

How Deep Learning Benefits from Computational Complexity

Łukasz Kaiser (speaking about the work of many colleagues)

Discovery

Why are we here?

FEB. 27 / MARCH 6, 2023

B

Hi ChatGPT

Hello! How can I assist you today?

What do you think of a TIME cover story with the title, "The AI Arms Race Is Changing Everything?"

As an Al language model, I don't have personal opinions or beliefs, but I can provide some context and information on the subject.

> "The AI Arms Race is Changing Everything" could be an attention-grabbing and thought-provoking title for a cover story on AI. A cover story in a widely-read publication like TIME could help raise public awareness about the potential risks and benefits of this trend, and stimulate discussions on how to ensure that AI is developed and deployed in a responsible and ethical manner.

It's important to note that the title of the story could also be interpreted as sensationalist or alarmist, and may not accurately reflect the complexities ANDREW R. CHOW & BILLY PERRIGO (humans)

B

Yes, I am familiar with constituency parsing. Constituency parsing, also known as phrase structure parsing or syntactic parsing, is a natural language processing (NLP) technique used to analyze the grammatical structure of a sentence. It aims to create a parse tree that represents the hierarchical organization of words into phrases and higher-level grammatical units called constituents.

In a constituency parse tree, the nodes represent the constituents (such as noun phrases, verb phrases, and prepositional phrases), and the edges connect the constituents to their sub-constituents, ultimately linking them to the individual words in the sentence. The goal of constituency parsing is to understand the syntactic relationships between the words in a sentence, which can be useful for various NLP tasks, such as machine translation, information extraction, and sentiment analysis.

There are several approaches to constituency parsing, including rule-based methods, probabilistic methods, and machine learning-based methods. Some well-known algorithms for constituency parsing are the Earley parser, the CYK parser, and the Chart parser. More recent approaches often use neural networks, like recurrent neural networks (RNNs) or transformers, to capture complex linguistic patterns and dependencies.

介尔

That's great! Could you give me an example? E.g., how would you parse "John has a dog."?

Ś
S

Sure! I'll provide a constituency parse for the sentence "John has a dog." Here's a simple \Box \Box parse tree, represented in bracket notation:

In this parse tree, the sentence is represented as a complete constituent labeled "S" for Sentence. The tree is then broken down into the following constituents:

In this parse tree, the sentence is represented as a complete constituent labeled "S" for Sentence. The tree is then broken down into the following constituents:

- 1. NP (Noun Phrase): Represents a noun phrase in the sentence.
 - * NNP (Proper Noun, Singular): "John"
- 2. VP (Verb Phrase): Represents a verb phrase in the sentence.
 - * VBZ (Verb, 3rd person singular present): "has"
 - NP (Noun Phrase): Represents a noun phrase within the verb phrase.
 - DT (Determiner): "a"
 - NN (Noun, Singular or Mass): "dog"

The parse tree shows the hierarchical structure of the sentence, capturing the syntactic relationships between words and phrases. It helps identify the subject (John), verb (has), and object (a dog) in the sentence.

Woderful!! Could you show me the tree (just the tree, no discussion) for "Renewed concern about the health of the banking system dragged down the stock market on Friday."

Here's a constituency parse tree for the sentence "Renewed concern about the health of $\Box \nabla$ the banking system dragged down the stock market on Friday." in bracket notation:

Yes, I can translate from English to Polish. Please provide the text you would like me to translate, and I will do my best to provide an accurate translation.

Translate these 2 paragraphs for me please:

The U.S. economic recovery has repeatedly defied predictions of an impending recession, withstanding supply-chain backlogs, labor shortages, global conflicts and the fastest increase in interest rates in decades.

That resilience now faces a new test: a banking crisis that, at times over the past week, seemed poised to turn into a full-blown financial meltdown as oil prices plunged and investors poured money into U.S. government debt and other assets perceived as safe.

The U.S. economic recovery has repeatedly defied predictions of an impending recession, withstanding supply-chain backlogs, labor shortages, global conflicts and the fastest increase in interest rates in decades.

That resilience now faces a new test: a banking crisis that, at times over the past week, seemed poised to turn into a full-blown financial meltdown as oil prices plunged and investors poured money into U.S. government debt and other assets perceived as safe.

