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Proofs 
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Efficiently Verifiable  Proofs (NP-proofs)

Prover Verifier

Works Hard     Polynomial Time

Claim  

short
proof 

accept/
reject
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Efficiently Verifiable  Proofs (NP-proofs)

Prover P Verifier V

Unbounded V takes time Polynomial in |x|

Claim x 

w
Accepts x  If 
V(x,w)=1
Else reject

|w| = polynomial in |x|
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Claim: N is a product of 2 large primes

proof={p,q}

If N=pq, V accepts
Else V rejects

After interaction, V knows:

1) N is product of 2 primes

2) The two primes p and q

6
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Claim: y is a quadratic residue mod N
(i.e ∃𝑥 𝑖𝑛 𝑍!∗ s. t. y=x2 mod N)

If y=x2 mod N, V accepts
Else V rejects

After interaction, V knows:

1. y is a quadratic residue mod

2. Square root of y (hard problem 
equivalent to factoring N)

Proof = 𝑥
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𝝅: 𝑵 → [𝑵], 
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the isomorphism

Accept if ∀𝑖, 𝑗:
𝜋 𝑖 , 𝜋 𝑗 ∈ 𝐸! iff 
𝑖, 𝑗 ∈ 𝐸".

After interaction, V knows:

1) G0 is isomorphic to G1

2) The isomorphism 𝝅

Claim: the two graphs are isomorphic
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Efficiently Verifiable Proofs (NP-Languages)

Prover P Verifier V

Works Hard     V Polynomial time 

Claim x 

w
Accepts x  If 
V(x,w)=1
Else reject

Def: A language 𝐿 is a set of binary strings x. 

9
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Def: ℒ is an 𝐍𝐏-language (or NP-decision problem), if there is a poly (|x|) 
time verifier 𝑉 where
• Completeness [True claims have (short) proofs]. 

if x ∈ ℒ, there is a poly(|𝐱|)-long witness w ∈ 0,1 ∗ s.t. 𝑉 𝑥,𝑤 = 1.
• Soundness [False theorems have no proofs}. 

if x ∉ ℒ, there is no witness. That is, for all w ∈ 0,1 ∗, 𝑉 𝑥,𝑤 = 0.

accept/reject
Claim x

w

Efficiently Verifiable Proofs (NP-Languages)
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1982-1985: Is there any other way?

Proof= 𝒚 𝒎𝒐𝒅 𝑵 ∈ 𝒁𝑵∗

Theorem: y is a quadratic residue mod N

11
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Main Idea:
Prove  that 
I could prove it
If I felt like it

Zero Knowledge Proofs: Yes

12
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Zero Knowledge 
Interactive Proofs
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Two New Ingredients

Interactive and Probabilistic Proofs

Interaction: rather than passively “reading” proof, verifier engages 
in a non-trivial interaction with the prover.

Randomness: verifier is randomized (tosses coins as a primitive 
operation), and can err in accept/reject with small probability 

14
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Probabilistic 
Polynomial-time (PPT)Comp. Unbounded

Prover Verifier

Claim/Theorem x

𝑎! accept
/reject𝑞!

𝑎%
𝑞%
…

Interactive Proof Model

15
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Here is the idea:
How to prove colors are different to a blind verifier

Claim: This page contains 2 colors

16

Toss coin to decide if to 
flip page over or not
Heads flip, Tails don’tSends resulting page

I guess you tossed coin’ If coin ¹ coin’,
reject, else accept

If page is flipped
Set coin’=heads
Else coin’=tails
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Here is the idea:
How to prove colors are different to a blind verifier

Claim: This page contains 2 colors

17

Toss coin to decide if to 
flip page over or not
Heads flip, Tails don’tSends resulting page

I guess you tossed coin’ If coin ¹ coin’,
reject, else accept

If page is flipped
Set coin’=heads
Else coin’=tails
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Send s=r2 mod n and say

• If I gave you square roots of both s and sy mod N you would 
be convinced that the claim is true (but also know √𝑦 mod N) 

• Instead, I will give you a square root of either s or of sy mod N
but you get to choose which!

