Lecture 11: From Practice to Theory

SURE, IT
BUT DOES IT :
WORK IN THEORY Guest Lecturer: Alex Lombardi
w111 SIMONS
Yo aan INSTITUTE

Zero Knowledge Proofs

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

GEORGETOWN_, T | TEXAS AsM

‘ Berkeley UNIVERSITY

UNIVERSITY OF CALIFORNIA

[} Stanford

University

. . . secure multiparty
Authentication Blockchains and cryptocurrencies computation

zkSNARKs

zero-knowledge Succinct Non-interactive
ARguments of Knowledge

i :
Digital Signature Algorithm H it A\

A, (s P rJH e B
| (e %i!llﬂlﬂﬂ.lF Ut Rt
Cryptographic Proofs B '/{,{%’ —

o . -m.-w_n'n‘lmmmm - 4

ST
>
(IVTNTTCITT
|

[

BERERE 1L i
g e

ZKP MOOC

What does theoretical research
on proof systems look like?

3 ZKP MOOC
Credit: Faithie/Shutterstock

Theoretical Research on Cryptographic Proofs

Feasibility (do they exist in principle?)

" SNAR(G/K)s, other protocols (ZK, WI, WH, etc.)
" Strong attack models (Concurrent? Quantum?)

4 ZKP MOOC

Theoretical Research on Cryptographic Proofs

Feasibility (do they exist in principle?)

" SNAR(G/K)s, other protocols (ZK, WI, WH, etc.)
" Strong attack models (Concurrent? Quantum?)

Minimize Assumptions (to the extent possible)

" Trusted setup (CRS/URS/plain model)
" Security reduction based on simple, well-studied, falsifiable assumptions.

5 ZKP MOOC

Theoretical Research on Cryptographic Proofs

Feasibility (do they exist in principle?)

" SNAR(G/K)s, other protocols (ZK, WI, WH, etc.)
" Strong attack models (Concurrent? Quantum?)

Minimize Assumptions (to the extent possible)

" Trusted setup (CRS/URS/plain model)
" Security reduction based on simple, well-studied, falsifiable assumptions.

Improve efficiency

= Amount of communication, number of rounds
" Prover/verifier efficiency

6 ZKP MOOC

Theoretical Research on Cryptographic Proofs

Feasibility (do they exist in principle?)

" SNAR(G/K)s, other protocols (ZK, WI, WH, etc.) . .
" Strong attack models (Concurrent? Quantum?) +Ap pl |Cat|0 ns

Minimize Assumptions (to the extent possible)

" Trusted setup (CRS/URS/plain model)
" Security reduction based on simple, well-studied, falsifiable assumptions.

Improve efficiency

= Amount of communication, number of rounds
" Prover/verifier efficiency

7 ZKP MOOC

Example: Interactive ZK

@)
o
o}
=
Q.
~
N

Interactive Zero-Knowledge Protocols

= No trusted setup allowed.
= Security against Malicious verifier hard to guarantee.

9 ZKP MOOC

Interactive Zero-Knowledge Protocols

= No trusted setup allowed.
= Security against Malicious verifier hard to guarantee.

= Lecture 1: ZK for NP [GMW86] with inverse poly
soundness error. How do we reduce the error?

ZKP MOOC

Interactive Zero-Knowledge Protocols

= No trusted setup allowed.
= Security against Malicious verifier hard to guarantee.

= Lecture 1: ZK for NP [GMW86] with inverse poly
soundness error. How do we reduce the error?

= Sequential repetition works (but very inefficient).

= Parallel repetition reduces soundness error but *may not*
preserve ZK! Let’s see why:

ZKP MOOC

Zero Knowledge Proofs for NP

Claim: This graph has a 3-coloring. @
f c
a b
Np <, %
(o

f

e d

ZKP MOOC

Zero Knowledge Proofs for NP

1) Randomize colors >§ 2

0O 1 2

ZKP MOOC

Zero Knowledge Proofs for NP

1) Randomize colors >§<‘ R
>PLDAPA AP

2) Commit 0 1 2

ZKP MOOC

Zero Knowledge Proofs for NP

1) Randomize colors >§<‘ R
>PLDAPA AP

, 0 1 2
2) Commit
d, f) 1) Sample a challenge edge.

ZKP MOOC

Zero Knowledge Proofs for NP

d, f) 1) Sample a challenge edge.

3) Reveal edge colors 2) Accept if colors are different.

