Zero Knowledge Proofs

Polynomial Commitments
based on error-correcting codes

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

B -

[® Stanford

d University

EORGETOW. XAS
Berkeley Tonpvirsrry -

N UNIVERSITY OF CALIFORNIA

Recall: common paradigm for efficient SNARK

A polynomial
commitment
scheme

SNARK for
general circuits

A polynomial
interactive
oracle proof (I0OP)

ZKP MOOC

Last time: KZG polynomial commitment

Univariate polynomials of degree <= d

_ A 74
Prover gp=(9.99%,..,9") Verifier
f(x) com,= gf(f) com;
u g
fx)—f(u) _
= (x —u)q(x) v, proof m = gq(r) e(comf/g”,g)
=e(g™", m)

3 ZKP MOOC

Last time: other PC based on discrete-log

Proof Verifier Trusted Crypto primitive
size Setup

Bullet 0;(d) 0;(ogd) 0;(d) discrete-log
-proofs
Hyrax 0,(d) ())L(\/E) OA(\/E) x discrete-log
Dory 0,(d) 0O;(logd) 0;(ogd) x pairing
Dark 0,(d) 0;0ogd) 0;(logd) x unknown order group

4 ZKP MOOC

Poly-commit based on error-correcting codes

Motivations:
v Plausibly post-quantum secure

v"No group exponentiations (prover only uses hashes,
additions and multiplications)

v'Small global parameters

Drawbacks:
X Large proof size
x Not homomorphic and hard to aggregate

5 ZKP MOOC

Plan of this lecture

Background on error-correcting codes
Polynomial commitment based on error-correcting codes

Linear-time encodable code based on expanders

6 ZKP MOOC

Background

7 ZKP MOOC
Credit: Faithie/Shutterstock

Error-correcting code

In, k, A] code:
" Enc(m): Encode a message of size k to a codeword of size n

= Minimum distance (Hamming) between any two codewords is A

message # Codeword
- N / Encode - N /
k n

8 ZKP MOOC

Example: repetition code

Binary withk =2andn =6
= Enc(00) = 000000, Enc(01) =000111
= Enc(10) = 111000, Enc(11) = 111111

= Minimum distance A = 3

Can correct 1 error during the transmission
e.g.010111-> 01 Dec(c): decode algorithm (not used in poly-commit)

9 ZKP MOOC

Rate and relative distance

k . . A
Rate: - Relative distance: -

iti i 1 , : 1
E.g. repetition code with rate — A = a, relative distance: -

Trade-off between the rate and the distance of a code

ZKP MOOC

Linear code

Any linear combination of codewords is also a codeword

= Encoding can always be represented as vector-matrix
multiplication between m and the generator matrix

= minimum distance is the same as the codeword with
the least number of non-zeros (weight).

ZKP MOOC

Example: Reed-Solomon Code

Encode: Fy — Fp
= View the message as a unique degree k-1 univariate polynomial
" The codeword is the evaluations at n points

E.g., (w,w?, ..., o") for n-th root-of-unity ™ = 1 mod p
" DistanceA=n—k+1

a degree k-1 polynomial has at most k-1 roots

E.g,n = 2k, rateis 1/2, and relative distance is 1/2
* Encoding time: O(nlogn) using the fast Fourier transform (FFT)

ZKP MOOC

Polynomial commitment
based on linear codes

13 ZKP MOOC
Credit: Faithie/Shutterstock

Recall: polynomial commitment

keygen(A, F) — gp

Prover Verifier
f(x)eF
commit(f) -com,
com
- s - = u r.="n"
eval(gp,f,u) v, m verify

5 ZKP MOOC

Polynomial coefficients in a matrix

fir A, I,
DRV
Vi Fas - faa)

N _/
Vd —d | | J:\/’
f(lt) — z fi,jul_l-l_(]_l) d\/&

i=14=dj=1

ZKP MOOC

Polynomial evaluation

ll,u,uz,...,ux/ﬁ—ll X / f1,1 f1,2 fl,\/z\ i \1/&]

u
f(u) — f2,1 : f2,2 . fZ,\/E > uz\/a
\f \/H,l f \/a,2 f \/H,\/H / _ud';.\/a_

V@ Vd
f(U) — z fijui—1+(j—1)\/a

i=14=dj=1

ZKP MOOC

Reducing to Vec-Mat product

ll,u, u?, ...,u*/a‘ll X / fi1 fi2 fiva \ = |]
far fa fosa | "
: : Vd
\fx/ﬁg fvaz - f\/H,\/H/

Argument for Vec-Mat product
— Polynomial commitment with Vd proof size

ZKP MOOC

O
o
@)
=
o
[~
N

ooooooa/

m ® 060 O ” Yn %
e | e [08
= 00000 m
Iml fooocoo\\ m
O
| = =
+ ‘ 2
o0 @)
= =
O &)
O \ooooood/ %
m EEEEE _M O
L XEEREE Y__ m
EEEEE . O
TEEEE S

