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What does theoretical research
on proof systems look like?
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Theoretical Research on Cryptographic Proofs

Feasibility (do they exist in principle?)

"  SNAR(G/K)s, other protocols (ZK, WI, WH, etc.)
"  Strong attack models (Concurrent? Quantum?)
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Theoretical Research on Cryptographic Proofs

Feasibility (do they exist in principle?)

"  SNAR(G/K)s, other protocols (ZK, WI, WH, etc.)
"  Strong attack models (Concurrent? Quantum?)

Minimize Assumptions (to the extent possible)

" Trusted setup (CRS/URS/plain model)
" Security reduction based on simple, well-studied, falsifiable assumptions.
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Theoretical Research on Cryptographic Proofs

Feasibility (do they exist in principle?)

"  SNAR(G/K)s, other protocols (ZK, WI, WH, etc.)
"  Strong attack models (Concurrent? Quantum?)

Minimize Assumptions (to the extent possible)

" Trusted setup (CRS/URS/plain model)
" Security reduction based on simple, well-studied, falsifiable assumptions.

Improve efficiency

=  Amount of communication, number of rounds
"  Prover/verifier efficiency
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Theoretical Research on Cryptographic Proofs

Feasibility (do they exist in principle?)

"  SNAR(G/K)s, other protocols (ZK, WI, WH, etc.) . .
"  Strong attack models (Concurrent? Quantum?) +Ap pl |Cat|0 ns

Minimize Assumptions (to the extent possible)

" Trusted setup (CRS/URS/plain model)
" Security reduction based on simple, well-studied, falsifiable assumptions.

Improve efficiency

=  Amount of communication, number of rounds
"  Prover/verifier efficiency
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Example: Interactive ZK
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Interactive Zero-Knowledge Protocols

= No trusted setup allowed.
= Security against Malicious verifier hard to guarantee.
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Interactive Zero-Knowledge Protocols

= No trusted setup allowed.
= Security against Malicious verifier hard to guarantee.

= Lecture 1: ZK for NP [GMW86] with inverse poly
soundness error. How do we reduce the error?
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Interactive Zero-Knowledge Protocols

= No trusted setup allowed.
= Security against Malicious verifier hard to guarantee.

= Lecture 1: ZK for NP [GMW86] with inverse poly
soundness error. How do we reduce the error?

= Sequential repetition works (but very inefficient).

= Parallel repetition reduces soundness error but *may not*
preserve ZK! Let’s see why:
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Zero Knowledge Proofs for NP

Claim: This graph has a 3-coloring. @
f c
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Zero Knowledge Proofs for NP

1) Randomize colors >§ 2

0O 1 2
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Zero Knowledge Proofs for NP

1) Randomize colors >§<‘ R
>PLDAPA AP

2) Commit 0 1 2
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Zero Knowledge Proofs for NP

1) Randomize colors >§<‘ R
>PLDAPA AP

, 0 1 2
2) Commit
d, f) 1) Sample a challenge edge.
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Zero Knowledge Proofs for NP

d, f) 1) Sample a challenge edge.

3) Reveal edge colors 2) Accept if colors are different.

2) Commit
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Zero Knowledge Proofs for NP

a b
ZK Simulator: guess Verifier’s f c
challenge in advance, and rewind V*
if the guess was wrong. ) ‘
1) Guess (x,y) . e R e O\
2) Pick two random bits B%MMM%:
3) Commit &'y If (x,y) = (x',y")
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Zero Knowledge Proofs for NP

P v
babxiabiabin babatabzix Ebatababxiz
(d.f) _ (b _ ®o

If there are t repetitions, over 2¢ possible challenges to guess from!

Would take exponential time.
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Zero Knowledge Proofs for NP

P v
babxiabiabin babatabzix Ebatababxiz
(d.f) _ (b _ ®o

In fact, it turns out that this protocol really shouldn’t be ZK!

