
Zero Knowledge Proofs

Polynomial Commitments
based on error-correcting codes

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

ZKP MOOC

Recall: common paradigm for efficient SNARK

A polynomial
interactive

oracle proof (IOP)

A polynomial
commitment

scheme

SNARK for
general circuits

ZKP MOOC

Last time: KZG polynomial commitment

3

Prover Verifier

𝒇(𝒙)
comf= 𝑔𝑓(𝜏)

𝑢

𝑣, proof 𝜋 = 𝑔𝑞(𝜏) 𝑒 Τ𝑐𝑜𝑚𝑓 𝑔𝑣 , 𝑔

= 𝑒(𝑔𝜏−𝑢, 𝜋)

comf

Univariate polynomials of degree <= d

gp = (𝑔, 𝑔𝜏, 𝑔𝜏
2
, … , 𝑔𝜏

𝑑
)

𝑓 𝑥 − 𝑓 𝑢
= 𝑥 − 𝑢 𝑞(𝑥)

ZKP MOOC

Last time: other PC based on discrete-log

4

Scheme Prover Proof
size

Verifier Trusted
Setup

Crypto primitive

Bullet
-proofs

O𝜆 𝑑 O𝜆 log 𝑑 O𝜆 𝑑  discrete-log

Hyrax O𝜆 𝑑 O𝜆 𝑑 O𝜆 𝑑  discrete-log

Dory O𝜆 𝑑 O𝜆 log 𝑑 O𝜆 log 𝑑  pairing

Dark O𝜆 𝑑 O𝜆 log 𝑑 O𝜆 log 𝑑  unknown order group

ZKP MOOC

Poly-commit based on error-correcting codes

Motivations:

✓Plausibly post-quantum secure

✓No group exponentiations (prover only uses hashes,
additions and multiplications)

✓Small global parameters

Drawbacks:

 Large proof size

 Not homomorphic and hard to aggregate

5

ZKP MOOC

Plan of this lecture

▪ Background on error-correcting codes

▪ Polynomial commitment based on error-correcting codes

▪ Linear-time encodable code based on expanders

6

Credit: Faithie/Shutterstock

ZKP MOOC

Background

7

ZKP MOOC

Error-correcting code

[𝑛, 𝑘, Δ] code:

▪ Enc(m): Encode a message of size 𝑘 to a codeword of size 𝑛

▪ Minimum distance (Hamming) between any two codewords is Δ

8

Codewordmessage

Encode

𝑘 𝑛

ZKP MOOC

Example: repetition code

Binary with 𝑘 = 2 and 𝑛 = 6

▪ Enc(00) = 000000, Enc(01) = 000111

▪ Enc(10) = 111000, Enc(11) = 111111

▪ Minimum distance Δ = 3

Can correct 1 error during the transmission

e.g. 010111→ 01 Dec(c): decode algorithm (not used in poly-commit)

9

ZKP MOOC

Rate and relative distance

Rate:
𝑘

𝑛
Relative distance:

Δ

𝑛

E.g. repetition code with rate
1

𝑎
, Δ = 𝑎, relative distance:

1

𝑘

Trade-off between the rate and the distance of a code

10

ZKP MOOC

Linear code

Any linear combination of codewords is also a codeword

⇒ Encoding can always be represented as vector-matrix
multiplication between 𝑚 and the generator matrix

⇒ minimum distance is the same as the codeword with
the least number of non-zeros (weight).

11

ZKP MOOC

Example: Reed-Solomon Code

Encode: 𝔽𝑝
𝑘 → 𝔽𝑝

𝑛

▪ View the message as a unique degree k-1 univariate polynomial

▪ The codeword is the evaluations at n points

E.g., (𝜔 ,𝜔2, … , 𝜔𝑛) for n-th root-of-unity 𝜔𝑛 = 1 mod p

▪ Distance Δ = 𝑛 − 𝑘 + 1

a degree k-1 polynomial has at most k-1 roots

E.g, 𝑛 = 2𝑘, rate is 1/2, and relative distance is 1/2

▪ Encoding time: 𝑂 𝑛 log 𝑛 using the fast Fourier transform (FFT)