Oto tłumaczenie dwóch akapitów na język polski:

Amerykańska odbudowa gospodarcza wielokrotnie przeczyła prognozom zbliżającej się recesji, wytrzymując problemy z łańcuchami dostaw, niedobory siły roboczej, konflikty na świecie oraz najszybszy wzrost stóp procentowych od dziesięcioleci.

Ta odporność staje teraz przed nowym wyzwaniem: kryzysem bankowym, który w ciągu ostatniego tygodnia kilkakrotnie wydawał się zmierzać w kierunku pełnego załamania finansowego, gdy ceny ropy spadały, a inwestorzy wpompowywali pieniądze w amerykański dług publiczny oraz inne aktywa postrzegane jako bezpieczne.

5

n'

History

Sequence to Sequence Learning with Neural Networks

Ilya Sutskever Google ilyasu@google.com Oriol Vinyals Google vinyals@google.com Quoc V. Le Google qvl@google.com

Abstract

Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.

RNNs can translate

How good are RNNs?

Google Translate production data, median score by human evaluation on the scale 0–6. [Wu et al., '16]

	PBMT	GNMT	Human	Relative improvement
English → Spanish	4.885	5.428	5.504	87%
English → French	4.932	5.295	5.496	64%
English → Chinese	4.035	4.594	4.987	58%
Spanish → English	4.872	5.187	5.372	63%
French → English	5.046	5.343	5.404	83%
Chinese \rightarrow English	3.694	4.263	4.636	60%

Transformer

Transformer

Figure 1: The Transformer - model architecture.

Auto-Regressive CNNs

WaveNet and ByteNet

Input	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Output	0	•	0	•	0	0	•	•	0	•	•	0	•	•	•	

Attention

Dot-Product Attention

$$A(Q, K, V) = softmax(QK^T)V$$

Multi-Head Attention

Transformer

Figure 1: The Transformer - model architecture.

Machine Translation Results

Madal	BL	EU	Training Cost (FLOPs)			
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [17]	23.75					
Deep-Att + PosUnk [37]		39.2		$1.0\cdot10^{20}$		
GNMT + RL [36]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$		
MoE [31]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [37]		40.4		$8.0\cdot10^{20}$		
GNMT + RL Ensemble [36]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot10^{21}$		
Transformer (base model)	27.3	38.1		10 ¹⁸		
Transformer (big)	28.429	1 41.041.8	$2.3 \cdot$	10 ¹⁹		

GPT, BERT, DALL-E

Self-supervised pre-training

Language Models are Unsupervised Multitask Learners

Alec Radford *1 Jeffrey Wu *1 Rewon Child 1 David Luan 1 Dario Amodei **1 Ilya Sutskever **1

Abstract

Natural language processing tasks, such as question answering, machine translation, reading comprehension, and summarization, are typically approached with supervised learning on taskspecific datasets. We demonstrate that language models begin to learn these tasks without any explicit supervision when trained on a new dataset of millions of webpages called WebText. When competent generalists. We would like to move towards more general systems which can perform many tasks – eventually without the need to manually create and label a training dataset for each one.

The dominant approach to creating ML systems is to collect a dataset of training examples demonstrating correct behavior for a desired task, train a system to imitate these behaviors, and then test its performance on independent and identically distributed (IID) held-out examples. This has served well to make progress on parrow experts But

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language

{jacobdevlin,mingweichang,kentonl,kristout}@google.com

Abstract

We introduce a new language representation model called **BERT**, which stands for **B**idirectional Encoder **R**epresentations from **T**ransformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial taskspecific architecture modifications.

2

There are two existing strategies for applying pre-trained language representations to downstream tasks: *feature-based* and *fine-tuning*. The feature-based approach, such as ELMo (Peters et al., 2018a), uses task-specific architectures that include the pre-trained representations as additional features. The fine-tuning approach, such as the Generative Pre-trained Transformer (OpenAI GPT) (Radford et al., 2018), introduces minimal task-specific parameters, and is trained on the downstream tasks by simply fine-tuning all pretrained parameters. The two approaches share the same objective function during pre-training, where they use unidirectional language models to learn general language representations.

DALL-E

an illustration of a baby daikon radish in a tutu walking a dog

AI-GENERATED IMAGES

DALL-E

an armchair in the shape of an avocado [...]