2) Commit

ZKP MOOC

Zero Knowledge Proofs for NP

a b
ZK Simulator: guess Verifier’s f c
challenge in advance, and rewind V*
if the guess was wrong.) ‘
1) Guess (x,y) . e R e O\
2) Pick two random bits B%MMM%:
3) Commit &'y If (x,y) = (x',y")

ZKP MOOC

Zero Knowledge Proofs for NP

P v
babxiabiabin babatabzix Ebatababxiz
(d.f) _ (b _ ®o

If there are t repetitions, over 2¢ possible challenges to guess from!

Would take exponential time.

ZKP MOOC

Zero Knowledge Proofs for NP

P v
babxiabiabin babatabzix Ebatababxiz
(d.f) _ (b _ ®o

In fact, it turns out that this protocol really shouldn’t be ZK!

[DNRS99]: If you can do Fiat-Shamir for II, then IT wasn’t malicious-verifier ZK.

ZKP MOOC

Interactive Zero-Knowledge Protocols

= No trusted setup allowed.
= Security against Malicious verifier hard to guarantee.

= Many lines of research devoted to understanding the
feasibility of interactive ZK.

ZKP MOOC

Interactive Zero-Knowledge Protocols

= No trusted setup allowed.
= Security against Malicious verifier hard to guarantee.

= Many lines of research devoted to understanding the

feasibility of interactive ZK.
* How many communication rounds? [BKP18] suggests that
you can doitin 3.
" How efficient can you make the prover? [IKOS07, ...]
= Stronger forms of security: quantum attacks, concurrency

ZKP MOOC

Main Topics:
Fiat-Shamir and SNARGs

22 ZKP MOOC
Credit: Faithie/Shutterstock

Succinct Non-Interactive Arguments (SNARGS)

X, CI's

|4

v

P(w)

* Completeness: if x € L, VV accepts honest P with probability 1 — negl
* Computational Soundness: if x & L, for all efficient P*, V rejects w.p. 1 — negl

* Succinctness: proof has length poly(4,log(|x| + |w|)) and verification is fast.

ZKP MOOC

Succinct Non-Interactive Arguments (SNARGS)

X, CI's

|4

v

P(w)

* Completeness: if x € L, VV accepts honest P with probability 1 — negl
* Computational Soundness: if x & L, for all efficient P*, V rejects w.p. 1 — negl

* Succinctness: proof has length poly(4,log(|x| + |w|)) and verification is fast.

This class so far: constructions of SNARGs using IOPs and a random oracle.

ZKP MOOC

The Fiat-Shamir Transform

Powerful, general proposal for removing interaction.

Interactive Non-Interactive
' Hash Function h
P a R V P ;I
¢ £ Compute @By >
LA— B = h(a)

If h is modeled as a random oracle, securely compiles any constant-round public coin protocol.

ZKP MOOC

The Fiat-Shamir Transform

What does that mean?

If h is modeled as a random oracle, securely compiles any constant-round public coin protocol.

ZKP MOOC

The Random Oracle Model [BR93]

Assumption about the structure of an attack on a hash function h:

“The best you can do is treat h as a black box in your attack.”

__——h()
—
P* T V

Under such an assumption, i(-) can be thought of as a random function.

ZKP MOOC

Fiat-Shamir in the ROM

Claim: Fiat-Shamir for constant-round protocols is secure in the ROM
Proof (3 message case):

__——h()
—
P* a, B,y 74

»
»

a must come from one
of the oracle queries

ZKP MOOC

Fiat-Shamir in the ROM

Claim: Fiat-Shamir for constant-round protocols is secure in the ROM
Proof (3 message case):

Q — 1 queries
_——— h() h(:
P a, B,y V P* a (ith query): V
" Sample i « [Q]) B

(number of queries) %
a must come from one

of the oracle queries

ZKP MOOC

Fiat-Shamir in the ROM

Claim: Fiat-Shamir for constant-round protocols is secure in the ROM

Proof (3 message case):

N Y
—

v

a must come from one
of the oracle queries

Q — 1 queries
_——— h(
» I
V P* a (ith query)
Sample i « [Q]) B
(number of queries) 1%

1/Q security loss

vV

ZKP MOOC

The Random Oracle Model [BR93]

Assumption about the structure of an attack on a hash function h:

“The best you can do is treat h as a black box in your attack.”

__——h()
—
P* T V

Under such an assumption, i(-) can be thought of as a random function.

ZKP MOOC

The Random Oracle Model [BR93]

Assumption about the structure of an attack on a hash function h:

“The best you can do is treat h as a black box in your attack.”

