Secure ZK Circuits via Formal Methods

Guest Lecturer: Yu Feng (UCSB & Veridise)

Zero Knowledge Proofs

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

@ Stanford

@#¥ University

G%%YA;%V,VQC Al [TEXAS AEM

bl LT
.,-". ".-3-\‘.':- 5."
> 4.0 Fp T
A R
g Q)
.
N H
S 5 I8
.'. '9' r > fo -"
'q_ :/ - . \” <
5
"' rargegnt o

UNIVERSITY OF CALIFORNIA

Motivation

Bugs in blockchain software are extremely costly

A | Bugs in any of these |
| layers can be catastrophic |

when exploited!

Zero-knowledge circuit

Blockchain protocol

ZKP MOOC

Smart Contract Bugs

Ethereum DeFi Protocol Beanstalk Hacked
for $182 Million—What You Need to Know

Beanstalk got jacked by a giant flash attack.

0O Apr 18, 2022
‘!'- By Jeff Benson ® 2 min read

e

Flash loan

vulnerability
in smart contract

Beanstalk. Image: Shuttersiock

3 ZKP MOOC

Blockchain Protocol Bugs

CRYPTO WORLD

Solana suffered its second outage in a
month, sending price plunging

PUBLISHED WED, JUN 1 2022.-9:27 PM CDT

MacKenziv Sigalos suare £ W in 4
TRENCILSIGALDS
W cryplocom & XCHANGE
KEY * Sclana fell more than 12% on Wednesday as the kBlcckchain suffered its secend

POINTS outage in the last maonth. Crypto.com Exchange:

Now available to
* Investors who had bheen focused largely on ethereum began diversifying inta Solana U.S. institutional investors
and other alternative blockehains during last year's crypto run-ug.
Join the Waitlist

* But the last year and a half has |aid bare the trade-off as the blockchain network has
suffered multiple outages.

DoS vulnerability

RELATED

B9 = Crypto hedge fund Three
' Arrows Capital plunges

=T In consensus
protocol

One of the most
prominent crypto hedge
funds just defaulted on a
$670 million lecan

——

SOLAN

- /’»,’4 . /"l - ——
e . = {- R
\ ” Imsne " : lamnle
’

[- '3 N ¥
J))

5'4deddOacdazc000402atat.png

Snoop Dogg on the
current crypto winter and
future of NFTs

El Salvador’s $425
million bitcoin
experiment isn't saving

The laga of srypracurency platiarm Salana

the country’s finances

YA W g or w

4 ZKP MOOC

/K Bugs are Coming

Zcash team fixes serious vulnerability that
allowed counterfeiting

Malware and Vulnerabilities ® February 07, 2019 * Cyware Hacker Na2ws

-

Bug in
arithmetic circuit

implementing
ZKSNARK!

-—
En

=
-
=

N L
—
) 4 1

Zcash team fixes serious vulnerability that
allowed counterfeiting

e The vulnerability was discovered by a cryptographer from Zcash Company in March 2018.
» Attackers could create fake Zcash coins in large numbers by exploiting this vulnerability.

5 ZKP MOOC

Formal Methods to Rescue

Formal methods
can eradicate these
bugs

6 ZKP MOOC

Formal Methods in a Nutshell

Section 1

O
O
O
>
o
N
N

What is Formal Methods

Set of mathematically
rigorous techniques for
finding bugs and constructing
proofs about software

g ZKP MOOC

Formal Methods Techniques on Spectrum

FORMAIL

Stronger guarantees

More human effort

ZKP MOOC

Classification of FM Techniques

N
FORMAL **-.

“--IIIIIIIII....
gn® Yu,
s* b,y
o® Y
o* Yoo
o* s
‘ ~ p
IS A
. FUZZIIINI@ 7 4
IS
N
. | @QINI@QILII@
|
| |
. ,_
. EX(IE@UTII.INI
.
. S
., e L
n ~ g e
- °
7 “‘
~— _ans®)

DYNAMIC

Execute the program on interesting inputs
& monitor what happens

10

STATIC

Analyze source code and
reason about all executions

ZKP MOOC

Fundamentals of Static Analysis

e Blue irregular shape is the actual states (i possible states

Bad
states

e Red region corresponds to “bad states”

States

e Due to undecidability, we can never computed Actual

by static states
analysis

determine exactly what the blue region is

e Over-approximate blue region with the

regular green region above

11 ZKP MOOC

Fundamentals of Static Analysis

r N
All possible states All possible states
Actual
states
States positives!
computed Unsound
by static Actual S
analysis States analysis
y,
False Positives False Negatives
12 ZKP MOOC

Concrete Interpretation Is Easy

Concrete values cp

lnterpreter New concrete values
Code snippet =—p

If f(x) = x+2, then f(1) = 3

13 ZKP MOOC

Static Analysis via Abstract Interpretation

Abstract values e

Abstract

New abstract values

Code snippet =P Interpreter

14 ZKP MOOC

Static Analysis via Abstract Interpretation

ldea: Emulate all possible program paths

————

1T(flag)
X = 1° \ When in doubt, conservatively assume

- either path could be taken and merge
1 / information for different paths

xe|—1,1]