[DNRS99]: If you can do Fiat-Shamir for II, then IT wasn’t malicious-verifier ZK.
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Interactive Zero-Knowledge Protocols

= No trusted setup allowed.
= Security against Malicious verifier hard to guarantee.

= Many lines of research devoted to understanding the
feasibility of interactive ZK.
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Interactive Zero-Knowledge Protocols

= No trusted setup allowed.
= Security against Malicious verifier hard to guarantee.

= Many lines of research devoted to understanding the

feasibility of interactive ZK.
* How many communication rounds? [BKP18] suggests that
you can doitin 3.
" How efficient can you make the prover? [IKOS07, ...]
= Stronger forms of security: quantum attacks, concurrency
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Main Topics:
Fiat-Shamir and SNARGs
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Succinct Non-Interactive Arguments (SNARGS)

X, CI's

|4

v

P(w)

* Completeness: if x € L, VV accepts honest P with probability 1 — negl
* Computational Soundness: if x & L, for all efficient P*, V rejects w.p. 1 — negl

* Succinctness: proof has length poly(4,log(|x| + |w|)) and verification is fast.
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Succinct Non-Interactive Arguments (SNARGS)

X, CI's

|4

v

P(w)

* Completeness: if x € L, VV accepts honest P with probability 1 — negl
* Computational Soundness: if x & L, for all efficient P*, V rejects w.p. 1 — negl

* Succinctness: proof has length poly(4,log(|x| + |w|)) and verification is fast.

This class so far: constructions of SNARGs using IOPs and a random oracle.
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The Fiat-Shamir Transform

Powerful, general proposal for removing interaction.

Interactive Non-Interactive
' Hash Function h
P a R V P ;I
¢ £ Compute @By >
LA— B = h(a)

If h is modeled as a random oracle, securely compiles any constant-round public coin protocol.
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The Fiat-Shamir Transform

What does that mean?

If h is modeled as a random oracle, securely compiles any constant-round public coin protocol.
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The Random Oracle Model [BR93]

Assumption about the structure of an attack on a hash function h:

“The best you can do is treat h as a black box in your attack.”

__——h()
—
P* T V

Under such an assumption, i(-) can be thought of as a random function.
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Fiat-Shamir in the ROM

Claim: Fiat-Shamir for constant-round protocols is secure in the ROM
Proof (3 message case):

__——h()
—
P* a, B,y 74

»
»

a must come from one
of the oracle queries
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Fiat-Shamir in the ROM

Claim: Fiat-Shamir for constant-round protocols is secure in the ROM
Proof (3 message case):

Q — 1 queries
_——— h() h(:
P a, B,y V P* a (ith query): V
" Sample i « [Q] ) B

(number of queries) %
a must come from one

of the oracle queries
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Fiat-Shamir in the ROM

Claim: Fiat-Shamir for constant-round protocols is secure in the ROM

Proof (3 message case):

N Y
—

v

a must come from one
of the oracle queries

Q — 1 queries
_——— h(
» I
V P* a (ith query)
Sample i « [Q] ) B
(number of queries) 1%

1/Q security loss

vV
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The Random Oracle Model [BR93]

Assumption about the structure of an attack on a hash function h:

“The best you can do is treat h as a black box in your attack.”

__——h()
—
P* T V

Under such an assumption, i(-) can be thought of as a random function.
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The Random Oracle Model [BR93]

Assumption about the structure of an attack on a hash function h:

“The best you can do is treat h as a black box in your attack.”

__——h()
—
P* T V

In practice, h(-) is instantiated with (e.g.) SHA256, possibly salted.
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The Random Oracle Model [BR93]

Assumption about the structure of an attack on a hash function h:

“The best you can do is treat h as a black box in your attack.”