__——h()
—
P* T V

In practice, h(-) is instantiated with (e.g.) SHA256, possibly salted.

ZKP MOOC

The Random Oracle Model [BR93]

Assumption about the structure of an attack on a hash function h:

“The best you can do is treat h as a black box in your attack.”

__——h()
—
P* T V

No matter what, h(+) is instantiated with a public efficient algorithm.

ZKP MOOC

Obvious (theoretical) problem:

Public efficient algorithms can’t
compute random functions

34 ZKP MOOC
Credit: Faithie/Shutterstock

Next: example of an uninstantiable
random oracle property [CGH98]

L]
35 ZKP MOOC
Credit: Faithie/Shutterstock

Random Oracles Do Not Exist

Fix a function f: {0,1}* - {0,1}4

We say that a hash function h is Correlation Intractable (Cl)
for f if itis hard to find x such that h(x) = f(x)

V PPT 4,
Pr [h(x) = f(x)] = negl

h<—H
x—A(h)

ZKP MOOC

Random Oracles Do Not Exist

For any fixed f, a RO is Cl for f.

Why? Each query x to the RO produces a random output
y, which is equal to f(x) with probability 274,

ZKP MOOC

Random Oracles Do Not Exist

Claim [CGH98]: 3f such that for any (efficient) hash
family H, H fails to be Cl for !

ZKP MOOC

Random Oracles Do Not Exist

Claim [CGH98]: 3f such that for any (efficient) hash
family H, H fails to be Cl for !

f(x): interpret x as a program P and output P(x).

ZKP MOOC

Random Oracles Do Not Exist

Claim [CGH98]: 3f such that for any (efficient) hash
family H, H fails to be Cl for !

f(x): interpret x as a program P and output P(x).

Given h « H, attack sets x = (h) to be a description of h. Then,

f(x) = P(x) = P((h)) = h({h)) = h(x).

ZKP MOOC

Random Oracles Do Not Exist

Is this a reasonable counterexample?

= Hash function/random oracle must be able to hash inputs
of arbitrary length. Cl with bounded inputs might exist!

ZKP MOOC

Random Oracles Do Not Exist

Is this a reasonable counterexample?

= Hash function/random oracle must be able to hash inputs
of arbitrary length. Cl with bounded inputs might exist!

= [Barak01,GKO03] apply to fixed-input length hash functions.

ZKP MOOC

Random Oracles Do Not Exist

Is this a reasonable counterexample?
= Hash function/random oracle must be able to hash inputs
of arbitrary length. Cl with bounded inputs might exist!

= [Barak01,GKO03] apply to fixed-input length hash functions.

Theorem [Barak ‘01, Goldwasser-Kalai ‘03]: 3 interactive
protocol I1 such that [Igg is ROM-secure but insecure for
any efficiently computable H (e.g. SHA-3).

ZKP MOOC

Random Oracles Do Not Exist

Is this a reasonable counterexample?

= Hash function/random oracle must be able to hash inputs
of arbitrary length. Cl with bounded inputs might exist!

= [Barak01,GKO03] apply to fixed-input length hash functions.

= Security property broken by running the hash function on
its own description. Is this practically relevant?

ZKP MOOC

Random Oracles Do Not Exist

Is this a reasonable counterexample?
= Hash function/random oracle must be able to hash inputs
of arbitrary length. Cl with bounded inputs might exist!

= [Barak01,GKO03] apply to fixed-input length hash functions.
= Security property broken by running the hash function on

its own description. Is this practically relevant?
= Recursive SNARKs do something of this flavor.

ZKP MOOC

Random Oracles Do Not Exist

Is this a reasonable counterexample?

= Hash function/random oracle must be able to hash inputs
of arbitrary length. Cl with bounded inputs might exist!

= [Barak01,GKO03] apply to fixed-input length hash functions.

= Does NOT imply RO-based SNARKSs are broken in practice.

= But it does imply a lack of theoretical understanding.

ZKP MOOC

What can we do without
random oracles?

47 ZKP MOOC
Credit: Faithie/Shutterstock

Falsifiable Assumptions

Prove security assuming that some concrete algorithmic task is
infeasible:

= Computing discrete logarithms is hard.
= Solving random noisy linear equations (LWE) is hard.

= SHA256 is collision-resistant.

ZKP MOOC

Falsifiable Assumptions

Many cryptographic constructions use random oracles to get
better efficiency, but can be based on falsifiable assumptions.

= CCA-secure public key encryption.
= |dentity-based encryption.

