CS 194/294-267 Understanding Large Language Models: Foundations and Safety

https://rdi.berkeley.edu/understanding_llms/s24

Teaching Staff

Instructor: Prof. Dawn Song

Co-instructor: Dr. Dan Hendrycks

GSI: Yu Gai

Reader: Tara Pande

Exponential Growth in LLMs

Large Language Models (LLMs) & their associated bots like ChatGPT

Amazon-owned Chinese Ocogle Meta / Facebook Microsoft OpenAl Other

Powering Rich New Capabilities

https://arxiv.org/pdf/2108.07258.pdf

GPT-4 Excels in Standard Exams over Diverse Topics

Stable Diffusion: Fastest Repo to Reach 35K Stars on GitHub

Midjourney: The Largest Discord

Number of members

ChatGPT: Fastest Platform to 100M Users (Before Thread)

Road To 100 Million Users For Various Platforms (2 Months) ChatGPT TikTok (9 Months) 🕒 (1.5 Years) Youtube **(2.5 Years)** Instagram f (4.5 Years) Facebook 🕥 (5 Years) Twitter (11 Years) Spotify (18 Years) Netflix 0 months 50 months 100 months 150 months 200 months 250 months DEMANDSAGE

Importance of Responsible AI

- Robustness: Safe and Effective Systems
- Fairness: Algorithmic Discrimination Protections
- > Data Privacy
- \succ Notice and Explanation
- > Human Alternatives, Consideration, and Fallback

BLUEPRINT FOR AN AI BILL OF RIGHTS

MAKING AUTOMATED SYSTEMS WORK FOR THE AMERICAN PEOPLE

OCTOBER 2022

White House Executive Order

(k) The term "dual-use foundation model" means an AI model that is trained on broad data; generally uses self-supervision; contains at least tens of billions of parameters; is applicable across a wide range of contexts; and that exhibits, or could be easily modified to exhibit, high levels of performance at tasks that pose a serious risk to security, national economic security, national public health or safety, or any combination of those matters, such as by:

(i) substantially lowering the barrier of entry for non-experts to design, synthesize, acquire, or use chemical, biological, radiological, or nuclear(CBRN) weapons;

(ii) enabling powerful offensive cyber operations through automated vulnerability discovery and exploitation against a wide range of potential targets of cyber attacks; or

(iii) permitting the evasion of human control or oversight through means of deception or obfuscation.

Many Risks & Open Challenges for Responsible AI

- Who controls AI?
 - centralized vs. decentralized control; open vs. closed source
- Trustworthiness
 - Robustness
 - Adversarial robustness
 - Out-of-distribution robustness
 - Test-time attacks vs. training-time attacks
 - Privacy
 - Fairness
 - Toxicity
 - Stereotype
 - Machine ethics
- Al Safety
 - Misuse/abuse of AI
 - Super intelligence

Importance of Mitigating Risk of Extinction from AI

Mitigating the risk of extinction from AI should be a global priority alongside other societal-scale risks such as pandemics and nuclear war. Center for AI Safety

The New York Times

A.I. Poses 'Risk of Extinction,' Industry Leaders Warn

Leaders from OpenAI, Google DeepMind, Anthropic and other A.I. labs warn that future systems could be as deadly as pandemics and nuclear weapons.

Signatories: **Al Scientists Other Notable Figures**

Geoffrey Hinton Emeritus Professor of Computer Science, University of Toronto

Yoshua Bengio Professor of Computer Science, U. Montreal / Mila

Demis Hassabis CEO, Google DeepMind

Sam Altman CEO, OpenAl

Dario Amodei CEO, Anthropic

Dawn Song Professor of Computer Science, UC Berkeley

Ted Lieu Congressman, US House of Representatives

Bill Gates Gates Ventures

Ya-Qin Zhang Professor and Dean, AIR, Tsinghua University

Ilva Sutskever Co-Founder and Chief Scientist, OpenAl

Shane Legg Chief AGI Scientist and Co-Founder, Google DeepMind

Unique Aspects of Al

- AI capability already exceeds human-level performance on many tasks and progresses extremely fast
- Humans are highly incentivized to continue develop & enhance AI capabilities
- Al capability is extremely general, widely applicable to almost all areas
- All agents interact directly with the world autonomously
- We have little understanding of how deep learning system works
- Al systems can create new capabilities that were not designed in and improve on its own
- Al capability can be easily misused
- Al safety is different & much more challenging than safety for nuclear & bio tech

Topics covered in this Course

- Understanding:
 - Foundations of LLMs
 - Interpretability
 - Scaling laws
 - Reasoning and mathematics
- Agency and emergence
- Evaluation and benchmarking
- Al Safety:
 - AI alignment and governance
 - Adversarial robustness
 - Trojans
 - Privacy, unlearning

Tasks for Different Units

In-person lecture participation + reading summaries & questions for Q&A (due by 2pm before the day of lecture)

+

- 1 unit: article about the topic of a lecture (at least 2 pages)
- 2 units: lab + project (implementation not required)
- 3 units: lab + project with implementation
- 4 units: lab + project with significant implementation and end-to-end demo
- (Groups of 4 students required for 2-4 units projects)

Grading

	1 unit	2 units	3/4 units
Lecture participation	25%	10%	10%
Reading summaries & questions for Q&A	25%	10%	10%
Article	50%		
Lab		20%	10%
Project			
- Proposal		10%	10%
- Milestone		10%	10%
- Presentation		20%	15%
- Report		20%	15%
- Implementation			20%

Lab and Project Timeline

	Released	Due
Project group formation	Jan 19	Jan 30
Project proposal	Jan 23	Feb 13
Lab	Jan 30	Feb 27
Project milestone	Feb 13	Mar 19
Project presentation	Mar 19	Apr 16
Project final report	Mar 19	Apr 30

Sample Project Ideas

- Developing new methods for interpretability
- Developing new frameworks for evaluating safety properties, including robustness, monitoring, controllability, etc.
- New methods for mitigating biases in LLMs
- New methods for unlearning hazardous or undesirable capabilities
- New methods for jailbreaking, adversarial attacks on LLMs & mitigations