__——h()
—
P* T V

No matter what, h(+) is instantiated with a public efficient algorithm.
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Obvious (theoretical) problem:

Public efficient algorithms can’t
compute random functions
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Next: example of an uninstantiable
random oracle property [CGH98]
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Random Oracles Do Not Exist

Fix a function f: {0,1}* - {0,1}4

We say that a hash function h is Correlation Intractable (Cl)
for f if itis hard to find x such that h(x) = f(x)

V PPT 4,
Pr [h(x) = f(x)] = negl

h<—H
x—A(h)
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Random Oracles Do Not Exist

For any fixed f, a RO is Cl for f.

Why? Each query x to the RO produces a random output
y, which is equal to f(x) with probability 274,
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Random Oracles Do Not Exist

Claim [CGH98]: 3f such that for any (efficient) hash
family H, H fails to be Cl for !
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Random Oracles Do Not Exist

Claim [CGH98]: 3f such that for any (efficient) hash
family H, H fails to be Cl for !

f(x): interpret x as a program P and output P(x).
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Random Oracles Do Not Exist

Claim [CGH98]: 3f such that for any (efficient) hash
family H, H fails to be Cl for !

f(x): interpret x as a program P and output P(x).

Given h « H, attack sets x = (h) to be a description of h. Then,

f(x) = P(x) = P((h)) = h({h)) = h(x).
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Random Oracles Do Not Exist

Is this a reasonable counterexample?

= Hash function/random oracle must be able to hash inputs
of arbitrary length. Cl with bounded inputs might exist!
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Random Oracles Do Not Exist

Is this a reasonable counterexample?

= Hash function/random oracle must be able to hash inputs
of arbitrary length. Cl with bounded inputs might exist!

= [Barak01,GKO03] apply to fixed-input length hash functions.
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Random Oracles Do Not Exist

Is this a reasonable counterexample?
= Hash function/random oracle must be able to hash inputs
of arbitrary length. Cl with bounded inputs might exist!

= [Barak01,GKO03] apply to fixed-input length hash functions.

Theorem [Barak ‘01, Goldwasser-Kalai ‘03]: 3 interactive
protocol I1 such that [Igg is ROM-secure but insecure for
any efficiently computable H (e.g. SHA-3).
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Random Oracles Do Not Exist

Is this a reasonable counterexample?

= Hash function/random oracle must be able to hash inputs
of arbitrary length. Cl with bounded inputs might exist!

= [Barak01,GKO03] apply to fixed-input length hash functions.

= Security property broken by running the hash function on
its own description. Is this practically relevant?
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Random Oracles Do Not Exist

Is this a reasonable counterexample?
= Hash function/random oracle must be able to hash inputs
of arbitrary length. Cl with bounded inputs might exist!

= [Barak01,GKO03] apply to fixed-input length hash functions.
= Security property broken by running the hash function on

its own description. Is this practically relevant?
= Recursive SNARKs do something of this flavor.
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Random Oracles Do Not Exist

Is this a reasonable counterexample?

= Hash function/random oracle must be able to hash inputs
of arbitrary length. Cl with bounded inputs might exist!

= [Barak01,GKO03] apply to fixed-input length hash functions.

= Does NOT imply RO-based SNARKSs are broken in practice.

= But it does imply a lack of theoretical understanding.
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What can we do without
random oracles?
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Falsifiable Assumptions

Prove security assuming that some concrete algorithmic task is
infeasible:

= Computing discrete logarithms is hard.
= Solving random noisy linear equations (LWE) is hard.

= SHA256 is collision-resistant.
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Falsifiable Assumptions

Many cryptographic constructions use random oracles to get
better efficiency, but can be based on falsifiable assumptions.

= CCA-secure public key encryption.
= |dentity-based encryption.

= Non-interactive zero knowledge.
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Falsifiable Assumptions

Can (ZK-)SNARKs for NP be built based on falsifiable assumptions?
= (minor caveats but) No!

= No way to extract a long witness from a short proof. Need
assumption (RO, “knowledge assumption”) that guarantees
adversary “knows” a long string given a short commitment.
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Falsifiable Assumptions
Can (ZK-)SNARGs for NP be built based on falsifiable assumptions?