= Non-interactive zero knowledge.

ZKP MOOC

Falsifiable Assumptions

Can (ZK-)SNARKs for NP be built based on falsifiable assumptions?
= (minor caveats but) No!

= No way to extract a long witness from a short proof. Need
assumption (RO, “knowledge assumption”) that guarantees
adversary “knows” a long string given a short commitment.

ZKP MOOC

Falsifiable Assumptions
Can (ZK-)SNARGs for NP be built based on falsifiable assumptions?

* |t's complicated. (We don’t know)
= Significant barriers [Gentry-Wichs ‘11]

= The community is still trying to understand this.

ZKP MOOC

Rest of today: SNARGs for
limited computations from
falsifiable assumptions (LWE)

52 ZKP MOOC
Credit: Faithie/Shutterstock

Two tools/techniques

= Correlation-intractable hash functions (ccrirrwis,psis HLR21]

= Used to instantiate Fiat-Shamir without random oracles, for
“nice enough” interactive protocols.

= Somewhere extractable commitments [HW15]

= Used to make a “nice enough” interactive protocol
= Special variant of the typical IOP-based approach.

ZKP MOOC

Correlation Intractability

A hash family H is Cl for f if V PPT A,

Pr[A(0) = f(x)] = negl
x—A(h)

ZKP MOOC

Correlation Intractability

A hash family H is Cl for binary relation R if V PPT A,

h(P_r}{ [(x,h(x)) € R] = negl

x—A(h)

ZKP MOOC

Correlation Intractability

A hash family H is Cl for f if V PPT A,
Pr [h() = f(0)] = negl
x—A(h)

* Weren’t these impossible to build?
= Restrict to fixed input length (necessary)
= Restrict to fixed running time on f (unclear if necessary)

ZKP MOOC

Cl Construction

Here’s a simple construction [CLW18] using Fully
Homomorphic Encryption (FHE)

B
x Eval pec)

pk

Enc

ZKP MOOC

Cl Construction

(h) = (pk, Encliil])

Real hash key: g = 0 (or a uniform random string — nobody can tell)

h(x) = Eval(x, Enc.) = Enc-

Key point: g is hidden to everyone! We consider different g to prove security.

ZKP MOOC

Security Analysis

Suppose an attacker, given (h), finds x such that h(x) = f(x).

Key idea: let g*(x) = Dec(f(x)) + 1. We know that Enc(g) ~ Enc(g*) if
the encryption scheme is (circular-)secure.

h(x) = Eval(x, Enc-) = Enc(-)

Dec(f(x)) = Dec(h(x)) =g"(x) = Dec(f(x)) + 1. Impossible!

ZKP MOOC

Correlation Intractability: what we know

H is Cl for R if V PPT 4, Pr |(x, h(x)) € R| = negl

x<A(h)

= Constructions for efficiently computable functions:

" From LWE ([CLW18,PS19,LV22])
= From DDH (JJ21)

= Construction [HLR21] for (efficient) relations with “product structure”

ZKP MOOC

How do we use Cl to instantiate
Fiat-Shamir?

L]
61 ZKP MOOC
Credit: Faithie/Shutterstock

Avoid the “Bad Challenges”

Hash Function h
P « vy * P ;I %

p Compute apB,y
y B = h(a)

Def: Given false claim x and a first message «, a challenge [is “bad” if
there exists a prover message ¥ making I/ accept.

We want to say: if the (3 message) interactive protocol is sound, then (for
all x, @) most B are not bad. True for statistically sound IPs.

ZKP MOOC

Avoid the “Bad Challenges”

Hash Function h
P « vy * P ;I %

p Compute apB,y
y B = h(a)

Exactly what Cl is good for! Define relation R, = {(a, 8):f is bad}. Then if h
is Cl for R,, (when x &€ L), [Igg is sound using h!

Protocols with more than 3 messages: round-by-round soundness (each
round has a type of “bad challenge” to avoid).

ZKP MOOC

Avoid the “Bad Challenges”

Hash Function h
% * P ;I %

P a
p Compute apB,y
y B = h(a)

Main challenges:

1) Sometimes our IP doesn’t have statistical soundness.

2) We can only build Cl for relations R that can be decided efficiently.

ZKP MOOC

Important example:
SNARGsSs via IOPs (PCPs)

65 ZKP MOOC
Credit: Faithie/Shutterstock

SNARGs from PCPs [Kilian, Micali]

P(x,w) V(x)
Compute (long) proof Com(m) ‘
string 7 from (x, w) 1 (describes location set S) ' r « {0,1}
: Open g

Verify opening, check
consistency of mg

Candidate SNARG: apply Fiat-Shamir to this protocol!

