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Recall: common paradigm for efficient SNARK

A polynomial 
interactive

oracle proof (IOP)

A polynomial
commitment

scheme

SNARK for 
general circuits
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Last time: KZG polynomial commitment
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Prover Verifier

𝒇(𝒙)
comf= 𝑔𝑓(𝜏)

𝑢

𝑣,  proof  𝜋 = 𝑔𝑞(𝜏) 𝑒 Τ𝑐𝑜𝑚𝑓 𝑔𝑣 , 𝑔

= 𝑒(𝑔𝜏−𝑢, 𝜋)

comf

Univariate polynomials of degree <= d

gp = (𝑔, 𝑔𝜏, 𝑔𝜏
2
, … , 𝑔𝜏

𝑑
)

𝑓 𝑥 − 𝑓 𝑢
= 𝑥 − 𝑢 𝑞(𝑥)
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Last time: other PC based on discrete-log
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Scheme Prover Proof
size

Verifier Trusted
Setup

Crypto primitive

Bullet
-proofs

O𝜆 𝑑 O𝜆 log 𝑑 O𝜆 𝑑  discrete-log

Hyrax O𝜆 𝑑 O𝜆 𝑑 O𝜆 𝑑  discrete-log

Dory O𝜆 𝑑 O𝜆 log 𝑑 O𝜆 log 𝑑  pairing

Dark O𝜆 𝑑 O𝜆 log 𝑑 O𝜆 log 𝑑  unknown order group
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Poly-commit based on error-correcting codes

Motivations:

✓Plausibly post-quantum secure

✓No group exponentiations (prover only uses hashes, 
additions and multiplications) 

✓Small global parameters

Drawbacks:

 Large proof size

 Not homomorphic and hard to aggregate
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Plan of this lecture

▪ Background on error-correcting codes

▪ Polynomial commitment based on error-correcting codes

▪ Linear-time encodable code based on expanders
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Background
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Error-correcting code

[𝑛, 𝑘, Δ] code:

▪ Enc(m): Encode a message of size 𝑘 to a codeword of size 𝑛

▪ Minimum distance (Hamming) between any two codewords is Δ
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Codewordmessage

Encode

𝑘 𝑛
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Example: repetition code

Binary with 𝑘 = 2 and 𝑛 = 6

▪ Enc(00) = 000000, Enc(01) = 000111

▪ Enc(10) = 111000, Enc(11) = 111111

▪ Minimum distance Δ = 3

Can correct 1 error during the transmission

e.g. 010111→ 01 Dec(c): decode algorithm (not used in poly-commit)
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Rate and relative distance

Rate: 
𝑘

𝑛
Relative distance: 

Δ

𝑛

E.g. repetition code with rate 
1

𝑎
, Δ = 𝑎, relative distance: 

1

𝑘

Trade-off between the rate and the distance of a code
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Linear code

Any linear combination of codewords is also a codeword

⇒ Encoding can always be represented as vector-matrix 
multiplication between 𝑚 and the generator matrix

⇒ minimum distance is the same as the codeword with 
the least number of non-zeros (weight). 
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Example: Reed-Solomon Code

Encode: 𝔽𝑝
𝑘 → 𝔽𝑝

𝑛

▪ View the message as a unique degree k-1 univariate polynomial

▪ The codeword is the evaluations at n points 

E.g., (𝜔 ,𝜔2, … , 𝜔𝑛) for n-th root-of-unity 𝜔𝑛 = 1 mod p

▪ Distance Δ = 𝑛 − 𝑘 + 1

a degree k-1 polynomial has at most k-1 roots

E.g, 𝑛 = 2𝑘, rate is 1/2, and relative distance is 1/2

▪ Encoding time: 𝑂 𝑛 log 𝑛 using the fast Fourier transform (FFT)
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Polynomial commitment 
based on linear codes
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Recall: polynomial commitment

5

Prover Verifier

𝒇(𝒙) ∈ 𝓕
commit(𝑓) ⇾comf

𝑢

comf

verify

keygen(𝜆, 𝓕) ⇾ gp

eval(gp,𝑓,u) ⇾ v, 𝜋
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Polynomial coefficients in a matrix