Flip a  b=              to choose Accepts
only  if
z2=sy1-b mod N

Choose
random
1≤ 𝑟 ≤ 𝑁
s.t.
gcd(r,N)=1

If b=1: send z=r
If b=0: send z=r√𝑦 mod N

Interactive Proof for QR= 𝑁, 𝑦 : ∃𝑥 𝑠. 𝑡. 𝑦 = 𝑥2𝑚𝑜𝑑 𝑁
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Sends s=r2 mod n and says

• If I gave you square roots of both s and sy mod N you would 
be convinced that the claim is true (but also know √𝑦 mod N) 

• Instead, I will give you a  a square rot of s or of sy mod N but 
you get to choose which!

Flip a  b=              to choose Accepts
only  if
z2=sy1-b mod N

Choose
random
1≤ 𝑟 ≤ 𝑁
s.t.
gcd(r,N)=1

If b=1: send z=r
If b=0: send z=r√𝑦 mod N

Interactive Proof for QR= 𝑁, 𝑦 : ∃𝑥 𝑠. 𝑡. 𝑦 = 𝑥2𝑚𝑜𝑑 𝑁
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Send s=r2 mod n and says

• If I gave you square roots of both s and sy mod N you would be 
convinced that the claim is true (but also know √𝑦 mod N) 

• Instead, I will give you a  a square rot of s or of sy mod N but you 
get to choose which!

• The fact that I COULD (in principle) do both, should convince you

Flip a  b=              to choose Accepts
only  if
z2=sy1-b mod N

Choose
random
1≤ 𝑟 ≤ 𝑁
s.t.
gcd(r,N)=1

If b=1: send z=r
If b=0: send z=r√𝑦 mod N

Interactive Proof for QR= 𝑁, 𝑦 : ∃𝑥 𝑠. 𝑡. 𝑦 = 𝑥2𝑚𝑜𝑑 𝑁

20

Repeat 100 times
( 1/2 )100
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§ The statement to be proven has many possible proofs of 
which the prover chooses one at random.

§ Each such proof is made up of exactly 2 parts:  seeing either 
part on its own gives the verifier no  knowledge; seeing both 
parts imply 100% correctness. 

§ Verifier chooses at random which of the two parts of the 
proof he wants the prover to give him. The ability of the 
prover to provide either part, convinces the verifier 

What Made it possible?
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Definitions :
of Zero Knowledge 
Interactive Proofs

22
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Def: (𝑃, 𝑉) is an interactive proof for L, if V is probabilistic poly (|x|) time &
• Completeness: If x ∈ ℒ, V always accepts.
• Soundness: If x ∉ ℒ, for all cheating prover strategy, V will not accept 

except with negligible probability. 

Interactive Proofs for a Language ℒ

23

Prover Verifier

Claim/Theorem x
accept
/reject

𝑎!
𝑞!
𝑎%…
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Interactive Proofs: Notation

24

Prover Verifier

Claim/Theorem x
𝑎! accept

/reject𝑞!
𝑎%…

Def: (𝑃, 𝑉) is an interactive proof for L, if 𝑉 𝑖𝑠 probabilistic poly (|x|) and
• Completeness: If x ∈ ℒ,  𝑃𝑟 𝑃, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡 = 1.
• Soundness: If x ∉ ℒ, for every 𝑷∗, Pr 𝑃∗, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡] = 𝑛𝑒𝑔𝑙( 𝑥 )
where negl λ < !

"#$%&#'()$ *
for all polynomial functions
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Interactive Proofs: Notation

25

Prover Verifier

Claim/Theorem x
𝑎! accept

/reject𝑞!
𝑎%…

Def: (𝑃, 𝑉) is an interactive proof for L, if 𝑉 𝑖𝑠 probabilistic poly (|x|) and
• Completeness: If x ∈ ℒ,  𝑃𝑟 𝑃, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡 = 1.
• Soundness: If x ∉ ℒ, for every 𝑷∗, Pr 𝑃∗, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡] = 𝑛𝑒𝑔𝑙( 𝑥 )
where negl λ < !