Simplified (less efficient) version of modern SNARKs you’ve learned about.

ZKP MOOC

SNARGs from PCPs [Kilian, Micali]

P(x,w) V(x)
Compute (long) proof Com(m) ‘
string ™ from (x, w) _ . i
r (describes location set S) r « {0,1}
‘ Open g

Verify opening, check
consistency of mg

Not statistically sound, so it’s not clear
how to analyze FS without random oracles.

ZKP MOOC

SNARGs for Batch NP

P(xq, e, X, W1, wer, Wi) V(xq,) Xg)

* Completeness: if x; € L forall i, V accepts honest P
« Computational Soundness: if x; € L for some i, for all efficient P*, V rejects.

* Succinctness: proof has length poly(4, |w/|,log k)

Surprisingly powerful (implies SNARGs for P, etc.)

ZKP MOOC

Interactive Batch Arguments from PCPs [CJJ21]

P(xq, e, X, W1, wer, Wi) V(xq,) Xg)

Com(m, ...,)

r (describes location set S) r « {0,1}

Open 1y, .. T, Verify opening, check

consistency of mg

ZKP MOOC

Interactive Batch Arguments from PCPs [CJJ21]

P(xq, e, X, W1, wer, Wi) V(xq,) Xg)

Com(rmq, ...,)

r (describes location set S) r « {0,1}

Open 1y, .. T, Verify opening, check

consistency of mg

Choose Com to be statistically binding on one out of k proofs (1)

If x; is false, protocol is now statistically sound! (7, is fixed)

ZKP MOOC

SSB Commitments

k,=H(h, h,)

ZKP MOOC

SSB Commitments

H = H; (binding k,=H(h,, h.) (secretly
on 3 |ocation) encodes V)

h,=H(m,, m,) h,=H(m;, m,)
m,=H(M, Y) m,=H(V, E) m;=H(C, T) m,=H(O, R)

ZKP MOOC

SSB Commitments

H = H; (binding k,=H(h,, h.) (secretly
on 3 |ocation) encodes V)

—

h=H(my, M) | g, ~. H, ~, ..~ H, |h=H(mym,)

m,=H(M, Y) m,=H(V, E) m;=H(C, T) m,=H(O, R)

ZKP MOOC

Interactive Batch Arguments from PCPs [CJJ21]

P(xq, e, X, W1, wer, Wi) V(xq,) Xg)

Com(rmq, ...,)

r (describes location set S) r « {0,1}

Open 1y, .. T, Verify opening, check

consistency of mg

Choose Com to be statistically binding on one out of k proofs (1)

If x; is false, protocol is now statistically sound! (m; is fixed)

ZKP MOOC

Interactive Batch Arguments from PCPs [CJJ21]

P(xq, e, X, W1, wer, Wi) V(xq,) Xg)

Com(mq, ...,)

r (describes location set S) r « {0,1}

Open 1y, .. T, Verify opening, check

consistency of mg

Choose Com to be statistically binding on one out of k proofs (1;,)

If x; is false, protocol is now statistically sound! (m}, is fixed)

ZKP MOOC

Batch Arguments from PCPs [CJJ21]

P(xq, e, X, W1, wer, Wi) V(xq,) Xg)

Com(my, ..., Ty)

r (describes location set S) r « {0,1}

Open 1y, .. T, Verify opening, check

consistency of mg

With some work, can use Cl hash functions to compile this protocol.

Succinctness: |[wW| - A + k - A, but can be reduced to |w| - A by recursing.

ZKP MOOC

Summary of Fiat-Shamir without RO

= Use hash functions that are Cl for appropriate
functions/relations
= [CCHLRRW19,PS19,BKM20,JJ21,HLR21]

= Carefully show that FS-soundness for protocols of
interest follows from compatible forms of Cl

= [CCHLRRW19]: (non-succinct) NIZK
= [JKKZ21]: non-interactive sumcheck protocol
= [CJJ21]: batch NP arguments

ZKP MOOC

Summary of Fiat-Shamir without RO

Open problems:

= Characterize which protocols can be FS-compiled (we
know it doesn’t work in general [Bar01, GKO03])

= SNARGs for NP from falsifiable assumptions?

ZKP MOOC

@)
o
o}
=
Q.
~
N

79

END OF LECTURE