15

𝑓1,1 𝑓1,2
𝑓2,1 𝑓2,2

⋯
𝑓1, 𝑑
𝑓2, 𝑑

⋮ ⋱ ⋮
𝑓 𝑑,1 𝑓 𝑑,2 ⋯ 𝑓 𝑑, 𝑑

𝑑

𝑑

𝑓 𝑢 =෍
𝑖=1

𝑑

෍
𝑗=1

𝑑

𝑓𝑖,𝑗𝑢
𝑖−1+(𝑗−1) 𝑑
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Polynomial evaluation
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𝑓 𝑢 =

1, 𝑢, 𝑢2, … , 𝑢 𝑑−1 × 𝑓1,1 𝑓1,2
𝑓2,1 𝑓2,2

⋯
𝑓1, 𝑑
𝑓2, 𝑑

⋮ ⋱ ⋮
𝑓 𝑑,1 𝑓 𝑑,2 ⋯ 𝑓 𝑑, 𝑑

×

1

𝑢 𝑑

𝑢2 𝑑

…

𝑢𝑑− 𝑑

𝑓 𝑢 =෍
𝑖=1

𝑑

෍
𝑗=1

𝑑

𝑓𝑖,𝑗𝑢
𝑖−1+(𝑗−1) 𝑑



ZKP MOOC

Reducing to Vec-Mat product 
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𝑓1,1 𝑓1,2
𝑓2,1 𝑓2,2

⋯
𝑓1, 𝑑
𝑓2, 𝑑

⋮ ⋱ ⋮
𝑓 𝑑,1 𝑓 𝑑,2 ⋯ 𝑓 𝑑, 𝑑

=

𝑑

Argument for Vec-Mat product 

→ Polynomial commitment with 𝑑 proof size

1, 𝑢, 𝑢2, … , 𝑢 𝑑−1 ×
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Encoding the polynomial

Encode each row with a linear code 
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𝑑

𝑘 = 𝑑 𝑛

𝑑
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Recall: Merkle tree commitment

M Y

m1=H(M, Y)

V E

m2 = H(V, E)

C T

m3 =H(C, T)

O R

m4 =H(O, R)

k1=H(h1, h2)

h1=H(m1, m2) h2=H(m3, m4)
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Recall: Merkle tree opening

M Y

m1=H(M, Y)

V E

m2 = H(V, E)

C T

m3 =H(C, T)

O R

m4 =H(O, R)

k1=H(h1, h2)

h1=H(m1, m2) h2=H(m3, m4)
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Committing the polynomial

Commit to each column of the encoded matrix using Merkle tree
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H
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Step 1: Proximity test

Test if the committed matrix indeed consists of 𝑑 codewords
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Prover
Verifier

H

𝑟1, 𝑟2, 𝑟3, … , 𝑟 𝑑 ×

=

Send several random columns

1. The vector is a codeword
2. Columns are as committed in 

Merkle tree
3. Inner product between r and 

each column is consistent
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Soundness (Intuition)
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Prover

𝑟1, 𝑟2, 𝑟3, … , 𝑟 𝑑 ×

=

Send several random columns

Suppose the prover cheats
▪ If the vector is correctly 

computed → it is not a 
codeword → check 1

▪ If the vector is false →
many different locations 
from the correct answer
• By check 2, columns 

are as committed
• Probability of passing 

check 3 is small
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Ligero [AHIV’2017] and [BCGGHJ’2017]

▪ Ligero [AHIV’2017] : Interleaved test. Reed-Solomon code

▪ [BCGGHJ’2017] : Ideal linear commitment model. Linear-time 
encodable code → first SNARK with linear prover time
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In the formal proof [AHIV’2017]

If the committed matrix 𝐶 is 𝑒-far from any codeword 

for 𝑒 <
Δ

4

→Pr[𝑤 = 𝑟𝑇𝐶 is 𝑒-close to any codeword] ≤
𝑒+1

𝔽

If 𝑤 = 𝑟𝑇𝐶 is 𝑒-far from any codeword 

→ Pr[check 3 is true for 𝑡 random columns] ≤ 1 −
𝑒

𝑛

𝑡
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One optimization
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Prover