"#$%&#'()$ *
for all polynomial functions

This is what a proof 
ultimately is!
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Interactive Proofs for a Language ℒ: Notation

26

Prover Verifier

Claim/Theorem x
𝑎! accept

/reject𝑞!
𝑎%…

Def: (𝑃, 𝑉) is an interactive proof for L, if 𝑉 𝑖𝑠 probabilistic poly (|x|) and
• Completeness: If x ∈ ℒ,  Pr P, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡 ≥ 𝑐
• Soundness: If x ∉ ℒ, for every 𝑷∗, Pr 𝑃∗, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡 ≤ 𝑠

Equivalent as long as 𝒄 − 𝐬 ≥ 1/poly(|𝑥|)
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The class of Interactive Proofs (IP)

27

Prover Verifier

Claim/Theorem x
𝑎! accept

/reject𝑞!
𝑎%…

Def: class of languages IP = 
{L for which there is an interactive proof}
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What is zero-knowledge?

28

For true Statements, 

What the verifier  can compute 
after the interaction = 
What the verifier could have computed 
before interaction

How do we capture this mathematically?

for every verifier
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The Verifier’s View

§ After interactive proof, V “learned”:
§ T is true (or x ∈ ℒ)
§ A view of interaction (= transcript 

+ coins V tossed)

29

Prover P Verifier V

Theorem: T
𝑎!

accept
/reject T

𝑞!
𝑎%…

Probabilistic
Polynomial time 
algorithm

Def:   viewV 𝑷, 𝑽 𝒙 =
{(q1,a1,q2,a2,…,coins of V)} .

(probability distribuNon
over coins of V and P)
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V’s view gives him nothing new, if he could have simulated it its own s.t
`simulated view’ and `real-view’ are computationally-Indistinguishable

The Simulation Paradigm

30

The poly-time
Distinguisher

??
SIMULATED
VIEWS

real
VIEWS

v1

p1
v2

Accept/
reject

30

v1
p1
v2

Accept/
reject

When
Theorem
is true
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Computational Indistinguishability

31

Probabilistic 
Poly Time (k)
Distinguisher D D2

D1sample

For all distinguisher algorithms D, even after receiving a polynomial number of 
samples from Db, Prob[D guesses b] <1/2+negl(k)

K-BIT STRINGS

K-BIT STRINGS

If no “distinguisher” can tell apart two different 
probability distributions they are “effectively the same”. 
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An Interactive Protocol (P,V) is zero-knowledge for a language 
𝐿 if there exists a PPT algorithm Sim (a simulator) such that for 
every 𝒙 ∈ 𝑳, the following two probability distributions are 
poly-time indistinguishable:

1. 𝑣𝑖𝑒𝑤5 𝑃, 𝑉 [𝑥] = {(q1,a1,q2,a2,…,coins of V)}
(over coins of V and P)2. 𝑆𝑖𝑚(𝑥)

Def: (P,V) is a zero-knowledge interactive 
protocol if it is complete, sound and zero-knowledge

Zero Knowledge: Definition

32
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An Interactive Protocol (P,V) is zero-knowledge for a language 
𝐿 if there exists a PPT algorithm Sim (a simulator) such that for 
every 𝒙 ∈ 𝑳, the following two probability distributions are 
poly-time indistinguishable:

1. 𝑣𝑖𝑒𝑤5 𝑃, 𝑉 [𝑥, 16] = {(q1,a1,q2,a2,…,coins of V)}
(over coins of V and P)2. 𝑆𝑖𝑚(𝑥, 16)

Def: (P,V) is a zero-knowledge interactive 
protocol if it is complete, sound and zero-knowledge

