Δ+1

=
erf 𝑣+/(𝑡)/2

Δ+/1

ΔKJ = 𝔼[𝑔|𝑙,𝑚]ℙ 𝑙 𝑚 Discriminancy	×	CoOccurrence  

We can prove erf 𝑥 =
2
𝜋
�
0

(
𝑒$&)d𝑡 ∈ [−1,1]

Only one component 𝑙∗ = argmax	|Δ+1| of 𝒗 goes to +∞, 
other components stay finite.



JoMA for Linear Activation

Attention becomes sparser
(Consistent with Scan&Snap)

Modified 
MLP 

(lower layer)

Linear

�̇� = 𝚫> ∘ exp
𝒗"

2



JoMA for nonlinear activation Modified 
MLP 

(lower layer)

Nonlinear

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗"

2

What does the dynamics look like?

𝝁	~	𝚫1: Critical points that emerges from the presence of nonlinearity 



JoMA for nonlinear activation Modified 
MLP 

(lower layer)

Nonlinear

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗"

2

Attention becomes sparser 
and then denser!

𝝁	~	𝚫1: Critical points that emerges from the presence of nonlinearity 



Real-world Experiments

Wikitext2

Wikitext103



Real-world Experiments

Stable Rank of the lower layer of MLP shows the “bouncing back” effects as well.



JoMA for nonlinear activation Modified 
MLP 

(lower layer)

Nonlinear

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗"

2

Why? Convergence speed of salient/non-salient components are very different.

ConvergenceRate(𝑗)
ConvergenceRate(𝑘)~

exp 𝜇n//2
exp 𝜇j//2

ConvergenceRate 𝑗 ≔ 	 ln 1/𝛿?(𝑡)
𝛿? 𝑡 ≔ 1 − 𝑣?(𝑡)/𝜇?



JoMA for nonlinear activation Modified 
MLP 

(lower layer)

Nonlinear

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗"

2

Why? Convergence speed of salient/non-salient components are very different.

Attention becomes sparser 
and then denser!



Why is this “bouncing back” property useful? 

It seems that it only slows down the training?? 

Not useful in 1-layer, but useful in multiple Transformer layers!



Multilayer Transformer

𝑙′

𝑦/

𝑙

𝑦8
ℙ[𝑚|𝑧*]

𝑦9

𝑚

Class label 
(observed)

Tokens 
(observed)

Latent binary 
variables 
(not observed)

Strong attention

Weak attention

ℙ 𝑙 𝑚 ≈ 1 −
𝐻
𝐿

𝐻: height of the common latent 
     ancestor (CLA) of 𝑙 & 𝑚

𝐿: total height of the hierarchy

CLA(m, l)

CLA(m, l’)



Multilayer Transformer 

𝑦@

𝑙′ 𝑚′ 𝑙 𝑚

𝑦0 Shallow Latent 
Distribution

𝑙′ 𝑚′

𝑦A+  

𝑦0

𝑙

𝑦A

𝑦@

𝑚

Deep Latent 
Distribution

CLA(𝑙’, 𝑚)

CLA(𝑙,𝑚)CLA(𝑙′,𝑚′)

Strong Attention

Weak Attention

Learning the current hierarchical structure by 
slowing down the association of tokens that are not directly correlated



Future Work
• Embedding vectors
• Positional Encoding
• Formulate the dynamics of Multi-layer Transformers
• How intermediate latent concept gets learned during training?
• Why we need over-parameterization?



Pattern Superposition
The same neuron in MLP hidden layers can be activated by multiple irrelevant combinations of tokens



Part II 
Applications based on Attention Properties



Contextual Sparsity

Key Observation 
Keeping only high activation (contextual!) in attention/MLP

• results in 85% structured sparsity
o 80% attention, 95% MLP 

• leads to 7× potential parameter reduction for each input
• maintains same accuracy

Contextual sparsity widely exists in 
pre-trained models, 

e.g., OPT /LLaMA /Bloom/GPT 

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]

MLP layersAttention layers



Example: Contextual Sparsity in Attention

Head 43 outputs (almost) 
uniform attention score. 

La
ye

r L

This fruit shipping company provide different vehicle options like car and [MASK]

Truck



Proposed idea: Predicting Contextual Sparsity

2 4
1
3

4
1
2

5
87654321

4321Attentionk

MLPk

Attentionk+1

3

8

6 7

…

input

Challenge: 
How to predict high activation on-the-fly without 
computing the full attention or MLP?

Benefits:
Only load the desired set of parameters 
(save cache memory!)

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]



Proposed idea: Predicting Contextual Sparsity

0 1 2 3 4 5 6 7

𝑊.

𝑊/

MLPk

Just need to load 𝑊#[[2,6], : ] and 𝑊$[: , [2,6]] 

0 1 2 3

Attnk

𝑊,

𝑊*

𝑊-

Given the input, predicting which MLP hidden nodes are activated / which attention heads will be used.

AttnHead 



Proposed idea: Predicting Contextual Sparsity

2 4
1
3

4
1
2

5
87654321

4321Attentionk

MLPk

Attentionk+1

3

8

6 7

…

input

Key idea: design a “similarity”-based prediction

Formulate the prediction problem as nearest-
neighbor search (NNS). 

