Zero Knowledge Proofs

Introduction to Modern SNARKs

Instructors: **Dan Boneh**, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

What is a zk-SNARK ? (intuition)

SNARK: a <u>succinct</u> proof that a certain statement is true

Example statement: "I know an m such that SHA256(m) = 0"

- SNARK: the proof is "short" and "fast" to verify
 [if m is 1GB then the trivial proof (the message m) is neither]
- **zk-SNARK**: the proof "reveals nothing" about m (privacy for m)

Commercial interest in SNARKs

Many more building applications that use SNARKs

Why so much commercial interest?

Babai-Fortnow-Levin-Szegedy 1991:

In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with unreliable software.

"Checking Computations in Polylogarithmic Time"

Why so much commercial interest?

Babai-Fortnow-Levin-Szegedy 1991:

a slow and expensive computer In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with unreliable software.

"Checking Computations in Polylogarithmic Time"

Why so much commercial interest?

Babai-Fortnow-Levin-Szegedy 1991:

L1 blockchain In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with unreliable software.

"Checking Computations in Polylogarithmic Time"

Blockchain Applications I

Outsourcing computation: (no need for zero knowledge) L1 chain quickly verifies the work of an off-chain service

Examples:

- Scalability: proof-based Rollups (zkRollup) off-chain service processes a batch of Tx; L1 chain verifies a succinct proof that Tx were processed correctly
- Bridging blockchains: proof of consensus (zkBridge) enables transfer of assets from one chain to another

Blockchain Applications II

Some applications require zero knowledge (privacy):

- Private Tx on a public blockchain:
 - zk proof that a private Tx is valid (Tornado cash, Zcash, IronFish, Aleo)

• Compliance:

- Proof that a private Tx is compliant with banking laws (Espresso)
- Proof that an exchange is solvent in zero-knowledge (Raposa)

Many non-blockchain applications

More on these blockchain applications later in course

Blockchains drive the development of SNARKs ... but <u>many</u> non-blockchain applications

Using ZK to fight disinformation

C2PA: a standard for content provenance

Sony Unlocks In-Camera Forgery-Proof Technology

A problem: post-processing

Newspapers often process the photos before publishing:

Resize (1500×1000), Crop, Grayscale (AP lists allowed ops)

The problem: laptop cannot verify signature on processed photo

(with T. Datta, 2022)

Leaptop has (*Photo, Ops*). Editing software attaches a proof π that:

I know a pair (Orig, Sig) such that

- 1. Sig is a valid C2PA signature on Orig
- 2. Photo is the result of applying Ops to Orig
- 3. metadata(*Photo*) = metadata(*Orig*)

 \Rightarrow Laptop verifies π and shows metadata to user

Performance

Proof size: ≤ 1 KB. Verification time: ≤ 10 ms.

(in browser)

Time to generate proof π : (by newspaper, one time per image)

 for images that are about 6000×4000 pixels: resize, crop, grayscale ⇒ a few minutes with sufficient HW

See also: PhotoProof by Naveh & Tromer (2016)

Why are all these applications possible now?

The breakthrough: new fast SNARK provers

- Proof generation time is linear (or quasilinear) in computation size
- Many beautiful ideas ... will cover in lectures

a large bibliography: a16zcrypto.com/zero-knowledge-canon

Next segment:

What is a SNARK?

What is a SNARK?

Review: arithmetic circuits

Fix a finite field $\mathbb{F} = \{0, ..., p-1\}$ for some prime p>2.