Allow simulator S
Expected 
Poly-time

Zero Knowledge: Definition

33

Technicality:
Allows sufficient
Runtime onn small x
𝜆- security parameter
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What if V is NOT HONEST

34

An Interactive Protocol (P,V) is honest-verifier zero-
knowledge for a language 𝐿 if there exists a PPT 
simulator Sim such that for every 𝑥 ∈ 𝐿, 
𝑣𝑖𝑒𝑤5 𝑃, 𝑉 [𝑥] ≈ 𝑆𝑖𝑚(𝑥, 16)

An Interactive Protocol (P,V) is zero-knowledge for a 
language 𝐿 if for every PPT 𝑽∗, there exists a poly time 
simulator Sim s.t. for every 𝑥 ∈ 𝐿, 

OLD DEF

REAL DEF

34

𝑣𝑖𝑒𝑤5 𝑃, 𝑉 [𝑥] ≈ 𝑆𝑖𝑚(𝑥, 16)
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Flavors of Zero Knowledge

§ Computationally indistinguishable distributions  = CZK

§ Perfectly identical distributions = PZK

§ Statistically close distributions  = SZK

SIMULATEDREAL ≈
𝑆𝑖𝑚(𝑥, 1()𝑣𝑖𝑒𝑤) 𝑃, 𝑉 [𝑥]
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Special Case: Perfect Zero Knowledge

36

verifier’s view can be exactly efficiently simulated 
`Simulated views’ = `real views’

??

𝑆𝑖𝑚(𝑥)

v1p1v2
pk

accept/
reject

v1

p1
v2

pk
Accept/
reject

Any Algorithm

𝑣𝑖𝑒𝑤+ 𝑃, 𝑉 [𝑥]

=
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Working through a 
Simulation 

for QR Protocol

37
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Recall the Simulation Paradigm

38

𝑣𝑖𝑒𝑤5 𝑃, 𝑉 :
Transcript = 𝑠, 𝑏, 𝑧 ,

Coins = 𝑏

38
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Recall the Simulation Paradigm

39

𝑣𝑖𝑒𝑤5 𝑃, 𝑉 :
𝑠, 𝑏, 𝑧

39

PPT “simulator” 𝑺𝒊𝒎
𝑁, 𝑦

𝑠𝑖𝑚 :
𝑠, 𝑏, 𝑧
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(Honest Verifier) Perfect Zero Knowledge

40

Claim: The QR protocol is perfect zero knowledge.

𝑣𝑖𝑒𝑤5 𝑃, 𝑉 :
𝑠, 𝑏, 𝑧

Simulator S works as follows:

1. First pick a random bit b.
2. pick a random 𝑧 ∈ 𝑍*∗ .
3. compute s = 𝑧%/𝑦+.

claim: The simulated transcript is identically 
distributed as the real transcript

4. output (s, b, z).
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Perfect Zero Knowledge: for all V*

41

Claim: The QR protocol is perfect zero knowledge.

𝑣𝑖𝑒𝑤5 𝑃, 𝑉 :
𝑠, 𝑏, 𝑧

Simulator S works as follows:

1. First pick a random bit b.
2. pick a random 𝑧 ∈ 𝑍*∗ .
3. compute s = 𝑧%/𝑦+.
4. If V*((N,y),s) = b output s, b, z
if not goto 1 and repeat

Claim: Expected number of repetitions is two 
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ZK proof of Knowledge

42
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Prover seems to have proved more: theorem is correct and
that she “knows” a square root mod N

43

Def: (P,V) is a proof of knowledge (POK) for  LR  if :
∃ PPT (knowledge) extractor algorithm E s. t. ∀x in L, 
in expected poly-time EP(x) outputs w s.t. R(x,w)=accept.

EP(x) (E may run P repeatedly on the same randomness)
possibly asking different questions in every executions
This is called the rewinding technique

Consider LR = {x : ∃𝒘 𝒔. 𝒕. 𝑹 𝒙,𝒘 = 𝒂𝒄𝒄𝒆𝒑𝒕} for poly-time relation R.

