
How Deep Learning Benefits
from Computational Complexity
Łukasz Kaiser (speaking about the work of many colleagues)

2

Discovery

Why are we here?

3

4

5

6

7

8

9

10

History

11

RNNs can translate

How good are RNNs?

PBMT GNMT Human Relative improvement

English → Spanish 4.885 5.428 5.504 87%

English → French 4.932 5.295 5.496 64%

English → Chinese 4.035 4.594 4.987 58%

Spanish → English 4.872 5.187 5.372 63%

French → English 5.046 5.343 5.404 83%

Chinese → English 3.694 4.263 4.636 60%

Google Translate production data, median score by human evaluation on the scale 0-6. [Wu et al., ‘16]

14

Transformer

Transformer

Auto-Regressive CNNs

WaveNet and ByteNet

Attention

Convolution Attention

Dot-Product Attention

k0 v0

k1 v1

k2 v2

q0 q1

AA

Multi-Head Attention

Transformer

Machine Translation Results

29.1 41.8

22

Self-supervised pre-training

GPT, BERT, DALL-E

23

24

DALL-E

DALL-E

GPT-2 in the Economist

28

Scaling laws and scaling up

GPT-3

29

Scaling laws

31

GPT-3

GPT-3

GPT3: few-shot learning

Translate English to French:

Sea otter => loutre de mer

Peppermint => menthe poivree

Cheese =>

– task description

– example 1

– example 2

– input => target

GPT3: few-shot learning

36

Data and RLHF

GPT4 & chatGPT

37

38

39

40

41

Science

Why does it work?*

* We don’t know. A lot here are intuitions, not theorems or truths.

Machine learning in general

● training data {xi, yi}

● the class of considered functions F = {f1, f2, …}

● algorithm to find fk that best (in some sense) makes fk(xi) ~= yi

● test data {x’i, y’i}

● evaluation: how well does fk(x’i) ~= y’i

Machine learning in general

● the class of considered functions F = {f1, f2, …}

○ could they just be very simple? how about a trie tree?

○ if they are more powerful, what is easier or harder?

● algorithm to find fk that best (in some sense) makes fk(xi) ~= yi

○ key property: find fk that generalizes well

○ SGD on functions defined by neural networks works great

Generalization

● Use SGD on functions defined by neural networks

● What class of functions F (what architecture) to use?

○ computationally powerful ones will generalize better*

○ must still train well with SGD

● Example:

○ RNNs (which have O(1) memory) vs Transformers

46

47

48

49

Transformer:
 91.3
(40k training
sentences)

50

51

52

53

Beyond Transformers: ask computational complexity

● Recurrence in depth

○ Universal Transformer

○ ALBERT

● Chain of thought

○ PoT, tools

○ Needs RL to train

Recurrence is hard to train*

* but maybe not with the right architecture and algorithm?
 (Improved Neural GPU, S4, S5, …)

Neural GPUs Learn Algorithms
(recurrent convolutions)

Chain of Thought (CoT) needs a good prior

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

Transformer with CoT is Turing Complete

Learning CoTs

● RL from the outcome

○ sparse signal

● Structured CoTs

○ need to define a structure

● Knowledge libraries and delegation

○ early days

● Parallelism in CoTs

○ consensus

■ great at MATH

■ single answer only

○ verifier guided

■ can do SAT

Structured CoTs: Let’s Verify Step By Step

Structured CoTs: Let’s Verify Step By Step → 78%

CoTs to build a knowledge library?

Parallel CoTs and verifiers

● Can LLMs without CoT solve SAT? No (unless P=NP)

● Can Transformers multiply long numbers? No (unless ...)

● Short CoTs don’t change SAT and long CoTs are hard to learn

● But what if we allow a lot of parallel CoTs and learn a verifier?

○ can train to solve SAT from examples (though brutally)

formula to check

assignment

assignment

assignment

important?

important?

important? answer

Beyond Transformers: ask computational complexity

The next major improvement in DL*

● Recurrence in depth

○ hard to train but new methods appear

Chain of thought learning

○ improved RL

○ stepwise decomposition

○ libraries and delegation

○ parallelism with verifiers

Computational complexity

Helps deep learning