𝑟1, 𝑟2, 𝑟3, … , 𝑟 𝑑 ×

=

Send several random columns

Verifier

H

Message mEncode



ZKP MOOC

Step 2: Consistency check
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Prover
Verifier

H
=

Send several random columns

message m

Encode

1. The vector is a codeword
2. Columns are as committed in 

Merkle tree
3. Inner product between 𝑢 and 

each column is consistent

1, 𝑢, 𝑢2, … , 𝑢 𝑑−1 ×
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Soundness (intuition)

▪ By the proximity test, the committed matrix 𝐶 is close 
to a codeword

▪ There exists an extractor that extracts 𝐹 by Merkle 
tree commitment and decoding 𝐶, s.t. 𝑢 × 𝐹 = 𝑚
with probability 1 − 𝜖

28
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Poly-commit based on linear code

▪ Keygen: sample a hash function

▪ Commit: encode the coefficient matrix of 𝑓 row-wise with a 
linear code, compute the Merkle tree commitment

▪ Eval and Verify:
▪ Proximity test: random linear combination of all rows, check its 

consistency with 𝑡 random columns

▪ Consistency test: 𝑢 × 𝐹 = 𝑚, encode 𝑚 and check its consistency with 𝑡
random columns

▪ 𝑓 𝑢 = 𝑚, 𝑢′

29
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Properties of the polynomial commitment

▪ Keygen: O(1), transparent setup!
▪ Commit: 

▪ Encoding: O(d logd) field multiplications using RS code, O(d)
using linear-time encodable code

▪ Merkle tree: O(d) hashes, O(1) commitment size

▪ Eval: O(d) field multiplications
(non-interactive via Fiat Shamir)

▪ Proof size: O( 𝑑)

▪ Verifier time: O( 𝑑)

30
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Performance the poly-commit [GLSTW’21]

degree 𝑑 = 225, linear-time encodable code

▪ Commit: 36s

▪ Eval: 3.2s

▪ Proof size: 49MB

▪ Verifier time: 0.7s

31
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[Bootle-Chiesa-Groth’20] and Brakedown [GLSTW’21]

▪ [Bootle-Chiesa-Groth’20]: Tensor query IOP 𝑓, (𝑢 ⊗ 𝑢′)
▪ Generalizes to multiple dimensions with proof size 𝑂(𝑛𝜖) for 

constant 𝜖 < 1

▪ Brakedown [GLSTW’21]: polynomial commitment based on 
tensor query
▪ Knowledge soundness without efficient decoding algorithm

32
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[Bootle-Chiesa-Liu’21] and Orion [Xie-Zhang-Song’22]

▪ [Bootle-Chiesa-Liu’21]

▪ Proof size polylog(𝑛) with a proof composition of tensor IOP 
and PCP of proximity [Mie’09]

▪ Orion [Xie-Zhang-Song’22]

▪ Proof size 𝑂(log2 𝑛) with a proof composition of the code-
switching technique [Ron-Zewi-Rothblum’20]  

(5.7MB for 𝑑 = 225)
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Linear-time encodable code 

34
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SNARKs with linear prover time

35

Ideal linear model 

𝑂( 𝑑)
proof size

BCGGHJ
2017

BCG2020 BCL2021

Tensor IOP
𝑂(𝑑𝜖)

Tensor 
IOP+PCPP
polylog(𝑑)

GLSTW
2021

Polynomial 
commitment

𝑂(𝑑𝜖)

XZS2022

Code-switching 
proof composition

𝑂(log2𝑑)



ZKP MOOC

Linear-time encodable code [Spielman’96][Druk-Ishai’14]

36

Expander 
graph

message codeword
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Lossless Expander