Extractor E
same msg
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Prover seems to have proved more not only that theorem is 
correct, but that she “knows” a square root mod N

44

Def: (P,V) is a proof of knowledge (POK) for LR  if :
∃ PPT (knowledge) extractor algorithm E s. t. ∀x in L, 
in expected poly-time EP(x) outputs w s.t. R(x,w)=accept.

[if Prob[(P,V)(x)=accept] > a, then EP(x) runs in expected poly(|x|,1/a) time]

EP(x) (may run P repeatedly on the same randomness)
Possibly asking different questions in every executions
This is called the rewinding technique

Extractor E
same msg

Consider LR = {x : ∃𝒘 𝒔. 𝒕. 𝑹 𝒙,𝒘 = 𝒂𝒄𝒄𝒆𝒑𝒕} for poly-time relation R.
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Extractor: 
On input (y,N),
1. Run prover & receive s 
2. Set verifier message to    

head; Store r
s=r2 mod N

Extractor
Algorithm

Input: (y,N)

head

r

ZKPOK that Prover knows a square root x of y mod N

45
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Extractor: 
On input (y,N)
1. Run prover & receive s 
2. Set verifier message to 

head; receive and store r
3. Rewind and 2nd time set 

verifier message to tail
receive rx

4. Output rx/r=x mod N

s=r2 mod N

Extractor
Algorithm

Input: (y,N)

tail

rx mod N

The Rewinding Method

46
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1
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7
Recall: 

G0 is isomorphic to G1
If ∃ isomorphism 𝝅: 𝑵 → [𝑵], ∀𝑖, 𝑗: 𝜋 𝑖 , 𝜋 𝑗 ∈ 𝐸! iff  𝑖, 𝑗 ∈ 𝐸,.

ZK Proof for Graph Isomorphism

47
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ZK Interactive Proof for Graph Isomorphism

48

I will produce a random graph H for which 
1: I can give an isomorphism g0 from G0 to H 
OR
2: I can give an isomorphism  g1 from G1 to H
Thus, ∃isomorphism s from G0 to G1

Verifier, please randomly choose if I should 
demonstrate my ability to do  #1 or  #2.

POINT IS: If I can do both, 
there exists an isomorphism from G0 to G1 
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Claims:  (1) Statement true        can answer correctly for b= 0 and 1 
(2) Statement false       probb(catch a mistake)≥1/2
(3) Perfect ZK [Exercise]

REPEAT K 
INDEPENDENT TIMES.

b

If b=0: send g0
If b=1: send g0 s-1 (where s(G0)=G1)

Toss
coin b

Input: (G0,G1)

1-1/2k

Choose 
random g0
permutation  
of vertices  
of G0. Set 
H=g0(G0)

Graph H
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Extractor : 

1) On input H
set coin=head
Store g0

2) Rewind and 2nd time 
set coin=tail    
Store g1

3) Output g1-1(g0)

H

head

g0

Extractor
Algorithm

tail

g1

ZKPOK that Prover knows an isomorphism from G1 to G2

50
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The first application: Identity  Theft [FS86]

51

For Settings:
• Alice = Smart Card.
• Over the Net
•Breaking ins at Bob/Amazon are possible
Passwords are no good

Alice                                  Amazon (Bob)

...
I accept you as Alice

password
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Zero Knowledge: Preventing Identity Theft
PROVER VERIFIER

To identify itself prover proves  a hard theorem.

52

Smart Card

Hard Theorem:   I know a
Square root of y mod N                     

Proof: zero knowledge 
proof

ATM/Main
Frame
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Interesting examples, one 
application

But, do all NP Languages 
have Zero Knowledge

Interactive Proofs?