Recall: Merkle tree commitment

- L]

ZKP MOOC

Recall: Merkle tree opening

- L]

ZKP MOOC

Committing the polynomial

Commit to each column of the encoded matrix using Merkle tree

ZKP MOOC

Step 1: Proximity test

Test if the committed matrix indeed consists of Vd codewords

(o o o o 101 o I3l o
[7‘1,1”2,1”3, ...,r\/a] X e olel . ol il 1. The vector |sacodew<?rd |
i g I B 2. Columns are as committed in
o .|‘|. .|‘|.|.|.
®o oloje ol 10 l0 @ Merkle tree
o o :ol ° : ol o :ol ° 3. Inner product between r and
o | : .
®° ._‘: e e '1' ‘i ¢ each column is consistent
Prover) Y Verifier
g H

Send several random columns

A

v

ZKP MOOC

Soundness (Intuition)

[rl,rz,rg, ---’T\/H] X

Prover

Suppose the prover cheats

= |f the vector is correctly
computed =2 itis not a
codeword > eheekd

= |f the vector is false 2
many different locations
from the correct answer

(o o l3le o 151 o i3 o |
oo:o:o o:o:o:o:o
® o 5,° @ 9,0 0 0
e oloje ol 1elel @
o o loleo lo! o 10l o
oo:_o:o O:::O:_Q:O
% % % %

* By check 2, columns
are as committed

Send several random columns

A 4

* Probability of passing

a

v

check 3 is small

ZKP MOOC

Ligero [aHIv'2017] and [BCGGHI'2017]

" Ligero [AHIV’2017] : Interleaved test. Reed-Solomon code

= [BCGGHJ'2017] : Ideal linear commitment model. Linear-time
encodable code = first SNARK with linear prover time

ZKP MOOC

In the formal proof [aHIv2017)

If the committed matrix C is e-far from any codeword
A
fore < —
4
. 1
>Pr[w = rTC is e-close to any codeword] < %

Ifw =1rTC is e-far from any codeword

t
- Pr[check 3 is true for t random columns] < (1 — %)

ZKP MOOC

One optimization

[7‘1,1"2,1"3, ...,T'\/E] X

XEXEXXXK
@000 00
(EEENN;
'EEEEKR:
8838828

Yy

a

Encode
Prover I\/Ies.sa-ge m
Verifier

o

' H

Send several random columns

A
\

ZKP MOOC

Step 2: Consistency check

I _ - - — 1—Thevectorisacodeword
_ igl iZ1 ¢ I3l
[1,11,112,...,7,0/H 1]>< ° .|.|. .|‘|.|.|. 2—Columnsare ascommittedin
e o I.I o O I.I o |.I ([
® O |‘| o o |.| o |.| o |U|e|k|e tree
R EER K 3. Inner product between u and
o :‘: ® :‘: o :‘: ® each column is consistent
e o .l e o .l o ‘l o
Prover Ll Ll Ll Encode -
_ Verifier
= « message m
> H

Send several random columns

A

N
»

ZKP MOOC

Soundness (intuition)

= By the proximity test, the committed matrix C is close
to a codeword

" There exists an extractor that extracts F by Merkle
tree commitment and decoding C,st. U X F = m
with probability 1 — €

ZKP MOOC

Poly-commit based on linear code

= Keygen: sample a hash function

= Commit: encode the coefficient matrix of f row-wise with a
linear code, compute the Merkle tree commitment

= Eval and Verify:

= Proximity test: random linear combination of all rows, check its
consistency with t random columns

= Consistency test: 4 X F = m, encode m and check its consistency with t
random columns

" f(w) = (mu’)

ZKP MOOC

Properties of the polynomial commitment

Keygen: O(1), transparent setup!

Commit:
Encoding: O(d logd) field multiplications using RS code, O(d)
using linear-time encodable code
Merkle tree: O(d) hashes, O(1) commitment size

Eval: O(d) field multiplications
(non-interactive via Fiat Shamir)

Proof size: O(Vd)
Verifier time: O(vVd)

ZKP MOOC

Performance the poly-commit [cLstw21]

degree d = 22>, linear-time encodable code
Commit: 36s

Eval: 3.2s
Proof size: 49MB
Verifier time: 0.7s

ZKP MOOC

[Bootle-Chiesa-Groth’20] and Brakedown [GLSTW’21]

= [Bootle-Chiesa-Groth’20]: Tensor query IOP (f, (u @ u"))

* Generalizes to multiple dimensions with proof size O(n) for
constante <1

" Brakedown [GLSTW’21]: polynomial commitment based on
tensor query
= Knowledge soundness without efficient decoding algorithm