▪ # left nodes = |𝐿|, # right nodes = 
𝛼|𝐿| for a constant 𝛼

▪ Degree of a left node = 𝑔

▪ For every subset 𝑆 of nodes on the 
left, # of neighbors Γ 𝑆 = 𝑔|𝑆|,

for 𝑆 ≤
𝛼 𝐿

𝑔
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Lossless Expander

▪ # left nodes = |𝐿|, # right nodes = 
𝛼|𝐿| for a constant 𝛼

▪ Degree of a left node = 𝑔

▪ For every subset 𝑆 of nodes on the 
left, # of neighbors 

Γ 𝑆 ≥ (1 − 𝛽)𝑔|𝑆|, for 𝑆 ≤
𝛿 𝐿

𝑔

(𝛽 → 0, 𝛿 → 𝛼)
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Overview of the recursive encoding

39

message

𝑘

message

copy

Lossless 
expander 

𝛼 =
1

2

Τ𝑘 2

Encode 
for Τ𝑘 2

codeword 𝑐1 codeword 𝑐2

Lossless 
expander 

𝛼 =
1

2

2𝑘 𝑘
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Encoding algorithm

▪ Message 𝑚 of size 𝑘, codeword size 4𝑘, rate is Τ1 4
▪ Suppose there is an encoding algorithm from Τ𝑘 2 to 2𝑘 with 

good relative distance  Δ
▪ Suppose there are lossless expander graphs of size 𝑘 and 2𝑘, 

and 𝛼 = Τ1 2
1. Pass 𝑚 through lossless expander to get 𝑚1of size Τ𝑘 2
2. Encode 𝑚1 to get 𝑐1 of size 2𝑘
3. Pass 𝑐1 through lossless expander to get 𝑐2of size 𝑘
4. Codeword 𝑐 = 𝑚| 𝑐1 |𝑐2

40
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Recursive encoding

▪ Repeat for Τ𝑘 2, Τ𝑘 4… until a constant size

▪ Use any code with good distance for a constant-size 
message. E.g., Reed-Solomon code

41
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Distance of the code

constant relative distance Δ′ = min{Δ,
𝛿

4𝑔
}

42
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Lossless Expander

▪ # left nodes = 𝑘, # right nodes = 𝛼𝑘
for a constant 𝛼

▪ Degree of a left node = 𝑔

▪ For every subset 𝑆 of nodes on the 
left, # of neighbors 

Γ 𝑆 ≥ (1 − 𝛽)𝑔|𝑆|, for 𝑆 ≤
𝛿 𝐿

𝑔

(𝛽 → 0, 𝛿 → 𝛼)
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Proof of constant relative distance [Druk-Ishai’14]

constant relative distance Δ′ = min{Δ,
𝛿

4𝑔
}, codeword 𝑐 = 𝑚| 𝑐1 |𝑐2

44

1. If weight of 𝑚 is larger than 4𝑘Δ′ → done

2. If (weight of 𝑚) ≤ 4𝑘Δ′, the condition of lossless expander holds 

▪ Let 𝑆 be the set of nonzero nodes, Γ 𝑆 ≥ 1 − 𝛽 𝑔|𝑆|

▪ At least 1 node in Γ 𝑆 have a unique neighbor in 𝑆

▪ 𝑚1 is nonzero → (weight of 𝑐1) ≥ 2𝑘Δ

3. If it is larger than 4𝑘Δ′ → done

4. Else, weight of 𝑐2 ≥ 2𝑘Δ′ because of lossless expander
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Sampling of the lossless expander

▪ [Capalbo-Reingold-Vadhan-Wigderson’2002]: Explicit 
construction of lossless expander (large hidden constant)

▪ Random sampling: 1/poly(n) failure probability 
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Improvements of the code

▪ Brakedown [Golovnev-Lee-Setty-Thaler-Wahby’21]: 
random summations with better concrete distance 
analysis

▪ Orion [Xie-Zhang-Song’22]: expander testing with a 
negligible failure probability via maximum density of 
the graph
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Putting everything together

Polynomial commitment (and SNARK) based on linear code
✓Transparent setup: 𝑂(1)
✓Commit and Prover time: 𝑂(𝑑) field additions and   

multiplications
✓Plausibly post-quantum secure
✓Field agnostic 

 Proof size: 𝑂( 𝑑), MBs 
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End of Lecture

48

Next: FRI and Stark