53
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Yes: All of NP is in Zero Knowledge

Theorem[GMW86,Naor]: If one-way functions exist, then every 
L in NP  has computational zero knowledge interactive proofs
Ideas of the proof:
1. Show that an NP-Complete Problem has a ZK interactive Proof
[GMW87] Showed ZK interactive proof for  G3-COLOR using bit- commitments 
⇒For any other L in NP, L <p G3-COLOR (due to NPC reducibility)

⇒ Every instance x can be reduced to graph Gx such that
§ if x in L then Gx is 3 colorable
§ if x not in L then Gx  is not 3 colorable

54
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Can you show Zero Knowledge for all of NP [GMW87]

Theorem[GMW86, Naor]: If one-way functions exist, then every L 
in NP  has computational ZK interactive proofs

Ideas of the proof:
1.[GMW87] Show that an NP-Complete Problem has a ZK interactive Proof if 
bit commitments exist
2.[Naor]One Way functions

m
Commit(m) Decommit

bit commitment protocol exist

m
hiding

binding
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Properties of a Bit Commitment Protocol (Commit, Decommit) 
between Sender S and Receiver R

Hiding: ∀ receiver R∗ , after commit stage ∀ b, bʹ ∈ {0,1}, view of sender R* 

{ViewR*{Sender(b),R∗)(1k)} ≈c {ViewR*(Sender(bʹ),R∗)(1k)} [k=sec. param]

Binding: ∀ sender S*, after commit and decommit stage
Prob[R will accept two different values b and b’] < negl(k)
K-security parameter
Ex: Use (semantically) secure probabilistic encryption scheme Enc  
Commit(b)= “sender chooses r and sends c=Enc(b;r)”
Decommit(c) =“sender sends r and b. Receiver rejects unless c=Enc(b;r)”

56
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All of NP is in Zero Knowledge

Theorem[GMW86,Naor]: If one-way functions exist, then every 
L in NP  has computational zero knowledge interactive proofs
Ideas of the proof:

1. Show that an G3-COLOR has a ZK interactive Proof

Theorem : is 3-color
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Theorem : is G3-COLORABLE

On common input graph G =(V,E) & prover input coloring p: V    {0,1,2}

1. Prover: pick a random permutation s of colors {0,1,2} &  color 
the graph with coloring f(v):=s(p(v)), and commit to each color 
of each vertex v by running Commit(f(v)) protocol

2. Verifier: select a random edge e=(a, b) to send to Prover 
3. Prover: Decommit colors f(a) & f(b) of vertices a and b
Decision: Verifier rejects If f(a)) ≠ f(b), otherwise Verifier repeats      

steps 1-3  and  accepts  after k iterations
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Completeness and Soundness

§ Completeness: if G is 3-colorable, then the honest prover 
uses  a proper 3-coloring& the verifier always accept. 

§ Soundness: If G is not 3-colroable,  then for all P*, 
Prob[ Verifier accepts]< (1-1/|E|)k < 1/e|E|

for k = |E|2. 

§ Zero Knowledge: Easy to see informally, Messy to prove 
formally

59
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Honest Verifier Computational ZK

Simulator S in input G=(V,E) : choose at random in advance 
a challenge (a,b) of the honest verifier V.
§ Choose random edge (a,b) in G
§ Choose colors fa,fb in {0,1,2} s.t fa≠fb at random and for 

all other v ≠ a,b set fa= 2. Output simulated-view =
(commit-transcript to f(v) for all v , edge =(a, b), 
decommit-transcript to colors fa,fb )

60
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Computational ZK:  Simulation for any Verifier V*

Simulator S on input G and verifier V*: For i = 1 to |E|2:
§ Choose random edge (a, b) and generate commitments com to colors as in    

honest verifier simulation. 
§ Run V* on com to obtain challenge (a∗, b∗);

if (a∗, b∗) = (a, b), then output simulation as honest verifier case,
If all  iterations fail, then output ⊥.

