
HW Solutions

A1. (C) Multi-prover Interactive proofs (MIPs) can prove languages in NEXPTIME (Lec-
ture 1, Slide 78), which is beyond the capabilities of Interactive Proofs (IPs).

A2. (A) zkRollups rely on the succinctness property of zkSNARKs to improve the scalabil-
ity of blockchains, not the zero-knowledge property.

A3. (B) The Plonk protocol uses KZG polynomial commitment, which relies on Bilinear
pairings.

A4. (D) Groth16 based on linear PCP does not rely on Fiat-Shamir.

A5. (C) Brakedown (Lecture 7, Slide 32) showed that you can construct a polynomial
commitment scheme based on error-correcting codes that do not have an efficient decoding
algorithm.

A6. (C) Given an ℓ-variate (multilinear) polynomial, the size of the polynomial, i.e., the
number of monomials in the polynomial, is O(2ℓ). For the same polynomial, the proof size
of the sumcheck protocol is O(ℓ).

A7. (D) Plonk-IOP can be combined with any (univariate) polynomial commitment scheme
to construct a ZKP scheme.

A8. (C) The recursion overhead in IVC from folding scheme is proportional to the folding
verifier computation, as opposed to the larger zkSNARK verifier computation in the case of
IVC from succinct verification.

A9. (B) Sumcheck IOP has a linear prover (as opposed to quasi-linear for Plonk IOP) and
Orion PC has the fastest prover as it is linear in polynomial size (unlike FRI) and it does
not require group exponentiations (unlike Bulletproofs and KZG).

A10. (C) Plonk IOP has a constant proof size (as opposed to logarithmic for Sumcheck
IOP) and KZG is the only polynomial commitment among the given options that has a
constant proof size.

1

A11.
(a)

ẽqℓ(a, b) =
ℓ∏

i=1

(1− ai − bi + 2aibi),

where ai, bi denote the i-th bit of a and b, respectively. It’s easy to see that this polynomial
can be evaluated in time O(ℓ): it is a product of ℓ terms, each of which takes O(1) time to
evaluate.

Before we get into parts (b) and (c), we first define how the computation trace T of size S
is encoded by the polynomial h (Lecture 4, Slide 80). The indexing in our encoding scheme
starts from the output gate and proceeds to the input gates. Given this scheme, note that
for the simple circuit under consideration, the indices [1, 2d−1), [2d−1, 2d), and [2d, 3 · 2d−1)
correspond to the add gates, mult gates, and input gates, respectively.

We also define a generalization of the equality predicate to 3 inputs, which will be useful
in the following parts:

ẽq3(a, b, c) = 1− a− b− c+ ab+ bc+ ac

(b) The mult predicate mult : {0, 1}d+1 ×{0, 1}d+1 ×{0, 1}d+1 → {0, 1} is defined as follows:

mult(a, b, c) =

1
if a+ 2d−1 = b = c
∧ a ∈ [2d−1, 2d) ∧ b, c ∈ [2d, 3 · 2d−1)

0 otherwise

Note that the condition for this predicate has arithmetic operations and range checks, while
the extension operates bitwise on the inputs of a predicate. Thus, we rewrite the condition
for the if-clause as follows so that it only uses bitwise operations (bit at index 1 corresponds
to the least significant bit):

∀i ∈ [1, d− 1], ai = bi = ci ∧ (ad, ad+1, bd, bd+1, cd, cd+1) = (1, 0, 0, 1, 0, 1)

Now, it is easy to write the multilinear extension m̃ult : Fd+1 × Fd+1 × Fd+1 → F:

m̃ult(a, b, c) =
d−1∏
i=1

ẽq3(ai, bi, ci) · ẽq6
(
(ad, ad+1, bd, bd+1, cd, cd+1), (1, 0, 0, 1, 0, 1)

)
2

It is easy to see that m̃ult is multilinear, i.e., it is degree 1 in each variable.

(c) The add predicate add : {0, 1}d+1 × {0, 1}d+1 × {0, 1}d+1 → {0, 1} is defined as follows:

add(a, b, c) =

1
if 2a = b ∧ 2a+ 1 = c
∧ a ∈ [1, 2d−1) ∧ b, c ∈ [1, 2d)

0 otherwise

We can rewrite the condition for the if-clause as follows so that it only uses bitwise opera-
tions1:

∀i ∈ [1, d− 1], ai = bi+1 = ci+1 ∧ (ad, ad+1, b1, bd+1, c1, cd+1) = (0, 0, 0, 0, 1, 0)

Now, it is easy to write its multilinear extension ãdd : Fd+1 × Fd+1 × Fd+1 → F:

ãdd(a, b, c) =
d−1∏
i=1

ẽq3(ai, bi+1, ci+1) · ẽq6
(
(ad, ad+1, b1, bd+1, c1, cd+1), (0, 0, 0, 0, 1, 0)

)
Note that ãdd is multilinear, i.e., it is degree 1 in each variable.