NNS algorithms can make prediction based on the similarity between input & parameters.



Slowly Changing Embeddings across Layers

Challenge: how to reduce prediction overhead?

Key insight: cosine similarity between embeddings at 
consecutive layers is very high.

Substantial Engineering Efforts:
• async prediction
• low-cost small trainable MLP as predictors 
• system optimization

Use the embeddings from previous layer(s) to asynchronously make the prediction. 



Deja Vu: 2X FasterTransformer and 6X HuggingFace

COPA OpenBookQA Winogrande Lambada

OPT-175B 0.86 0.446 0.726 0.758

Deja Vu-OPT-175B 0.85 0.45 0.726 0.753

OPT-175B + W4A16 0.85 0.44 0.714 0.757

Deja Vu-OPT-175B + 
W4A16 0.86 0.452 0.726 0.754

• Demonstrates best performance with batch size=1, ReLU, 175B model 
• Maintains accuracy even combined with quantization. 
• Achieves speed up with larger batch size, more activation functions, and smaller models. 

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]



H2O: Leverage attention sparsity for fast inference

[Z. Zhang et al, H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, NeurIPS’23]

In order to generate this token, 
do we really need to store all previous tokens?

The answer is No

Inference in Vanilla Transformers is 𝑂(𝑛/) 



Finding “Heavy-Hitters” in Attention

Key Observation: a small set of tokens are important along the generation
• accumulated attention scores of all the tokens follow a power-law distribution
• masking heavy-hitter tokens degrades model quality 

(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

Challenge: how to evict tokens?  Once evicted, future tokens can no longer attend to it



Greedy Algorithm to Pick Heavy Hitters

Heavy Hitters

Token to be evicted

Local greedy algorithm

• sum up the attention scores of the 
previous tokens every decoding step
• Add local / recent tokens



H2O: Heavy Hitter Oracle

0.1

0.1 0.5

Children laughed and the sunny park ....played

0.2 0.1 0.1

1

0.9

0.4

0.03 0.02 0.2 0.05 0.9

0.6

in

1.43 0.651.52 0.9

0.6

0.03 0.02 0.05 0.9

0.1

0.1 0.5

0.2 0.1 0.1

1

0.9

0.4

0.2 0.3 0.01 0.02 0.9

0.6

1.6 0.621.8 0.9

0.01

0.03 0.04 0.02 0.90.01

0.51

0.4

0.1

0.1

0.1 0.5

Children laughed and in the sunny park ....played

0.2 0.1

1

0.9

0.6

0.2 0.1 0.1 0.6

1.4 0.61.5 0.5

0.4

0.1

0.4

0.1Query

Key

Value

Decoding Step 4

Value

Key

0.03QueryDecoding Step 5

0.6

0.02Eviction w. Global Statistic 
(infeasible) 



H2O: 3-29X Throughput and 1.9X Latency

T4 GPU Hugging Face Deep Speed FlexGen H2O

Throughput token/s 0.6 0.6 8.5 18.83 (3-29X)

• compatible with quantization 
• generate sentences with less repetition + more creativity

A100 GPU FlexGen H2O

Throughput 
(token/s) 494 918 

(1.9X)

Latency (s) 99 53 
(1.9X)



Model Input

LLaMA-7B Full Cache  
Output

LLaMA-7B Local 20% Cache 
Output

LLaMA-7B             20% Cache 
Output

In a small, bustling cafe nestled in the heart of a vibrant city, a serendipitous event unfolded, leaving a lasting
impression on all who witnessed it. As the patrons sat sipping their coffees and engaging in animated conversations,
a talented street musician entered the cafe, carrying a weathered guitar and radiating an aura of creativity.
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What are these heavy hitters?
Where are they?



Attention Sinks: Initial tokens draw a lot of attentions

First few tokens!!
Average attention logits in Llama-2-7B over 256 sentences

• Observation: Initial tokens have large attention scores, even if they're not semantically significant. 
• Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.

[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]



Understanding Attention Sinks

• Why? Attention scores have to sum up to 1 for all contextual tokens. 
(SoftMax-Off-by-One, Miller et al. 2023)

• Why initial tokens? Their visibility to subsequent tokens, rooted in 
autoregressive language modeling.

• The model learns a bias towards their absolute 
position rather than the semantics.

Llama-2-13B PPL (↓)

0+1024 (window) 5158.07

4+1024 5.40

4”\n”+1020 5.6
[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]



StreamingLLM

[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]



StreamingLLM

Key design: Position Rolling 
 For all tokens, use their positions within cache to compute positional encoding!
 à Token distance never exceeds pre-trained context window!