ZKP MOOC

[Bootle-Chiesa-Liu’21] and Orion [Xie-Zhang-Song’22]

= [Bootle-Chiesa-Liu’21]

* Proof size polylog(n) with a proof composition of tensor IOP
and PCP of proximity [Mie’09]

* Orion [Xie-Zhang-Song’22]

= Proof size O(log? n) with a proof composition of the code-
switching technique [Ron-Zewi-Rothblum’20]

(5.7MB for d = 22°)

ZKP MOOC

Linear-time encodable code

34 ZKP MOOC
Credit: Faithie/Shutterstock

SNARKs with linear prover time

N N
BCGGH) GLSTW
e BCG2020 —>| BCL2021 2021 —>| XZ52022
J J
Ideal linear model Tensor IOP Tensor Polynomial Code-switching
0(\/3) O(de) |OP+PCPP commitment proof composition

proof size polylog(d) 0(d®) 0(log?d)

ZKP MOOC

Linear-time encodable code [spieiman’96][Druk-Ishai’14]

Expander < - "9 :
graph -’ g :
I ¢ = |
>
message | AA“ ! codeword
1 |

&\
{ '

ZKP MOOC

Lossless Expander

* #left nodes = |L|, # right nodes =

N a|L| for a constant «
— " Degree of aleftnode =g
v —
', " For every subset S of nodes on the
/‘Q« - left, # of neighbors |[T'(S)| = g|S]|,
- alL|

for |S| < —

0/<§ g

ZKP MOOC

Lossless Expander

* #left nodes = |L|, # right nodes =

— a|L| for a constant a
% = Degree of aleft node =g
—_ " For every subset S of nodes on the
/‘Q« _ left, # of neighbors
- 5|L|

TSI = (1 = B)glS|, for |S| = —

g
‘/@ (- 0,0 - a)
9

ZKP MOOC

Overview of the recursive encoding

k Lossless
— expar11der
message v=
\ Lossless
— SEERe expaglder
copy a=-
k)2 fork /2 2
/ \
message codeword ¢ codeword ¢,
— _/ g J
Y Y
2k k

ZKP MOOC

Encoding algorithm

= Message m of size k, codeword size 4k, rateis 1/4

= Suppose there is an encoding algorithm from k /2 to 2k with
good relative distance A

= Suppose there are lossless expander graphs of size k and 2k,
anda =1/2

1. Pass m through lossless expander to get m,of size k /2

2. Encode m; to get ¢ of size 2k

3. Pass ¢ through lossless expander to get ¢, 0of size k

4

Codeword ¢ = m||cq||cs

ZKP MOOC

Recursive encoding

= Repeat for k/2, k/4 ... until a constant size

= Use any code with good distance for a constant-size
message. E.g., Reed-Solomon code

ZKP MOOC

Distance of the code

. . - 9
constant relative distance A" = min{A, E}

ZKP MOOC

Lossless Expander

" #left nodes =k, # right nodes = ak

N for a constant a
\ // " Degreeof aleftnode=g
. " For every subset S of nodes on the
S left, # of neighbors
N 5|L|

TSI = (1 = B)glS|, for |S| = —

g
‘/<§ (- 0,0 - a)
9

ZKP MOOC

Proof of constant relative distance [pruk-ishai'14]

N . 8
constant relative distance A" = min{A, E}' codeword ¢ = m||cq]|]|c,

1. If weight of mis larger than 4kA” - done

2. If (weight of m) < 4kA’, the condition of lossless expander holds
= Let S be the set of nonzero nodes, |I'(S)| = (1 — B)g|S]
= Atleast 1 nodein |I'(S)| have a unique neighborin S
" mqisnonzero = (weight of ¢;) = 2kA

3. Ifitislargerthan 4kA" - done

4. Else, weight of ¢, = 2kA’ because of lossless expander

ZKP MOOC

Sampling of the lossless expander

= [Capalbo-Reingold-Vadhan-Wigderson’2002]: Explicit
construction of lossless expander (large hidden constant)

= Random sampling: 1/poly(n) failure probability

ZKP MOOC

Improvements of the code

" Brakedown [Golovnev-Lee-Setty-Thaler-Wahby’21]:
random summations with better concrete distance
analysis

" Orion [Xie-Zhang-Song’22]: expander testing with a
negligible failure probability via maximum density of
the graph

ZKP MOOC

Putting everything together

Polynomial commitment (and SNARK) based on linear code
v’ Transparent setup: 0(1)

v"Commit and Prover time: O (d) field additions and
multiplications

v'Plausibly post-quantum secure
v Field agnostic

% Proof size: 0(v/d), MBs

ZKP MOOC

End of Lecture

Next: FRI and Stark

48 ZKP MOOC
Credit: Faithie/Shutterstock