1Although this expression also outputs 1 if (a, b, c) = (0, 0, 1), it is not a problem as we can instantiate
the protocol such that the summation on a, b, c ∈ {0, 1}logS excludes this tuple of values. One way to do
this efficiently is to check that

∑
a,b,c∈{0,1}log S gh(a, b, c)

2 is equal to gh(0, 0, 1)
2 as opposed to 0 in Slide 94.

3

A12.
(a) To support the custom gate g with 3 inputs, we extend the computation trace to include
an additional column for the third input to each gate. The add/mult gates simply ignore
this third input. Accordingly, we have the following:

• d = 4(m+ n) + ℓ

• Set Ω = {1, ω, . . . , ωd−1} of size d.

• Set Ωinp = {ω−1, . . . , ω−ℓ} of size ℓ.

• Set Ωgates = {1, ω4, . . . , ω4(m+n−1)} of size m+ n.

• Trace polynomial T has degree d and is defined as follows:

– ∀j ∈ [1, ℓ], T (ω−j) = input #j.

– ∀i ∈ [0,m+ n):

∗ T (ω4i) = first input to gate #i

∗ T (ω4i+1) = second input to gate #i

∗ T (ω4i+2) = third input to gate #i

∗ T (ω4i+3) = output of gate #i

• Selector polynomial S has degree m+ n and is defined as follows:

∀i ∈ [0,m+ n), S(ω4i) =


1 if gate #i is an add gate

0 if gate #i is a mult gate

−1 if gate #i is a g gate

(b)

• Gate check:

∀y ∈ Ωgates,
S(y)(1 + S(y))

2
· [T (y) + T (ωy)]

+ (1− S(y))(1 + S(y)) · [T (y) · T (ωy)]

− S(y)(1− S(y))

2
· [3 · T (y)4 + 7 · T (y)2T (ωy)T (ω2y)− 2 · T (ωy)T (ω2y)2]

− T (ω3y) = 0

– Gadget: ZeroTest

– Degree of polynomial: 4 deg(T) + 2 deg(S) = 4d+ 2(m+ n)

– Size of set: m+ n

4

• Input Check:
∀y ∈ Ωinp, T (y)− v(y) = 0

– Gadget: ZeroTest

– Degree of polynomial: deg(T) = d

– Size of set: ℓ

• Wiring Check:
∀y ∈ Ω, T (y)− T (W (y)) = 0

– Gadget: Prescribed Permutation Check

– Degree of polynomials: deg(T) = d, deg(W) = d

– Size of set: d

• Output Check:
T (ω4(m+n)−1) = 0

– Evaluation proof on polynomial T of degree d

(c) First, we make the following observations:

• All group exponentiations are incurred by the KZG polynomial commitment.

• For a degree d polynomial, KZG commit requires d group exponentiations.

• As per the assumption in the problem statement, for a degree d polynomial, a KZG
batched evaluation proof requires d group exponentiations irrespective of the number
of points being evaluated.

Now, all we need to do is find the distinct polynomials that are committed to and evaluated
throughout this protocol, along with the degree of each polynomial:

• Trace polynomial T : commit and batched eval

– Degree: d

– GExps: 2d

• Selector polynomial S: only eval (committed during preprocessing)

– Degree: m+ n

– GExps: m+ n

• Wiring polynomial W : only eval (committed during preprocessing)

– Degree: d

– GExps: d

5

• ZeroTest for Gate Check

– Quotient polynomial qgates: commit and eval

∗ Degree: 4 deg(T) + 2 deg(S)− |Ωgates| = 4d+ (m+ n)

∗ GExps: 8d+ 2(m+ n)

• ZeroTest for Input Check

– Quotient polynomial qinp: commit and eval

∗ Degree: deg(T)− |Ωinp| = d− ℓ

∗ GExps: 2d− 2ℓ

• Prescribed Permutation Check for Wiring Check

– Reduces to a Product Check on polynomial fwire of degree max(deg(T), deg(W)) =
d and set size |Ω| = d.

– Polynomial twire: commit and batched eval

∗ Degree: |Ω| = d

∗ GExps: 2d

– Quotient polynomial qwire: commit and eval

∗ Degree: deg(fwire) + deg(twire)− |Ω| = d

∗ GExps: 2d

• Total GExps: 17d+ 3(m+ n)− 2ℓ = 71(m+ n) + 15ℓ

6