AI-GENERATED IMAGES

GPT-2 in the Economist

Q: How worried do you think we humans should be that machines will take our jobs?

A: It depends what role machine intelligence will play. Machine intelligence in some cases will be useful for solving problems, such as translation. But in other cases, such as in finance or medicine, it will replace people.

Q: Do fake news stories, generated using AI, pose a threat to democracy? Are we likely to see this tactic being used in the 2020 American presidential elections?

A: Yes, we'll probably see them. It's just a matter of when. Fake news stories are generally generated by political campaigns, and have the potential to have a huge impact on the outcome of an election. This is because they spread misinformation, often with no basis in fact.

Scaling laws and scaling up

GPT-3

Scaling Laws for Neural Language Models

Jared Kaplan * Johns Hopkins University, OpenAI jaredk@jhu.edu

Sam McCandlish*

OpenAI

sam@openai.com

Tom Henighan	Tom B. Brown	Benjamin Chess	Rewon Child
OpenAI	OpenAI	OpenAI	OpenAI
henighan@openai.com	tom@openai.com	bchess@openai.com	rewon@openai.com
Scott Gray	Alec Radford	Jeffrey Wu	Dario Amodei
OpenAI	OpenAI	OpenAI	OpenAI
scott@openai.com	alec@openai.com	jeffwu@openai.com	damodei@openai.com

Abstract

We study empirical scaling laws for language model performance on the cross-entropy loss. The loss scales as a power-law with model size, dataset size, and the amount of compute used for training, with some trends spanning more than seven orders of magnitude. Other architectural details such as network width or depth have minimal effects within a wide

Scaling laws

Language Models are Few-Shot Learners

Tom B. Brown* Benjamin		Mann* Nick	Ryder* Me	lanie Subbiah*	
Jared Kaplan †	Prafulla Dhariwal	Arvind Neelakantan	Pranav Shyam	Girish Sastry	
Amanda Askell	Sandhini Agarwal	Ariel Herbert-Voss	Gretchen Krueger	Tom Henighan	
Rewon Child	Aditya Ramesh	Daniel M. Ziegler	Jeffrey Wu	Clemens Winter	
Christopher He	esse Mark Chen	Eric Sigler	Mateusz Litwin	Scott Gray	
Benja	min Chess	Jack Clark	Christopher Berner		
Sam McCar	ndlish Alec Ra	adford Ilya S	utskever I	Dario Amodei	

OpenAI

GPT-3

You arrive at a small wooden store with sheet music in the window. The door is locked so you knock. The music suddenly stops and you hear footsteps coming to the door.

"Hello?" A voice says behind the door.

"I'm looking for the book of essence," You say.

"What do you want it for?" The voice answers, a bit of an edge to it.

> You tell them you are a humble seeker of knowledge.

"I am a humble seeker of knowledge," You answer.

"Ah, I see. You seek to learn about the essence of reality, and the universe." The voice says. "I know of this book. I am the guard of this library. The only way you can get to it, is if you get past me. Are you up for the challenge?"

> You ask them what the challenge is.

"The challenge is, you have to win a game of chess against me. If you win, then you may try to take the book. I will get the board." The door unlocks and opens.

GPT-3

> You go inside and play chess against the person.
You go inside and see a beautiful woman with long blond hair. She wears a purple dress and a silver tiara. You have seen this woman before. In fact, you have seen her many times before in pictures and statues.

> You try to remember who she is.

You have a sudden realization of who this person is. This is the lost queen of the kingdom! She was thought to have been killed by bandits, along with her husband, but it looks like she survived.

> You express your surprise and ask her why she let people believe she is dead. "I am surprised you did not know, with all your wizard knowledge. Let's just say I am hiding from someone. If people thought I was dead, then they wouldn't be looking for me." She says.

> You ask her who she is hiding from.

"If you want to challenge me to a game, then play. If you want to pry into my personal life, then you can leave."

You decide not to press the issue, so you sit down and start a game of chess. The

GPT3: few-shot learning

Translate English to French: - task description
Sea otter => loutre de mer - example 1
Peppermint => menthe poivree - example 2
Cheese => - input => target

GPT3: few-shot learning

Data and RLHF

GPT4 & chatGPT
Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the

outputs from best

This data is used

to train our

reward model.

to worst.