12

Credit: Faithie/Shutterstock

ZKP MOOC

Polynomial commitment
based on linear codes

13

ZKP MOOC

Recall: polynomial commitment

5

Prover Verifier

𝒇(𝒙) ∈ 𝓕
commit(𝑓) ⇾comf

𝑢

comf

verify

keygen(𝜆, 𝓕) ⇾ gp

eval(gp,𝑓,u) ⇾ v, 𝜋

ZKP MOOC

Polynomial coefficients in a matrix

15

𝑓1,1 𝑓1,2
𝑓2,1 𝑓2,2

⋯
𝑓1, 𝑑
𝑓2, 𝑑

⋮ ⋱ ⋮
𝑓 𝑑,1 𝑓 𝑑,2 ⋯ 𝑓 𝑑, 𝑑

𝑑

𝑑

𝑓 𝑢 =෍
𝑖=1

𝑑

෍
𝑗=1

𝑑

𝑓𝑖,𝑗𝑢
𝑖−1+(𝑗−1) 𝑑

ZKP MOOC

Polynomial evaluation

16

𝑓 𝑢 =

1, 𝑢, 𝑢2, … , 𝑢 𝑑−1 × 𝑓1,1 𝑓1,2
𝑓2,1 𝑓2,2

⋯
𝑓1, 𝑑
𝑓2, 𝑑

⋮ ⋱ ⋮
𝑓 𝑑,1 𝑓 𝑑,2 ⋯ 𝑓 𝑑, 𝑑

×

1

𝑢 𝑑

𝑢2 𝑑

…

𝑢𝑑− 𝑑

𝑓 𝑢 =෍
𝑖=1

𝑑

෍
𝑗=1

𝑑

𝑓𝑖,𝑗𝑢
𝑖−1+(𝑗−1) 𝑑

ZKP MOOC

Reducing to Vec-Mat product

17

𝑓1,1 𝑓1,2
𝑓2,1 𝑓2,2

⋯
𝑓1, 𝑑
𝑓2, 𝑑

⋮ ⋱ ⋮
𝑓 𝑑,1 𝑓 𝑑,2 ⋯ 𝑓 𝑑, 𝑑

=

𝑑

Argument for Vec-Mat product

→ Polynomial commitment with 𝑑 proof size

1, 𝑢, 𝑢2, … , 𝑢 𝑑−1 ×

ZKP MOOC

Encoding the polynomial

Encode each row with a linear code

18

𝑑

𝑘 = 𝑑 𝑛

𝑑

ZKP MOOC

Recall: Merkle tree commitment

M Y

m1=H(M, Y)

V E

m2 = H(V, E)

C T

m3 =H(C, T)

O R

m4 =H(O, R)

k1=H(h1, h2)

h1=H(m1, m2) h2=H(m3, m4)

ZKP MOOC

Recall: Merkle tree opening

M Y

m1=H(M, Y)

V E

m2 = H(V, E)

C T

m3 =H(C, T)

O R

m4 =H(O, R)

k1=H(h1, h2)

h1=H(m1, m2) h2=H(m3, m4)

ZKP MOOC

Committing the polynomial

Commit to each column of the encoded matrix using Merkle tree

21

H

ZKP MOOC

Step 1: Proximity test

Test if the committed matrix indeed consists of 𝑑 codewords

22

Prover
Verifier

H

𝑟1, 𝑟2, 𝑟3, … , 𝑟 𝑑 ×

=

Send several random columns

1. The vector is a codeword
2. Columns are as committed in

Merkle tree
3. Inner product between r and

each column is consistent

ZKP MOOC

Soundness (Intuition)

23

Prover

𝑟1, 𝑟2, 𝑟3, … , 𝑟 𝑑 ×

=

Send several random columns

Suppose the prover cheats
▪ If the vector is correctly

computed → it is not a
codeword → check 1

▪ If the vector is false →
many different locations
from the correct answer
• By check 2, columns

are as committed
• Probability of passing

check 3 is small

ZKP MOOC

Ligero [AHIV’2017] and [BCGGHJ’2017]

▪ Ligero [AHIV’2017] : Interleaved test. Reed-Solomon code

▪ [BCGGHJ’2017] : Ideal linear commitment model. Linear-time
encodable code → first SNARK with linear prover time

24

ZKP MOOC

In the formal proof [AHIV’2017]