* |t's complicated. (We don’t know)
= Significant barriers [Gentry-Wichs ‘11]

= The community is still trying to understand this.
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Rest of today: SNARGs for
limited computations from
falsifiable assumptions (LWE)

52 ZKP MOOC
Credit: Faithie/Shutterstock



Two tools/techniques

= Correlation-intractable hash functions (ccrirrwis,psis HLR21]

= Used to instantiate Fiat-Shamir without random oracles, for
“nice enough” interactive protocols.

= Somewhere extractable commitments [HW15]

= Used to make a “nice enough” interactive protocol
= Special variant of the typical IOP-based approach.
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Correlation Intractability

A hash family H is Cl for f if V PPT A,

Pr[A(0) = f(x)] = negl
x—A(h)

ZKP MOOC



Correlation Intractability

A hash family H is Cl for binary relation R if V PPT A,

h(P_r}{ [(x,h(x)) € R] = negl

x—A(h)
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Correlation Intractability

A hash family H is Cl for f if V PPT A,
Pr [h() = f(0)] = negl
x—A(h)

* Weren’t these impossible to build?
= Restrict to fixed input length (necessary)
= Restrict to fixed running time on f (unclear if necessary)
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Cl Construction

Here’s a simple construction [CLW18] using Fully
Homomorphic Encryption (FHE)

B
x Eval pec )

pk

Enc
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Cl Construction

(h) = (pk, Encliil])

Real hash key: g = 0 (or a uniform random string — nobody can tell)

h(x) = Eval(x, Enc.) = Enc-

Key point: g is hidden to everyone! We consider different g to prove security.

ZKP MOOC



Security Analysis

Suppose an attacker, given (h), finds x such that h(x) = f(x).

Key idea: let g*(x) = Dec(f(x)) + 1. We know that Enc(g) ~ Enc(g*) if
the encryption scheme is (circular-)secure.

h(x) = Eval(x, Enc-) = Enc(-)

Dec(f(x)) = Dec(h(x)) =g"(x) = Dec(f(x)) + 1. Impossible!
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Correlation Intractability: what we know

H is Cl for R if V PPT 4, Pr |(x, h(x)) € R| = negl

x<A(h)

= Constructions for efficiently computable functions:

" From LWE ([CLW18,PS19,LV22])
= From DDH (JJ21)

= Construction [HLR21] for (efficient) relations with “product structure”
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How do we use Cl to instantiate
Fiat-Shamir?

L]
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Avoid the “Bad Challenges”

Hash Function h
P « vy * P ;I %

p Compute apB,y
y B = h(a)

Def: Given false claim x and a first message «, a challenge [ is “bad” if
there exists a prover message ¥ making I/ accept.

We want to say: if the (3 message) interactive protocol is sound, then (for
all x, @) most B are not bad. True for statistically sound IPs.

ZKP MOOC




Avoid the “Bad Challenges”

Hash Function h
P « vy * P ;I %

p Compute apB,y
y B = h(a)

Exactly what Cl is good for! Define relation R, = {(a, 8):f is bad}. Then if h
is Cl for R,, (when x &€ L), [Igg is sound using h!

Protocols with more than 3 messages: round-by-round soundness (each
round has a type of “bad challenge” to avoid).
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Avoid the “Bad Challenges”

Hash Function h
% * P ;I %

P a
p Compute apB,y
y B = h(a)

Main challenges:

1) Sometimes our IP doesn’t have statistical soundness.

2) We can only build Cl for relations R that can be decided efficiently.
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Important example:
SNARGsSs via IOPs (PCPs)
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SNARGs from PCPs [Kilian, Micali]

P(x,w) V(x)
Compute (long) proof Com(m) ‘
string 7 from (x, w) 1 (describes location set S) ' r « {0,1}
: Open g

Verify opening, check
consistency of mg

Candidate SNARG: apply Fiat-Shamir to this protocol!