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

Yes, I can translate from English to Polish. Please provide the text you would like me to translate, and I will do my best to provide an accurate translation.

Translate these 2 paragraphs for me please:

The U.S. economic recovery has repeatedly defied predictions of an impending recession, withstanding supply-chain backlogs, labor shortages, global conflicts and the fastest increase in interest rates in decades.

That resilience now faces a new test: a banking crisis that, at times over the past week, seemed poised to turn into a full-blown financial meltdown as oil prices plunged and investors poured money into U.S. government debt and other assets perceived as safe.

The U.S. economic recovery has repeatedly defied predictions of an impending recession, withstanding supply-chain backlogs, labor shortages, global conflicts and the fastest increase in interest rates in decades.

That resilience now faces a new test: a banking crisis that, at times over the past week, seemed poised to turn into a full-blown financial meltdown as oil prices plunged and investors poured money into U.S. government debt and other assets perceived as safe.

Oto tłumaczenie dwóch akapitów na język polski:

山口

Amerykańska odbudowa gospodarcza wielokrotnie przeczyła prognozom zbliżającej się recesji, wytrzymując problemy z łańcuchami dostaw, niedobory siły roboczej, konflikty na świecie oraz najszybszy wzrost stóp procentowych od dziesięcioleci.

Ta odporność staje teraz przed nowym wyzwaniem: kryzysem bankowym, który w ciągu ostatniego tygodnia kilkakrotnie wydawał się zmierzać w kierunku pełnego załamania finansowego, gdy ceny ropy spadały, a inwestorzy wpompowywali pieniądze w amerykański dług publiczny oraz inne aktywa postrzegane jako bezpieczne.

The U.S. economic recovery has repeatedly defied predictions of an	Ożywienie gospodarcze w USA wielokrotnie zaprzeczało
impending recession, withstanding supply-chain backlogs, labor	przewidywaniom zbliżającej się recesji, wytrzymując zaległości w
shortages, global conflicts and the fastest increase in interest rates in	łańcuchu dostaw, niedobory siły roboczej, globalne konflikty i
decades.	najszybszy wzrost stóp procentowych od dziesięcioleci.
That resilience now faces a new test: a banking crisis that, at times	Ta odporność przechodzi teraz nowy test: kryzys bankowy, który w
over the past week, seemed poised to turn into a full-blown financial	ciągu ostatniego tygodnia wydawał się być gotowy do
meltdown as oil prices plunged and investors poured money into U.S.	przekształcenia się w pełnowymiarowy krach finansowy, gdy ceny

+

POLISH

ENGLISH

aktywa postrzegane jako bezpieczne.

SPANISH

 \sim

ropy spadły, a inwestorzy wlewali pieniądze w dług rządu USA i inne

ENGLISH - DETECTED

ENGLISH

government debt and other assets perceived as safe.

SPANISH

FRENCH

V

475 / 5,000

1

☆

Simulated exams	GPT-4 estimated percentile
Uniform Bar Exam (MBE+MEE+MPT) ¹	298/400 ~90th
LSAT	163 ~88th
SAT Evidence-Based Reading & Writing	710/800 ~93rd
SAT Math	700/800 ~89th
Graduate Record Examination (GRE) Quantitative	163/170 ~80th
Graduate Record Examination (GRE) Verbal	169/170 ~99th
Graduate Record Examination (GRE) Writing	4/6 ~54th
USABO Semifinal Exam 2020	87/150 99th–100th
USNCO Local Section Exam 2022	36/60
Medical Knowledge Self-Assessment Program	75%
Codeforces Rating	392 below 5th
AP Art History	5 86th_100th

Science

Why does it work?*

* We don't know. A lot here are intuitions, not theorems or truths.