If the committed matrix 𝐶 is 𝑒-far from any codeword

for 𝑒 <
Δ

4

→Pr[𝑤 = 𝑟𝑇𝐶 is 𝑒-close to any codeword] ≤
𝑒+1

𝔽

If 𝑤 = 𝑟𝑇𝐶 is 𝑒-far from any codeword

→ Pr[check 3 is true for 𝑡 random columns] ≤ 1 −
𝑒

𝑛

𝑡

25

ZKP MOOC

One optimization

26

Prover

𝑟1, 𝑟2, 𝑟3, … , 𝑟 𝑑 ×

=

Send several random columns

Verifier

H

Message mEncode

ZKP MOOC

Step 2: Consistency check

27

Prover
Verifier

H
=

Send several random columns

message m

Encode

1. The vector is a codeword
2. Columns are as committed in

Merkle tree
3. Inner product between 𝑢 and

each column is consistent

1, 𝑢, 𝑢2, … , 𝑢 𝑑−1 ×

ZKP MOOC

Soundness (intuition)

▪ By the proximity test, the committed matrix 𝐶 is close
to a codeword

▪ There exists an extractor that extracts 𝐹 by Merkle
tree commitment and decoding 𝐶, s.t. 𝑢 × 𝐹 = 𝑚
with probability 1 − 𝜖

28

ZKP MOOC

Poly-commit based on linear code

▪ Keygen: sample a hash function

▪ Commit: encode the coefficient matrix of 𝑓 row-wise with a
linear code, compute the Merkle tree commitment

▪ Eval and Verify:
▪ Proximity test: random linear combination of all rows, check its

consistency with 𝑡 random columns

▪ Consistency test: 𝑢 × 𝐹 = 𝑚, encode 𝑚 and check its consistency with 𝑡
random columns

▪ 𝑓 𝑢 = 𝑚, 𝑢′

29

ZKP MOOC

Properties of the polynomial commitment

▪ Keygen: O(1), transparent setup!
▪ Commit:

▪ Encoding: O(d logd) field multiplications using RS code, O(d)
using linear-time encodable code

▪ Merkle tree: O(d) hashes, O(1) commitment size

▪ Eval: O(d) field multiplications
(non-interactive via Fiat Shamir)

▪ Proof size: O(𝑑)

▪ Verifier time: O(𝑑)

30

ZKP MOOC

Performance the poly-commit [GLSTW’21]

degree 𝑑 = 225, linear-time encodable code

▪ Commit: 36s

▪ Eval: 3.2s

▪ Proof size: 49MB

▪ Verifier time: 0.7s

31

ZKP MOOC

[Bootle-Chiesa-Groth’20] and Brakedown [GLSTW’21]

▪ [Bootle-Chiesa-Groth’20]: Tensor query IOP 𝑓, (𝑢 ⊗ 𝑢′)
▪ Generalizes to multiple dimensions with proof size 𝑂(𝑛𝜖) for

constant 𝜖 < 1

▪ Brakedown [GLSTW’21]: polynomial commitment based on
tensor query
▪ Knowledge soundness without efficient decoding algorithm

32

ZKP MOOC

[Bootle-Chiesa-Liu’21] and Orion [Xie-Zhang-Song’22]

▪ [Bootle-Chiesa-Liu’21]

▪ Proof size polylog(𝑛) with a proof composition of tensor IOP
and PCP of proximity [Mie’09]

▪ Orion [Xie-Zhang-Song’22]

▪ Proof size 𝑂(log2 𝑛) with a proof composition of the code-
switching technique [Ron-Zewi-Rothblum’20]

(5.7MB for 𝑑 = 225)

33

Credit: Faithie/Shutterstock

ZKP MOOC

Linear-time encodable code

34

ZKP MOOC

SNARKs with linear prover time

35

Ideal linear model

𝑂(𝑑)
proof size

BCGGHJ
2017

BCG2020 BCL2021

Tensor IOP
𝑂(𝑑𝜖)

Tensor
IOP+PCPP
polylog(𝑑)

GLSTW
2021

Polynomial
commitment

𝑂(𝑑𝜖)

XZS2022

Code-switching
proof composition

𝑂(log2𝑑)

ZKP MOOC

Linear-time encodable code [Spielman’96][Druk-Ishai’14]

