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Motivation

Rapid proliferation of ML models; ever more capable and complex

How can understanding keep up, especially given emergent behavior?

Erik Jones Ruiqi Zhong Yossi Gandelsman

Key idea: use LLMs to understand LLMs

• As models get better, our understanding does as well
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Understanding as Statistical Learning

Many forms of understanding reduce to statistics:

• Given data about a model’s behavior, identify patterns

• Explain the important sources of variation in the training set

• Actively generate inputs that elicit problematic behavior
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Understanding as Statistical Learning

Many forms of understanding reduce to statistics:

• Given data about a model’s behavior, identify patterns

• Explain the important sources of variation in the training set

• Actively generate inputs that elicit problematic behavior

If we can get LLMs to “do statistics”, we can tackle these problems!
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The Statistics Pipeline

Look at some initial data (ptrain)

Form hypothesis h

Formalize h quantitatively

Test h on new data (ptest)

• Held-out set, OOD data, or actively collected
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The Statistics Pipeline

Look at some initial data (ptrain)

Form hypothesis h

Formalize h quantitatively

Test h on new data (ptest)

• Held-out set, OOD data, or actively collected

Will automate each step with LLMs

Key difference: h will be a natural language string!
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Case Study: Finding Failures in CLIP

CLIP: encoder that embeds both images and text

Backbone of many other models

Amazing results, but simple failures remain

4



Case Study: Finding Failures in CLIP

CLIP: encoder that embeds both images and text

Backbone of many other models

Amazing results, but simple failures remain

All failures above found automatically by LLMs!

Tong, Jones, Steinhardt (2023), “Mass-Producing Failures of Multimodal Systems”
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Finding Failures Automatically

Key ideas:

• Find “hash collisions” in the CLIP encoder

• Categorize into coherent patterns

• Test patterns by generating new examples

• Check generalization to new domains, downstream tasks

Related work: Perez et al. (2022), Eyuboglu et al. (2022), Sheng et al. (2019)

Bolukbasi et al. (2016), Wallace et al. (2019), Ettinger (2020)
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Initial Data: Hash Collisions

Background: CLIP embeds either image I, or text t

If t is a description of I, they should have similar embeddings
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Initial Data: Hash Collisions

Background: CLIP embeds either image I, or text t

If t is a description of I, they should have similar embeddings

Therefore, if t, t′ describe different images but have same embedding,
at least one is “wrong”
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Initial Data: Hash Collisions

Collect initial corpus of text inputs t1, . . . , tn

Embed them under both CLIP and DistillRoBERTA (text-only model)

Find all pairs (ti, tj) with high CLIP and low RoBERTA similarity
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Generating Hypotheses: Prompting GPT-4

Individual failures are text inputs, can feed them to GPT-4:
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Generating Hypotheses: Prompting GPT-4

Empirically GPT-4 uses consistent list format, so can automatically
parse out individual hypotheses
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Formalizing a Hypothesis

Have list of hypotheses h1, . . . , hk as natural language descriptions

How to test if h is good?
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Formalizing a Hypothesis

Have list of hypotheses h1, . . . , hk as natural language descriptions

How to test if h is good?

Take-away

h is a good hypothesis if it can
be used to generate new failures

Prompt an LLM to generate new failures with h as context:
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Testing on New Data: Hash Collisions

Fraction of new examples in each category that are hash collisions:
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Testing on New Data: Hash Collisions

Fraction of new examples in each category that are hash collisions:

Larger models find more categories + describe them more effectively
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Testing on New Data: Human Evaluation

Hash collisions lead to images that humans say are wrong:
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Testing on New Data: Human Evaluation

Hash collisions lead to images that humans say are wrong:

Data-driven descriptions help significantly

• Generate failures 80% of time, compared to 20% with baseline
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Testing on New Data: Active Steering

Prompt GPT-4 to generate failures relevant to self-driving:
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Summary

Initial data: scrape hash collisions from text dataset

CLIP, DistillRobERTA

Generate hypothesis: prompt GPT-4

GPT-4

Formalize hypothesis: success rate generating new failures

GPT-4, CLIP

New data: actively generate examples in new domain

GPT-4
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Statistical Modeling with Natural Language Parameters
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Classifying with Natural Language Predicates

Task: given text datasets D1 and D2, find difference between them

Difference should be a natural language string h

Isomorphic to binary classification, but where function is described
in natural language

Zhong et al. (2022), “Describing Differences between Text Distributions”

Zhong et al. (2023), “Goal-Driven Discovery via Language Descriptions”

Related: Andreas et al. (2017), Honovitch et al. (2022), Bills et al. (2023)

Hernandez et al. (2021), Zhu et al. (2022)
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Example (Easy)
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Example (Easy)
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Use Cases

Example uses cases (separating distributions D1 and D2):

• The test distribution involves more formal writing than the
training distribution.
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Example uses cases (separating distributions D1 and D2):

• The test distribution involves more formal writing than the
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• The positive class contains more URLs than the negative class.
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often than TK-11B’s mistakes.
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Use Cases

Example uses cases (separating distributions D1 and D2):

• The test distribution involves more formal writing than the
training distribution.