StreamingLLM



StreamingLLM: stable PPL, constant vRAM

Stable PPL

Constant vRAM

Sliding Window with Re-computation
StreamingLLM22x faster



StreamingLLM: Stably Model up to 4 Million Tokens

Dense Attention Window Attention Sliding Window 

w/ Re-computation StreamingLLM

Dense Attention Window Attention StreamingLLM

Dense Attention Window Attention Sliding Window 

w/ Re-computation StreamingLLM

Dense Attention Window Attention StreamingLLM



Window 
Attention

StreamingLLM

Window 
Attention 
(Re-compute)

Dense Attn



Understanding Attention Sinks

• Pre-train with a Dedicated Attention Sink Token

Cache 
Config

PPL (↓)

0+1024 1+1023 2+1022 4+1020
Vanilla 27.87 18.49 18.05 18.05

Zero Sink 29214 19.90 18.27 18.01
Learnable Sink 1235 18.01 18.01 18.02

4 + 1020



Understanding Attention Sinks

• Similar Phenomenon in [Darcet et al. Vision transformers need registers]
• ViT is not decoder-only so there is no preference on initial tokens. 

VISION TRANSFORMERS NEED REGISTERS

Timothée Darcet1,2, Maxime Oquab1, Julien Mairal2 & Piotr Bojanowski1
1 FAIR, Meta
2 INRIA
{timdarcet,qas,bojanowski}@meta.com
julien.mairal@inria.fr

ABSTRACT

Transformers have recently emerged as a powerful tool for learning visual rep-
resentations. In this paper, we identify and characterize artifacts in feature maps
of both supervised and self-supervised ViT networks. The artifacts correspond to
high-norm tokens appearing during inference primarily in low-informative back-
ground areas of images, that are repurposed for internal computations. We propose
a simple yet effective solution based on providing additional tokens to the input se-
quence of the Vision Transformer to fill that role. We show that this solution fixes
that problem entirely for both supervised and self-supervised models, sets a new
state of the art for self-supervised visual models on dense visual prediction tasks,
enables object discovery methods with larger models, and most importantly leads
to smoother feature maps and attention maps for downstream visual processing.

Without registers With registers
Input DeiT-III CLIP DINOv2 DeiT-III CLIP DINOv2

Figure 1: Register tokens enable interpretable attention maps in all vision transformers, similar to
the original DINO method (Caron et al., 2021). Attention maps are calculated in high resolution for
better visualisation. More qualitative results are available in appendix D.

1 INTRODUCTION

Embedding images into generic features that can serve multiple purposes in computer vision has
been a long-standing problem. First methods relied on handcrafted principles, such as SIFT (Lowe,
2004), before the scale of data and deep learning techniques allowed for end-to-end training. Pur-
suing generic feature embeddings is still relevant today, as collecting valuable annotated data for
many specific tasks remains difficult. This difficulty arises because of the required expertise (e.g.,
medical data, or remote sensing) or the cost at scale. Today, it is common to pretrain a model for
a task for which plenty of data is available and extract a subset of the model to use as a feature
extractor. Multiple approaches offer this possibility; supervised methods, building on classification
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Does StreamingLLM solve long-context? No
Accuracy (in %) on StreamEval with increasing query-answer distance



Does StreamingLLM solve long-context? No
Accuracy (in %) on StreamEval with increasing query-answer distance

Can we solve the issues of loss in the middle?



StreamingH2O: Infinite Streaming Ability 
StreamingLLM is a subset of H2O
 Applying position rolling to H2O!
 The heavy-hitters of H2O helps mitigate “lost in the middle” issues. 



StreamingH2O: Infinite Streaming Ability 



StreamingH2O: Infinite Streaming Ability 

How to extend the pre-trained context window?



Extending context window for pre-trained models

[S. Chen et al, Extending Context Window of Large Language Models via Positional Interpolation, arXiv]

Key issues

Pre-trained model (e.g., LLaMA) cannot go beyond its pre-trained context window



Why? Attention Function 𝑎(𝑠) is ill-behaved

𝑎(𝑠) behaves well within the pre-trained window, but could go crazy when extrapolating.

RoPE encoding: 𝒇 𝒙,𝑚 = (𝑥0+i𝑥! 𝑒B>C, , 𝑥" + i𝑥D 𝑒B>C- , … , 𝑥E$" + i𝑥E$! 𝑒B>C./)0-]
Attention function: 𝑎 s = 𝑎 𝑚 − 𝑛 = 	Re⟨𝒇 𝒒,𝑚 , 𝒇 𝒌, 𝑛 ⟩



Interpolation versus Extrapolation



Positional Interpolation (PI)

Interpolated encoding: 𝒇F 𝒙,𝑚 = 𝒇 𝒙, 𝛽𝑚 .	Here 𝛼:= 𝐿/𝐿′	is the scaling factor

Or equivalently, 𝜃?F = 𝛼𝑐$"?/E = 𝛼𝜃?, where 𝜃? = 𝑐$"?/E, 𝑐 = 10000



Experimental Results

With <1000 steps of fine-tuning, 
PI can extrapolate up to 8x length of its 
original context windows 



Experimental Results
#fine-tune steps needed to achieve longer context window (measured by passkey retrieval)

200 steps suffice!



Performance remains in LLM benchmarks



Future Development Inspired 
by our work

[Jun. 29, two days after our arXiv release] 
“NTK” positional encoding

𝜃¡¢ = (𝛼𝑐)£¤¡/¥

Extrapolation in high-frequency
 
Interpolation in low-frequency

No fine-tuning needed. 



Thanks!