Simplified (less efficient) version of modern SNARKs you’ve learned about.
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SNARGs from PCPs [Kilian, Micali]

P(x,w) V(x)
Compute (long) proof Com(m) ‘
string ™ from (x, w) _ . i
r (describes location set S) r « {0,1}
‘ Open g

Verify opening, check
consistency of mg

Not statistically sound, so it’s not clear
how to analyze FS without random oracles.
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SNARGs for Batch NP

P(xq, e, X, W1, wer, Wi) V(xq, ) Xg)

* Completeness: if x; € L forall i, V accepts honest P
« Computational Soundness: if x; € L for some i, for all efficient P*, V rejects.

* Succinctness: proof has length poly(4, |w/|,log k)

Surprisingly powerful (implies SNARGs for P, etc.)
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Interactive Batch Arguments from PCPs [CJJ21]

P(xq, e, X, W1, wer, Wi) V(xq, ) Xg)

Com(m, ..., )

r (describes location set S) r « {0,1}

Open 1y, .. T, Verify opening, check

consistency of mg
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Interactive Batch Arguments from PCPs [CJJ21]

P(xq, e, X, W1, wer, Wi) V(xq, ) Xg)

Com(rmq, ..., )

r (describes location set S) r « {0,1}

Open 1y, .. T, Verify opening, check

consistency of mg

Choose Com to be statistically binding on one out of k proofs (1)

If x; is false, protocol is now statistically sound! (7, is fixed)
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SSB Commitments

k,=H(h, h,)
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SSB Commitments

H = H; (binding k,=H(h,, h.) (secretly
on 3 |ocation) encodes V)

h,=H(m,, m,) h,=H(m;, m,)
m,=H(M, Y) m,=H(V, E) m;=H(C, T) m,=H(O, R)
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SSB Commitments

H = H; (binding k,=H(h,, h.) (secretly
on 3 |ocation) encodes V)

—

h=H(my, M) | g, ~. H, ~, ..~ H, |h=H(mym,)

m,=H(M, Y) m,=H(V, E) m;=H(C, T) m,=H(O, R)
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Interactive Batch Arguments from PCPs [CJJ21]

P(xq, e, X, W1, wer, Wi) V(xq, ) Xg)

Com(rmq, ..., )

r (describes location set S) r « {0,1}

Open 1y, .. T, Verify opening, check

consistency of mg

Choose Com to be statistically binding on one out of k proofs (1)

If x; is false, protocol is now statistically sound! (m; is fixed)
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Interactive Batch Arguments from PCPs [CJJ21]

P(xq, e, X, W1, wer, Wi) V(xq, ) Xg)

Com(mq, ..., )

r (describes location set S) r « {0,1}

Open 1y, .. T, Verify opening, check

consistency of mg

Choose Com to be statistically binding on one out of k proofs (1;,)

If x; is false, protocol is now statistically sound! (m}, is fixed)
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Batch Arguments from PCPs [CJJ21]

P(xq, e, X, W1, wer, Wi) V(xq, ) Xg)

Com(my, ..., Ty)

r (describes location set S) r « {0,1}

Open 1y, .. T, Verify opening, check

consistency of mg

With some work, can use Cl hash functions to compile this protocol.

Succinctness: |[wW| - A + k - A, but can be reduced to |w| - A by recursing.
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Summary of Fiat-Shamir without RO

= Use hash functions that are Cl for appropriate
functions/relations
= [CCHLRRW19,PS19,BKM20,JJ21,HLR21]

= Carefully show that FS-soundness for protocols of
interest follows from compatible forms of Cl

= [CCHLRRW19]: (non-succinct) NIZK
= [JKKZ21]: non-interactive sumcheck protocol
= [CJJ21]: batch NP arguments
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Summary of Fiat-Shamir without RO

Open problems:

= Characterize which protocols can be FS-compiled (we
know it doesn’t work in general [Bar01, GKO03])

= SNARGs for NP from falsifiable assumptions?
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END OF LECTURE