Arithmetic circuit: $C: \mathbb{F}^n \rightarrow \mathbb{F}$

- directed acyclic graph (DAG) where internal nodes are labeled +, -, or × inputs are labeled 1, x₁, ..., x_n
- defines an n-variate polynomial with an evaluation recipe

|C| = # gates in C

Interesting arithmetic circuits

Examples:

• $C_{SHA}(h, m)$: outputs 0 if SHA256(m) = h, and \neq 0 otherwise $C_{hSHA}(h, m) = (h - SHA256(m))$, $|C_{SHA}| \approx 20K$ gates

 C_{sig}(pk, m, σ): outputs 0 if σ is a valid ECDSA signature on m with respect to pk

Structured vs. unstructured circuits

An **<u>unstructured circuit</u>**: a circuit with arbitrary wires

A structured circuit:

M is often called a virtual machine (VM) -- one step of a processor

Some SNARK techniques only apply to structured circuits

(preprocessing) NARK: Non-interactive ARgument of Knowledge

A preprocessing NARK is a triple (S, P, V):

- $S(C) \rightarrow$ public parameters (pp, vp) for prover and verifier
- $P(pp, x, w) \rightarrow proof \pi$
- $V(vp, x, \pi) \rightarrow \text{accept or reject}$

all algs. and adversary have access to a random oracle

NARK: requirements (informal)

Complete: $\forall x, w: C(x, w) = 0 \Rightarrow \Pr[V(vp, x, P(pp, x, w)) = \operatorname{accept}] = 1$

Adaptively **knowledge sound**: V accepts \Rightarrow P "knows" **w** s.t. $C(\mathbf{x}, \mathbf{w}) = 0$ (an extractor *E* can extract a valid **w** from P)

Optional: Zero knowledge: (C, pp, vp, x, π) "reveal nothing new" about w

SNARK: a <u>Succinct</u> ARgument of Knowledge

A <u>succinct</u> preprocessing NARK is a triple (S, P, V):

• $S(C) \rightarrow$ public parameters (pp, vp) for prover and verifier

• $P(pp, x, w) \rightarrow \underline{short} proof \pi$;

$$len(\pi) = sublinear(|w|)$$

• $V(vp, x, \pi)$ fast to verify ; time(V) = $O_{\lambda}(|x|, \text{sublinear}(|C|))$

example sublinear function: $f(n) = \sqrt{n}$

SNARK: a <u>Succinct</u> ARgument of Knowledge

A strongly succinct preprocessing NARK is a triple (S, P, V):

• $S(C) \rightarrow$ public parameters (pp, vp) for prover and verifier

• $P(pp, x, w) \rightarrow \underline{short} \operatorname{proof} \pi$;

$$\operatorname{len}(\pi) = O_{\lambda}(\log(|\boldsymbol{C}|))$$

•
$$V(vp, x, \pi)$$
 fast to verify ;
short "summary" of circuit $time(V) = O_{\lambda}(|x|, log(|C|))$

SNARK: a <u>Succinct</u> ARgument of Knowledge

SNARK: a NARC (complete and knowledge sound) that is **<u>succinct</u>**

zk-SNARK: a SNARK that is also zero knowledge

The trivial SNARK is not a SNARK

- (a) Prover sends w to verifier,
- (b) Verifier checks if C(x, w) = 0 and accepts if so.

Problems with this:

- (1) w might be long: we want a "short" proof
- (2) computing C(x, w) may be hard: we want a "fast" verifier

(3) w might be secret: prover might not want to reveal w to verifier

Types of preprocessing Setup

Setup for circuit C: $S(C;r) \rightarrow$ public parameters (pp, vp)<u>Types of setup</u>: random bits

trusted setup per circuit: S(C; r) random r must be kept secret from prover prover learns $r \Rightarrow$ can prove false statements

trusted but universal (updatable) setup: secret r is independent of C

$$\boldsymbol{S} = (S_{init}, S_{index})$$
:

better

$$S_{init}(\lambda;r) \rightarrow gp,$$

$$S_{index}(gp, C) \rightarrow (pp, vp)$$

one-time setup, secret r

deterministic algorithm

transparent setup: **S**(*C*) does not use secret data (no trusted setup)

Significant progress in recent years (partial list)

	verifier time	setup	post-quantu m?
Groth'16		trusted per circuit	no
Plonk / Marlin		universal trusted setup	no

Significant progress in recent years (partial list)

	verifier time	setup	post-quantu m?
Groth'16	(for a circuit with ≈2 ²⁰ gates)		no
Plonk / Marlin		universal trusted setup	no
Bulletproofs		transparent	no
STARK :		transparent	yes

Significant progress in recent years (partial list)

How to define "knowledge soundness"?