36

Expander
graph

message codeword

ZKP MOOC

Lossless Expander

▪ # left nodes = |𝐿|, # right nodes =
𝛼|𝐿| for a constant 𝛼

▪ Degree of a left node = 𝑔

▪ For every subset 𝑆 of nodes on the
left, # of neighbors Γ 𝑆 = 𝑔|𝑆|,

for 𝑆 ≤
𝛼 𝐿

𝑔

37

ZKP MOOC

Lossless Expander

▪ # left nodes = |𝐿|, # right nodes =
𝛼|𝐿| for a constant 𝛼

▪ Degree of a left node = 𝑔

▪ For every subset 𝑆 of nodes on the
left, # of neighbors

Γ 𝑆 ≥ (1 − 𝛽)𝑔|𝑆|, for 𝑆 ≤
𝛿 𝐿

𝑔

(𝛽 → 0, 𝛿 → 𝛼)

38

ZKP MOOC

Overview of the recursive encoding

39

message

𝑘

message

copy

Lossless
expander

𝛼 =
1

2

Τ𝑘 2

Encode
for Τ𝑘 2

codeword 𝑐1 codeword 𝑐2

Lossless
expander

𝛼 =
1

2

2𝑘 𝑘

ZKP MOOC

Encoding algorithm

▪ Message 𝑚 of size 𝑘, codeword size 4𝑘, rate is Τ1 4
▪ Suppose there is an encoding algorithm from Τ𝑘 2 to 2𝑘 with

good relative distance Δ
▪ Suppose there are lossless expander graphs of size 𝑘 and 2𝑘,

and 𝛼 = Τ1 2
1. Pass 𝑚 through lossless expander to get 𝑚1of size Τ𝑘 2
2. Encode 𝑚1 to get 𝑐1 of size 2𝑘
3. Pass 𝑐1 through lossless expander to get 𝑐2of size 𝑘
4. Codeword 𝑐 = 𝑚| 𝑐1 |𝑐2

40

ZKP MOOC

Recursive encoding

▪ Repeat for Τ𝑘 2, Τ𝑘 4… until a constant size

▪ Use any code with good distance for a constant-size
message. E.g., Reed-Solomon code

41

ZKP MOOC

Distance of the code

constant relative distance Δ′ = min{Δ,
𝛿

4𝑔
}

42

ZKP MOOC

Lossless Expander

▪ # left nodes = 𝑘, # right nodes = 𝛼𝑘
for a constant 𝛼

▪ Degree of a left node = 𝑔

▪ For every subset 𝑆 of nodes on the
left, # of neighbors

Γ 𝑆 ≥ (1 − 𝛽)𝑔|𝑆|, for 𝑆 ≤
𝛿 𝐿

𝑔

(𝛽 → 0, 𝛿 → 𝛼)

43

ZKP MOOC

Proof of constant relative distance [Druk-Ishai’14]

constant relative distance Δ′ = min{Δ,
𝛿

4𝑔
}, codeword 𝑐 = 𝑚| 𝑐1 |𝑐2

44

1. If weight of 𝑚 is larger than 4𝑘Δ′ → done

2. If (weight of 𝑚) ≤ 4𝑘Δ′, the condition of lossless expander holds

▪ Let 𝑆 be the set of nonzero nodes, Γ 𝑆 ≥ 1 − 𝛽 𝑔|𝑆|

▪ At least 1 node in Γ 𝑆 have a unique neighbor in 𝑆

▪ 𝑚1 is nonzero → (weight of 𝑐1) ≥ 2𝑘Δ

3. If it is larger than 4𝑘Δ′ → done

4. Else, weight of 𝑐2 ≥ 2𝑘Δ′ because of lossless expander

ZKP MOOC

Sampling of the lossless expander

▪ [Capalbo-Reingold-Vadhan-Wigderson’2002]: Explicit
construction of lossless expander (large hidden constant)

▪ Random sampling: 1/poly(n) failure probability

45

ZKP MOOC

Improvements of the code

▪ Brakedown [Golovnev-Lee-Setty-Thaler-Wahby’21]:
random summations with better concrete distance
analysis

▪ Orion [Xie-Zhang-Song’22]: expander testing with a
negligible failure probability via maximum density of
the graph

46

ZKP MOOC

Putting everything together

Polynomial commitment (and SNARK) based on linear code
✓Transparent setup: 𝑂(1)
✓Commit and Prover time: 𝑂(𝑑) field additions and

multiplications
✓Plausibly post-quantum secure
✓Field agnostic

 Proof size: 𝑂(𝑑), MBs

47

Credit: Faithie/Shutterstock

ZKP MOOC

End of Lecture

48

Next: FRI and Stark