• The positive class contains more URLs than the negative class.

• GPT-3’s mistakes contain positive or uplifting language more
often than TK-11B’s mistakes.

• Public opinion from this year is more optimistic about the pan-
demic than last year.
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Using LLMs
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Using LLMs
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Statistics Pipeline

Look at initial data

Form hypothesis h

Prompt GPT-n w/ examples from D1, D2

Ask how they are different
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Statistics Pipeline

Look at initial data

Form hypothesis h

Formalize h quantitatively

Test h on new data

Prompt GPT-n w/ examples from D1, D2

Ask how they are different

???

???

How can we quantitatively formalize h?

Take-away

A good hypothesis helps
tell D1 and D2 apart.
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Natural Language Predicates

Example: h = involves more formal writing

Interpret as two-argument predicate:

• For sentences x1, x2, h(x1, x2) ∈ {0, 1} is the truth value of

“x1” involves more formal writing than “x2”
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Natural Language Predicates

Example: h = involves more formal writing

Interpret as two-argument predicate:

• For sentences x1, x2, h(x1, x2) ∈ {0, 1} is the truth value of

“x1” involves more formal writing than “x2”

h is a correct hypothesis about D1 vs. D2 if

Ex1∼D1,x2∼D2 [h(x1, x2)]� 0.5

How to implement h(·, ·)? Humans, or query a LLM

• LLMs reduce cost by 1000x ($0.07/hypothesis with gpt-3.5-
turbo)
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Overall System

Proposer: sees ∼ 30 examples (context window)

Verifier: can see thousands of examples

Can also steer proposer based on use case!
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Use Cases: Understanding ML and Beyond

Finding spurious cues:

• Subjectivity analysis dataset: is a quote from a film review

• MNLI dataset: has a negative verb

• Spam classification: has a high number of hyperlinks
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Use Cases: Understanding ML and Beyond

Finding spurious cues:

• Subjectivity analysis dataset: is a quote from a film review

• MNLI dataset: has a negative verb

• Spam classification: has a high number of hyperlinks

Automated error analysis: GPT-3 Curie vs Tk-11B

• Curie errs on language that is positive or uplifting

Other applications: 675 total use cases across several domains
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Summary

Initial data: text distributions D1 and D2

Generate hypothesis: prompt GPT-3

GPT-3 (fine-tuned), Text-Davinci-003 (prompting)

Formalize hypothesis: success rate distinguishing samples

UnifiedQA (fine-tuned)

New data: test on held-out samples from D1, D2
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Extension: Exponential Families

Given natural language predicate h, define

[[h]] : x 7→ {0, 1}
as the truth value of h on input x

Then can define exponential family:

p(x | ~w,~h) ∝ exp(w1[[h1]](x) + · · ·+ wk[[hk]](x))

Use this as basis of more complex models (topic modeling, low-rank
factorization, clustering, ...)

Zhong et al. (2023), in preparation
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Application: Multimodal Clustering

Query: I’m classifying dogs vs. elephants. I want to understand how
their backgrounds are different.

Zhong et al. (2023), in preparation
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Coda: Labeling Activation Vectors

Find text-backed “principle components” for each attention head:

“Interpreting CLIP’s Image Representation via Text-Based Decomposition”

Gandelsman, Efros, Steinhardt (2023)

Related: Hernandez et al. (2022), Oikarinen and Weng (2023)
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Coda: Labeling Activation Vectors

Find text-backed “principle components” for each attention head:

Automatically generates thousands of descriptions

Can be used for model repair

“Interpreting CLIP’s Image Representation via Text-Based Decomposition”

Gandelsman, Efros, Steinhardt (2023)

Related: Hernandez et al. (2022), Oikarinen and Weng (2023)
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Coda: Labeling Activation Vectors

“Interpreting CLIP’s Image Representation via Text-Based Decomposition”

Gandelsman, Efros, Steinhardt (2023)
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