Definitions: knowledge soundness

Goal: if V accepts then P "knows" w s.t. C(x, w) = 0

What does it mean to "know" w??

informal def: P knows w, if w can be "extracted" from P

Definitions: knowledge soundness

Formally: (S, P, V) is (adaptively) **knowledge sound** for a circuit C if for every poly. time adversary $A = (A_0, A_1)$ such that $gp \leftarrow S_{\text{init}}(), \quad (C, x, \text{st}) \leftarrow A_0(gp), \quad (pp, vp) \leftarrow S_{\text{index}}(C), \quad \pi \leftarrow A_1(pp, x, \text{st}):$ $\Pr[V(\nu p, x, \pi) = \operatorname{accept}] > 1/10^6$ (non-negligible) there is an efficient **extractor** E (that uses A) s.t. $gp \leftarrow S_{\text{init}}(), \quad (C, x, \text{st}) \leftarrow A_0(gp), \quad w \leftarrow E(gp, C, x):$

 $\Pr[C(x, w) = 0] > 1/10^{6} - \epsilon \quad (\text{for a negligible } \epsilon)$

Zero knowledge

Where is Waldo?

Defining Zero knowledge

See previous lecture

Building an efficient SNARK

- A (preprocessing) SNARK is a triple (S, P, V):
- $S(C) \rightarrow$ public parameters (pp, vp) for prover and verifier
- $P(pp, x, w) \rightarrow proof \pi$
- $V(vp, x, \pi) \rightarrow \text{accept or reject}$

proof size is $O_{\lambda}(\log(|C|))$ verifier time is $O_{\lambda}(|x|, \log(|C|))$

General paradigm: two steps

Review: commitments

Two algorithms:

- $commit(m, r) \rightarrow com$ (r chosen at random)
- *verify*(m, *com*, r) \rightarrow accept or reject

Properties: (informal)

- binding: cannot produce com and two valid openings for com
- hiding: com reveals nothing about committed data

A standard construction

Fix a hash function $H: \mathcal{M} \times \mathcal{R} \to T$

 $commit(m,r): com \coloneqq H(m,r)$ verify(m, com, r): accept if com = H(m,r)

Hiding and Binding for a suitable function H

Committing to a function

Committing to a function: syntax

A functional commitment scheme for \mathcal{F} :

- <u>setup(1^{λ}) \rightarrow gp, outputs public parameters gp</u>
- <u>commit(gp</u>, f, r) \rightarrow **com**_f commitment to $f \in \mathcal{F}$ with $r \in \mathcal{R}$ a **binding** (and optionally **hiding**) commitment scheme for \mathcal{F}

• <u>eval(Prover P, verifier V)</u>: for a given **com**_f and $x \in X$, $y \in Y$:

 $P(gp, f, x, y, r) \rightarrow \text{short proof } \pi$

 $V(gp, com_f, x, y, \pi) \rightarrow accept/reject$

a (zk)SNARK for the relation:

f(x) = y and $f \in \mathcal{F}$ and $commit(gp, f, r) = com_f$

Four important functional commitments

Polynomial commitments: commit to a <u>univariate</u> f(X) in $\mathbb{F}_p^{(\leq d)}[X]$

Multilinear commitments: commit to multilinear f in $\mathbb{F}_p^{(\leq 1)}[X_1, ..., X_k]$ e.g., $f(x_1, ..., x_k) = x_1x_3 + x_1x_4x_5 + x_7$

Vector commitments (e.g., Merkle trees):

• Commit to $\vec{u} = (u_1, ..., u_d) \in \mathbb{F}_p^d$. Open cells: $f_{\vec{u}}(i) = u_i$

Inner product commitments (inner product arguments – IPA): • Commit to $\vec{u} \in \mathbb{F}_p^d$. Open an inner product: $f_{\vec{u}}(\vec{v}) = (\vec{u}, \vec{v})$