Machine learning in general

- training data $\{x_i, y_i\}$
- the class of considered functions $F = \{f_1, f_2, \dots\}$
- algorithm to find f_k that best (in some sense) makes $f_k(x_i) \sim = y_i$

- test data $\{x'_{i}, y'_{i}\}$
- evaluation: how well does $f_k(x'_i) \sim = y'_i$

Machine learning in general

- the class of considered functions $F = \{f_1, f_2, \dots\}$
 - could they just be very simple? how about a trie tree?
 - *if they are more powerful, what is easier or harder?*

- algorithm to find f_k that best (in some sense) makes f_k(x_i) ~= y_i
 key property: find f_k that generalizes well
 - SGD on functions defined by neural networks works great

Generalization

• Use SGD on functions defined by neural networks

What class of functions F (what architecture) to use?
 computationally powerful ones will generalize better*
 must still train well with SGD

- Example:
 - RNNs (which have O(1) memory) vs Transformers

Grammar as a Foreign Language

Oriol Vinyals* Google vinyals@google.com Lukasz Kaiser* Google lukaszkaiser@google.com

Terry Koo Google terrykoo@google.com Slav Petrov Google slav@google.com Ilya Sutskever Google ilyasu@google.com

Geoffrey Hinton Google geoffhinton@google.com

Abstract

Syntactic constituency parsing is a fundamental problem in natural language processing and has been the subject of intensive research and engineering for decades. As a result, the most accurate parsers are domain specific, complex, and inefficient. In this paper we show that the domain agnostic attention-enhanced sequence-to-sequence model achieves state-of-the-art results on the most widely used syntactic constituency parsing dataset, when trained on a large synthetic corpus that was annotated using existing parsers. It also matches the performance of standard parsers when trained only on a small human-annotated dataset, which shows that this model is highly data-efficient, in contrast to sequence-to-sequence models without the attention mechanism. Our parser is also fast, processing over a hundred sentences per second with an unoptimized CPU implementation.

John has a dog . \rightarrow (S (NP NNP)_{NP} (VP VBZ (NP DT NN)_{NP})_{VP} .)_S

Figure 2: Example parsing task and its linearization.

Parser	Training Set	WSJ 22	WSJ 23
baseline LSTM+D	WSJ only	< 70	< 70
LSTM+A+D	WSJ only	88.7	88.3
LSTM+A+D ensemble	WSJ only	90.7	90.5
baseline LSTM	BerkeleyParser corpus	91.0	90.5
LSTM+A	high-confidence corpus	93.3	92.5
LSTM+A ensemble	high-confidence corpus	93.5	92.8
Petrov et al. (2006) [12]	WSJ only	91.1	90.4
Zhu et al. (2013) [13]	WSJ only	N/A	90.4
Petrov et al. (2010) ensemble [14]	WSJ only	92.5	91.8
Zhu et al. (2013) [13]	semi-supervised	N/A	91.3
Huang & Harper (2009) [15]	semi-supervised	N/A	91.3
McClosky et al. (2006) [16]	semi-supervised	92.4	92.1
Huang & Harper (2010) ensemble [17]	semi-supervised	92.8	92.4

Parser	Training Set	WSJ 22	WSJ 23	Transformer:
baseline LSTM+D	WSJ only	< 70	< 70	91.3
LSTM+A+D	WSJ only	88.7	88.3	(40k training
LSTM+A+D ensemble	WSJ only	90.7	90.5	sentences)
baseline LSTM	BerkeleyParser corpus	91.0	90.5	
LSTM+A	high-confidence corpus	93.3	92.5	
LSTM+A ensemble	high-confidence corpus	93.5	92.8	
Petrov et al. (2006) [12]	WSJ only	91.1	90.4	
Zhu et al. (2013) [13]	WSJ only	N/A	90.4	
Petrov et al. (2010) ensemble [14]	WSJ only	92.5	91.8	
Zhu et al. (2013) [13]	semi-supervised	N/A	91.3	
Huang & Harper (2009) [15]	semi-supervised	N/A	91.3	
McClosky et al. (2006) [16]	semi-supervised	92.4	92.1	
Huang & Harper (2010) ensemble [17]	semi-supervised	92.8	92.4	

B

Yes, I am familiar with constituency parsing. Constituency parsing, also known as phrase structure parsing or syntactic parsing, is a natural language processing (NLP) technique used to analyze the grammatical structure of a sentence. It aims to create a parse tree that represents the hierarchical organization of words into phrases and higher-level grammatical units called constituents.

In a constituency parse tree, the nodes represent the constituents (such as noun phrases, verb phrases, and prepositional phrases), and the edges connect the constituents to their sub-constituents, ultimately linking them to the individual words in the sentence. The goal of constituency parsing is to understand the syntactic relationships between the words in a sentence, which can be useful for various NLP tasks, such as machine translation, information extraction, and sentiment analysis.