Claim: If Commitment scheme is Hiding & Binding, then
∀G,p (a true coloring) : prob[⊥ output]=neg(|E|) and if ⊥ is not output, then 
simulated-view ≈creal-view
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Now, we have as many CZK examples as NP-languages

62

§ n is the product of 2 primes

§ x is a square mod n

§ (G0,G1) are isomorphic

§ Any SAT Boolean Formula has satisfying assignment

§ Given encrypted inputs E(x) & program PROG, y=PROG(x)

§ Given encrypted inputs E(x) & encrypted program E(PROG), y=PROG(x)

} Stronger Guarantee: PZK
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Applications in practice 
and in theory
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•Can prove relationships between m1 and m2 never revealing either one, only 
commit(m1) and commit(m2).
Examples:  m1=m2 , m1≠m2 or more generally v=f(m1, m2) for any poly-time f

Generally: A tool to enforce honest behavior in  protocols without revealing any 
information.  Idea: protocol players sends along with each next-msg, a ZK proof 
that  next-msg= Protocol(history h, randomness r) on history h & c=commit(r)
Possible since L={∃𝑟 𝑠. 𝑡. 𝑛𝑒𝑥𝑡 − 𝑚𝑠𝑔 = 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 ℎ, 𝑟 𝑎𝑛𝑑 c=commit(r)} in NP.

Protocol design applications
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Uses for Zero Knowledge Proofs 90-onwards

65

Zero Knowledge and Nuclear Disarmament [Barak et al]

Zero Knowledge and Forensics [Naor etal]

Zcash: Bit Coin with privacy and anonymity [BenSasson, Chiesa et al]

Computation Delegation [Kalai, Rothblum x 2, Tromer,…]

Zero Knowledge and Verification Dilemmas in the Law [Bamberger etal]
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Complexity Theory: Randomized Analogue to NP

66

Efficiently P BPP
Solvable (randomized poly time)

Efficiently NP IP
Verifiable

Q: Is IP greater than NP?
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Claim: G0 is Not Isomorphic to G1
(in co-NP, not known to be in NP)

G0

Shortest classical proof:
»exponential n! for n vertices
But can convince with an efficient
interactive proof
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Graph Non-Isomorphism in IP
input: (G0, G1)

flip coin c Î{0,1} 
pick random g

H = g(Gc)
if H isomorphic
to  G0  then b = 0,  
else b = 1

b

Reject if b ≠ c

Claim: Completeness&Soundness hold
Accept after n repetitions
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Graph Non-Isomorphism in IP
input: (G0, G1)

flip coin c Î{0,1} pick 
random g

H = g(Gc)
if H isomorphic to  
G0  then b = 0,  
else b = 1

b
Reject if b ≠ c
Accept otherwise 

Not ZK! V* can learn if graph H of its choice is isomorphic to G0 or G1. 
Idea for fix: V proves to P in ZK that he knows an isomorphism g
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Arthur-Merlin Games [BaM85]

GNI requires verifier to keep its coins secret as in IP protocols
Is coin privacy necessary?

Theorem[GoldwasserSipser86]: AM (protocols with Public Coins) = IP
Idea: Merlin proves to Arthur  “the set of private coin executions that would 
make Verifer accept” is large.  Technique= prove lower bound on size of sets

70

“x in L”

coins

coins Accepts or Rejects x  

Coin Tosser+
Decision Function

Merlin Arthur
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AM Protocols enable “in practice” removal of 
interaction: the Fiat-Shamir Paradigm[FS87]

§ Let H:{0,1}*       {0,1}k be a cryptographic Hash function

§ Can take an AM protocol

§ Replace by 

71

V(input x, a1,coins,a2) 
=Accept or Rejects   

Coin Tosser+
Decision Function

a1
Coins
a2

(a1, H(a1), a2) V(x, a1,H(x,a1), a2) 
=Accept or Rejects   

Fiat-Shamir Heuristic:
If H is random-oracle,then 
completeness&soundness hold,
Use H –hash function
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§ Let H:{0,1}*       {0,1}k be a cryptographic Hash function

§ Can take an AM protocol

§ Replace by
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V(input x, a1,coins,a2) 
=Accept or Rejects   