15 ZKP MOOC

else
X:

Abstract Interpretation Tools in Web3

o Slither (TrailOfBits)
 Sailfish (Bose et al, Oakland’22)
* Vanguard (Veridise)

16 ZKP MOOC

Static Analysis via Formal Verification

Code Program verifier / Proven

Specification —_—t Verification condition Theorem prover
(VC) generator \ Unknown

ANNotations ==

® Program implementation: Source code of the program, or intermediate
representation

®The specification: A formal description of the property to be verified

e Human annotations (optional): Loop invariants, Contract invariants

17 ZKP MOOC

Formal Specifications

Formal specification: Precise mathematical

((finish(bid, msg . value = X A msg . sender = L))
A O finish(close, L # winner)

—) send(to = L A amt = X))

e S——————R

18

description of intended program behavior,
typically in some formal logic

If auction closes with me |
not being the winner, | |

should eventually get
back my bid

ZKP MOOC

Formal Verification Tools in Web3

» Certora prover (Certora)

* K framework (Runtime Verification)

19 ZKP MOOC

Different Flavors of Static Analysis

Formal verification checks program
against provided specification

Abstract Interpretation Formal Verification

@ Looks for known types of bugs @ Can find (prove absence of) any bug

& Doesn’t require specifications € Requires specifications

20 ZKP MOOC

Section 2

Formal Methods in ZK: part |

O
O
O
>
o
N
N

21

Circuits Workflow

Source Code Witness
rrerrearressrrsserer e raanraaas . Generator

==>CIrcom : - SNARK

| Prover, |

HanZ) Polynomlal Field

Witness (Generation and / | Verifier; |

Constraints
should (generally) be equivalent!

Source Code: Witnhess Generation and Constraints

22

ZKP MOOC

What is Equivalence

Program: P Set of Constraints: C

Input: x Inputs: x, vy

Output: y Output: frue or false

For every x,y. P(x) = yif and only if C(x,y) is true

Every (x,tv) which satisfy
C must be an input-out
pair of P

Every input-output of P

must satisfy C

’ How can this be violated?
O

23 ZKP MOOC

Equivalence Violations

Iwo Requirements:

(1) Every input-out pair of P satisfies C
(2) For any x,y which satisfy C, P(x) =y
Querconstrained Bugs " Underconstrained Bugs

Exists x, y where P(x) = y but C(x, y) is false x,y where C(x, y) is true but P(x) # “

Most ZK languages (e.g., Circom,
Halo2) add field equations as

assertions to circuit!

24 ZKP MOOC

Why Do We Care

Could be used

to drain

ZK Circuit Workflow BEEASSES

Underconstrained bugs:
Verifier can accept bad inputs/
outputs

Tornado Cash
Oct12.2019 - 3minread - © Listen

Tornado.cash got hacked. By us.

Source Code

Polynomial Field

==>CIFCOM compiea ™" Prover; |

CIRCUIT COMPILER | - / :

BigMod incorrectly omits range checks on the remainder #10

e el xu3kev merged 1 commit into @xPARC:master from ecnerwala:rangecheckmod (03 on Apr 26

Disclosure of recent vulnerabilities

Double spend

We have recently patched two severe bugs in Aztec 2.0. The first was found by an Aztec
engineer and the second by community members.

1. Lack of range constraints for the tree_index variable

95 ZKP MOOC

A Taxonomy of ZK Bugs

ZK Bugs

Constraint/ Unsafe Component
Computation Usage

! Unconstrained | Unconstrained | E No Zero Inverse E Unde_r—
E Output Public Signal [B Constrained

Sub-Circuit

Unconstrained Signals

Under-
Constrained |
Sub-Circuit Input

Output

ZKP MOOC

Unconstrained Signals

Corresponds to signals whose constraints always evaluate to true, accepting everything

————

Unconstrained

Signals

Unconstrained ll Unconstrained §
E Output Public Signal §

27 ZKP MOOC

Underconstrained Output

_Buggy Implementation Constraints forn = 3
template Num2B1ts(n) { |

signal input 1in; out, IS

signal output out[n]; | underconstrained

var lcl = 0; 5 .