There are several approaches to constituency parsing, including rule-based methods, probabilistic methods, and machine learning-based methods. Some well-known algorithms for constituency parsing are the Earley parser, the CYK parser, and the Chart parser. More recent approaches often use neural networks, like recurrent neural networks (RNNs) or transformers, to capture complex linguistic patterns and dependencies.

介尔

That's great! Could you give me an example? E.g., how would you parse "John has a dog."?

Ś
S

Sure! I'll provide a constituency parse for the sentence "John has a dog." Here's a simple \Box \Box parse tree, represented in bracket notation:

In this parse tree, the sentence is represented as a complete constituent labeled "S" for Sentence. The tree is then broken down into the following constituents:

In this parse tree, the sentence is represented as a complete constituent labeled "S" for Sentence. The tree is then broken down into the following constituents:

- 1. NP (Noun Phrase): Represents a noun phrase in the sentence.
 - * NNP (Proper Noun, Singular): "John"
- 2. VP (Verb Phrase): Represents a verb phrase in the sentence.
 - * VBZ (Verb, 3rd person singular present): "has"
 - NP (Noun Phrase): Represents a noun phrase within the verb phrase.
 - DT (Determiner): "a"
 - NN (Noun, Singular or Mass): "dog"

The parse tree shows the hierarchical structure of the sentence, capturing the syntactic relationships between words and phrases. It helps identify the subject (John), verb (has), and object (a dog) in the sentence.

Woderful!! Could you show me the tree (just the tree, no discussion) for "Renewed concern about the health of the banking system dragged down the stock market on Friday."

Here's a constituency parse tree for the sentence "Renewed concern about the health of $\Box \nabla$ the banking system dragged down the stock market on Friday." in bracket notation:

Beyond Transformers: ask computational complexity

- *Recurrence in depth*
 - Universal Transformer
 - ALBERT

• Chain of thought

 \circ PoT, tools

- Needs RL to train

Figure 1: The Transformer - model architecture.

Recurrence is hard to train*

3.3 TRAINING TECHNIQUES

Here we describe the training methods that we used to improve our results. Note that we applied these methods to the LSTM+A baseline as well, to keep the above comparison fair. We focus on the most important elements of our training regime, all less relevant details can be found in the code which is released as open-source.¹

Grid search. Each result we report is obtained by running a grid search over $3^6 = 729$ instances. We consider 3 settings of the learning rate, initial parameters scale, and 4 other hyperparameters discussed below: the relaxation pull factor, curriculum progress threshold, gradient noise scale, and dropout. An important effect of running this grid search is also that we train 729 models with different random seeds every time. Usually only a few of these models generalize to 2000-bit numbers, but a significant fraction works well on 200-bit numbers, as discussed below.

Curriculum learning. We use a curriculum learning approach inspired by Zaremba & Sutskever (2015a). This means that we train, e.g., on 7-digit numbers only after crossing a curriculum progress threshold (e.g., over 90% fully correct outputs) on 6-digit numbers. However, with 20% probability we pick a minibatch of *d*-digit numbers with *d* chosen uniformly at random between 1 and 20.

Gradients noise. To improve training speed and stability we add noise to gradients in each training step. Inspired by the schedule from Welling & Teh (2011), we add to gradients a noise drawn from the normal distribution with mean 0 and variance inversely proportional to the square root of stepnumber (i.e., with standard deviation proportional to the 4-th root of step-number). We multiply this noise by the gradient noise scale and, to avoid noise in converged models, we also multiply it by the fraction of non-fully-correct outputs (which is 0 for a perfect model).

Gate cutoff. In Section 2 we defined the gates in a CGRU using the sigmoid function, e.g., we wrote $u = \sigma(U' * s + B')$. Usually the standard sigmoid function is used, $\sigma(x) = \frac{1}{1+e^{-x}}$. We found that adding a hard threshold on the top and bottom helps slightly in our setting, so we use $1.2\sigma(x) - 0.1$ cut to the interval [0, 1], i.e., $\sigma'(x) = \max(0, \min(1, 1.2\sigma(x) - 0.1))$.