Coin Tosser+
Decision Function

a1
Coins
a2

(a1, H(a1), a2) V(x, a1,H(x,a1), a2) 
=Accept or Rejects   

Fiat-Shamir Heuristic:
If H is random-oracle,then 
completeness&soundness hold

Warning: this does NOT mean every interactive ZK proof can transform to AM 
protocols and then use Fiat-Shamir heuristic, 
Since IP =AM transformation requires extra super-polynomial powers from Merlin
And for Fiat-Shamir heuristic to work, Prover must be computationally bounded so 
not to be able to  invert H
Yet, many specific protocols, can benefit from this heuristic

AM Protocols suggest “in practice” removal of 
interaction: the Fiat-Shamir Paradigm[FS87]
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§ Let H:{0,1}*       {0,1}k be a cryptographic Hash function

§ Can take an AM protocol

§ Replace by
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V(x, a1,coins, a2)=Accept 
or Rejects   

Coin Tosser+
Decision Function

Coins
a1
Coins
a2

(a1, H(x, a1), a2) V(x, a1,H(a1), a2)=Accept 
or Rejects   

Fiat-Shamir Heuristic:
If H is random-oracle,then 
completeness&soundness hold

Q: What if first message are coins from Arthur?

Idea(used later in course extensively): 
Post first message coins as a “publicly” chosen randomness for all to see
and then apply Fiat-Shamir heuristics to get non-interactive proofs

AM Protocols suggest “in practice” removal of 
interaction: the Fiat-Shamir Paradigm[FS87]
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Decoupled  “Correctness” from “Knowledge of the proof”

Ask new questions about nature of proof 

IP: Complexity Theory Catalyst

Questions have been asked and answered in 
last 30+ years leading up to current research on 
Provably outsourcing computation
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NP

Co-NP      ?
#P      ?
PSPACE ?

∃solution

0 solutions

2100 -13 solutions

∀∃∀…∃

Can you prove more via interactive proofs?

Classically: Can Efficiently Verify
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NP

Co-NP      

#P      

PSPACE
=IP

Accept/
Reject

q1
a1
q2

[FortnowKarloffLundNissan89, 
Shamir89]

Other Ways to define probabilistic proof systems?

Interactively Provable= PSPACE
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The Arrival of the Second Prover (MIP)
[BenorGoldwasserKilianWigderson88]

NP

Co-NP      

#P      
PSPACE

V

Claim T

Accept/
Reject

P1

P2

Could two prove more than one? 
Intuition: Can check consistency,
Verifier catches provers if  deviate

Unconditionally: NP =PZK
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NEXPTIME
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NP

Co-NP      

#P      
PSPACE

V

Claim T

Accept/
Reject

P1

P2

The Second Prover is a Game Changer (MIP)

PCP theorem [FGLSS, AS, ALMSS91]: 
NP statements can be verified with high 
prob. by only reading a constant number of 
bits of the proof
→NP-Hardness of Approximation Problems[BabaiFortnowLund90]
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Q: Can the correctness 
of a Quantum 
polynomial
time computation
be checked by a 
classical verifier? 

Theorem[ReichardtUngerVazirani13]:
A classical Verifier can verify the computation of  two entangled 

but non-communicating poly-time quantum algorithms

Classical Verifier

Accept/reject

Quantum Polynomial time

Impact on Quantum Computing
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MIP* =  Recursively Enumerable Languages
[Ji, Natarajan,Vidick, Wright, Yuen]

Classical Verifier

Accept/reject

P1

P2

2020:

Quantum MIP is All Powerful
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Aside:
The Resistance
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1983–1985  (The Resistance)
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1983–1985  (The Resistance)
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Let me show you how to do it!

1983–1985  (The Resistance)
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1985  (The Acceptance)
We are very happy to inform you that your paper       
“The Knowledge Complexity of Interactive Proof Systems”

has been selected for presentation at the  17th Symposium on Theory of 
Computing
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Broader Lessons

§Pay attention to good ideas 

§ It may take a long time >30 years to 
go from the basic idea to impact