Input in
var eZ2 = 1; output out,, out,, out,
for (var 1 = 0; 1K n}l; 1++) 1) = 0
out[i] <-- (in 3% i) & 1; outy - (outy — 1) =

Ollt[l] * (Out[l] - 1 === 0ut1°(0ut1—1)=0
lcl += out[1i] * e2;

out, + 2 * out, = in
e2 = e2 + e2; 0t 1

Developer added
constraints Attacker can pass In any value for out,

lcl === 1in;

| https://github.com/iden3/circomlib/blob/master/circuits/bitify.circom

28 ZKP MOOC

Unsafe Component Usage

Sub-circuits often assume constraints are placed on inputs and outputs

Corresponds to cases where the use of a sub-circuit do not follow

Unsafe Component Usage

Under-Constrained | Under-Constrained
1 Sub-Circuit Output 8 Sub-Circuit Input

29 ZKP MOOC

Example: Under-Constrained Sub-Circuit Output

' template withdraw(n) { E
| assert(n <= 252); '
signal 1input bal;
signal 1nput amt;
signal output out;

component n2bl = Num2Bits(n); // assert (bal < 2”n) |

VESOERINS T N2bl.1in <== bal; |
It.out === component n2b2 = Num2Bits(n); // assert (amt < 2”n) |

n2b2.in <== amt; :

component 1t = LessThan(n); // check amt < bal

lt.in[@0] <== bal;

lt.in[1] <== amt;

out <== bal - amt:

/] .
W
| §
2 3
' o
) b
‘. } ‘
; §
L, N
g

Without the missing constraint, attacker can withdraw more funds than they have

30 ZKP MOOC

————

Constraint/Computation Discrepancy

Not all computation can be directly expressed as a constraint

Corresponds to constraints that do not capture a computation’s semantics

——

Constraint/

Computation
Discrepancy

No Zero |
1 Inverse |

31 ZKP MOOC

Example: No Zero Inverse

| template MulInverse() { i
* signal input a;
signal 1nput b;
signal output out

Multiplicative
iInverse undefined
when b =0

out <— a / b;
out *x b === a;

Constraints allow

b=0

Accepts arbitrary out when a and b are 0!

32 ZKP MOOC

Circuit Dependence Graphs (CDG)

Goal: Identify discrepancies between computation and constraints

——

Input Signal

Output Signal

ZKP MOOC

Vanguard Static Analysis

Vanguard 'i Common Vulnerability

Source Code Report

Create CDG , | Analyze CDG

> O >

==>Circom

CIRCUIT COMPILER

Halozw

Used to evaluate 258 circuits from 17 public Circom projects on Github

34 ZKP MOOC

Evaluation Results

Ildentified 32 previously unknown vulnerabilities!

Some Circuits had
multiple bugs!

Unconstrained Signals

Unsafe Component Usage

i Constraint/Computation Discrepancy

0 10 20 30 40 50 60

Developers have the most difficulty reasoning about a computation’s semantics!

———— e

35 ZKP MOOC

O
O
O
>
o
N
N

Formal Methods in ZK: part Il

Section 3

Existing Strategies

Static Analysis of Constraints (SA) SMT Solver

Apply predefined rules Underconstrained can be expressed as SMT query

tq quickly detect if c?lrcmt Iy, . Py /y] A PL/y] A y; # v,
'S properly constrainec SAT means the circuit

Input x is underconstrained
output y Since y is linear in x, 7
7= 3x 44 we immediately infer

It IS not under constrained
y=2z+2x

37 ZKP MOOC

Picus 6

Polynomial \:, —_—) / If it can prove P is constrained
Fle|-d P ' Picus —_— x If it can prove P is unconstrained
Equations | |

—)7 Otherwise

Combine the strengths of Static Analysis and SMT!

Fast but imprecise! Precise but slow!

Static Analysis and SMT phases interact in a loop

38 ZKP MOOC

Static Analysis Phase

Takes as input field equations P, and set of signals K proven

At the start of the algorithm K = { }.

New set K 'of signals
proven unique. K C X’

If OutputSignals C K’ we return v/

Otherwise we send K’ as input to SMT Phase

39 ZKP MOOC

SMT Phase

K" computed assuming K.

e i Larger K = faster query.
P ——> ‘ ‘1 K" K C K"

; SMT Solver
K —| — K

uncomns

If OutputSignals C K” we return

If OutputSignals N + @ wereturn X

leﬂ’lC ons

If K = K" we return ??

Otherwise we send K" to Static Analysis phase and repeat.

40 ZKP MOOC

Picus Results

Picus Output

$./picus-solve.sh ./benchmarks/motivating/
}adder rlcs

number of constraints: 9

parsing alternative rilcs.

configuring precondltlon

safe

Guaranteed to have

no underconstrained
signals!

41 ZKP MOOC

Evaluation

Benchmark Set | # circuits | Avg. # constraints | Avg. # output signals
circomlib-utils 59 352 10
circomlib-core 104 6,690 32

All 163 4,396 24

100 - 5

Solved (%)
S

circomlib-utils
Benchmark Set

42

circomlib-core

ZKP MOOC

Conclusion

 Automated Detection of Underconstrained Circuits for Zero-
Knowledge Proofs, PLDI’23

* Practical Security Analysis of Zero-Knowledge Proof Circuits , ;
» Certifying Zero-Knowledge Circuits with Refinement Types .'
) r \\‘ a

O https://github.com/Veridise/Picus

@0 Mecdium https://veridise.medium.com/

q https://veridise.com/ , @Veridiselnc

43 ZKP MOOC

https://veridise.com/
https://veridise.medium.com/
https://mobile.twitter.com/VeridiseInc
https://github.com/Veridise/Picus