Let's look at polynomial commitments

Prover commits to a polynomial f(X) in $\mathbb{F}_p^{(\leq d)}[X]$

• *eval*: for public $u, v \in \mathbb{F}_p$, prover can convince the verifier that committed poly satisfies

$$f(u) = v$$
 and $\deg(f) \le d$.

verifier has (d, com_f, u, v)

• Eval proof size and verifier time should be $O_{\lambda}(\log d)$

Let's look at polynomial commitments

We will see several constructions in the coming lectures

A few examples:

- Using bilinear groups: KZG'10 (trusted setup), Dory'20, ...
- Using hash functions only: based on FRI (long eval proofs)
- Using elliptic curves: Bulletproofs (short proof, but verifier time is O(d))
- Using groups of unknown order: Dark'20

The trivial commitment scheme is not a polynomial commitment

• commit(
$$f = \sum_{i=0}^{d} a_i X^i, r$$
): output $\operatorname{com}_f \leftarrow H((a_0, \dots, a_d), r)$

• eval: prover sends $\pi = ((a_0, ..., a_d), r)$ to verifier; verifier accepts if f(u) = v and $H((a_0, ..., a_d), r) = com_f$

The problem: the proof π is not succinct.

Proof size and verification time are <u>linear</u> in d

A useful observation

 \Rightarrow for $r \leftarrow \mathbb{F}_p$: if f(r) = 0 then f is identically zero w.h.p

\Rightarrow a simple zero test for a committed polynomial

SZDL lemma: (*) also holds for **multivariate** polynomials (where d is total degree of f)

A useful observation

Suppose
$$p \approx 2^{256}$$
 and $d \leq 2^{40}$ so that d/p is negligible
Let $f, g \in \mathbb{F}_p^{(\leq d)}[X]$.
For $r \stackrel{\leq}{\leftarrow} \mathbb{F}_p$, if $f(r) = g(r)$ then $f = g$ w.h.p
 $f(r) - g(r) = 0 \Rightarrow f - g = 0$ w.h.p

⇒ a simple equality test for two committed polynomials

Let's look at the equality test protocol

Making it a SNARK (non-interactive)

The Fiat-Shamir transform:

public-coin interactive protocol ⇒ non-interactive protocol
 [public coin: all verifier randomness is public]

A SNARK for polynomial equality testing

The Fiat-Shamir transform: $H: M \rightarrow R$ a cryptographic hash function

idea: prover generates verifier's random bits on its own using H

A SNARK for polynomial equality testing

The Fiat-Shamir transform: $H: M \rightarrow R$ a cryptographic hash function

Thm: this is a SNARK if (i) d/p is negligible (where f, g ∈ F^(≤d)_p[X]), and
 (ii) H is modeled as a random oracle.

Back to the paradigm

Component 2: $\mathcal{F} - IOP$

<u>Goal</u>: boost functional commitment ⇒ SNARK for general circuits

Component 2: $\mathcal{F} - IOP$

Let C(x, w) be some arithmetic circuit. Let $x \in \mathbb{F}_p^n$.

<u> \mathcal{F} -IOP</u>: a proof system that proves $\exists w: C(x, w) = 0$ as follows:

$$\mathcal{F}$$
 – IOP: proving that $C(x,w) = 0$

Properties

• **Complete**: if $\exists w : C(x, w) = 0$ then $\Pr[\text{verifier accepts}] = 1$

- (Unconditional) knowledge sound (as an IOP)
 [extractor is given (x, f₁, r₁, ..., r_{t-1}, f_t) and outputs w]
- Optional: zero knowledge (for a zk-SNARK)

An example Poly-IOP (a bit contrived)

Extractor(X, f, q, r): output witness W by computing all roots of f(Z)

The IOP ZOO (⇒ SNARKs for general circuits)

SNARKs in practice

END OF LECTURE

Coming up: (i) SNARK DSLs (ii) an efficient multilinear IOP

Credit: Faithie/Shutterstock