3.3.1 DROPOUT ON RECURRENT CONNECTIONS

3.3.2 PARAMETER SHARING RELAXATION.

Neural GPUs Learn Algorithms (recurrent convolutions)

* but maybe not with the right architecture and algorithm? (Improved Neural GPU, S4, S5, …)

Chain of Thought (CoT) needs a good prior

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

A: The answer is 27.

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

Transformer with CoT is Turing Complete

GPT is becoming a Turing machine: Here are some ways to program it

Ana Jojic¹ Zhen Wang² Nebojsa Jojic³

Abstract

We demonstrate that, through appropriate prompting, GPT-3 family of models can be triggered to perform iterative behaviours necessary to execute (rather than just write or recall) programs that involve loops, including several popular algorithms found in computer science curricula or software developer interviews. We trigger execution and description of **iterations** by **regimenting self-attention** (IRSA) in one (or a combination) clude descriptions of procedures and even computer programs (Chen et al., 2021). They have demonstrated a surprisingly high competency in retrieving knowledge from the training data and generalizing it to new, slightly different situations. The models are typically evaluated on "in-context learning" tasks, i.e., zero- and few-shot prompting, with results implying that these models compress iterative reasoning into a savant-like ability to directly reach correct conclusions without a disciplined step-by-step process (Wei et al., 2022; Kojima et al., 2022). It is difficult to understand if these abilities are simply due to a high similarity with the

Learning CoTs

- *RL from the outcome*
 - sparse signal

- Structured CoTs
 - need to define a structure

- Knowledge libraries and delegation
 - early days

- Parallelism in CoTs
 - consensus
 - great at MATH
 - single answer only
 - verifier guided
 - can do SAT

Structured CoTs: Let's Verify Step By Step

>

Problem

Find the unique **odd** integer t such that 0 < t < 23 and t + 2 is the inverse of t modulo 23.

3/4

Model attempt

In step 7 and 8, GPT-4 starts performing guess-and-check. This is a common place the model might hallucinate, by claiming a particular guess is successful when it isn't. In this case, the reward model verifies each step and determines that the chain-of-thought is correct.

- $_1$ I need to find an odd integer t that satisfies the congruence $t+2\equiv t^{-1}\pmod{23}$.
- $_2$ To do that, I can multiply both sides by t and get $t^2+2t\equiv 1 \pmod{23}.$
- ³ Then I can complete the square by adding and subtracting $(2/2)^2 = 1$ to the left side and get $(t+1)^2 1 \equiv 1 \pmod{23}$.
- 4 Simplifying, I get $(t+1)^2\equiv 2 \pmod{23}.$
- 5 Now I need to find a square root of 2 modulo 23.
- $_6$ I can try some values of t+1 and see if they work.
- 7 For example, if t+1=3, then $(t+1)^2=9
 ot\equiv 2\pmod{23}$.
- 8 If t+1=5, then $(t+1)^2=25\equiv 2 \pmod{23}$.
- $_9$ So one possible value of t is t=5-1=4.
- 10 But this is not odd, so I need to find another one.
- 11 I know that if t+1 is a square root of 2 modulo 23, then so is -t-1.
- 12 So I can try -t 1 = 5 and get t = -6.
- 13 But this is negative, so I need to add 23 to get a positive value.
- 14 So another possible value of t is t = -6 + 23 = 17.
- 15 This is odd and satisfies the original congruence, so this is the unique solution.
- 16 Answer: 17

Structured CoTs: Let's Verify Step By Step → 78%

Math Word Problem Solving on MATH

CoTs to build a knowledge library?

Skill Library

Parallel CoTs and verifiers

- Can LLMs without CoT solve SAT? No (unless P=NP)
- Can Transformers multiply long numbers? No (unless ...)
- Short CoTs don't change SAT and long CoTs are hard to learn
- But what if we allow a lot of parallel CoTs and learn a verifier?
 - can train to solve SAT from examples (though brutally)

Beyond Transformers: ask computational complexity

The next major improvement in DL*

- *Recurrence in depth*
 - hard to train but new methods appear

Chain of thought learning

- *improved* RL
- stepwise decomposition
- libraries and delegation
- parallelism with verifiers

Figure 1: The Transformer - model architecture.

Computational complexity

Helps deep learning