
Zero Knowledge Proofs
Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

Secure ZK Circuits via Formal Methods

Guest Lecturer: Yu Feng (UCSB & Veridise)

ZKP MOOC

Motivation

2

Bugs in blockchain software are extremely costly

Blockchain protocol

Zero-knowledge circuit

DeFi app

Web3
Bugs in any of these
layers can be catastrophic
when exploited!

ZKP MOOC

Smart Contract Bugs

3

\
Flash loan

vulnerability

in smart contract

ZKP MOOC

Blockchain Protocol Bugs

4

DoS vulnerability
in consensus

protocol

ZKP MOOC

ZK Bugs are Coming

5

Bug in

arithmetic circuit

implementing
zkSNARK!

ZKP MOOC

Formal Methods to Rescue

6

Formal methods
can eradicate these

bugs

Credit: Faithie/Shutterstock

ZKP MOOC

Section 1 
Formal Methods in a Nutshell

7

ZKP MOOC

What is Formal Methods

8

Set of mathematically
rigorous techniques for

finding bugs and constructing
proofs about software

ZKP MOOC

Formal Methods Techniques on Spectrum

9

FUZZING

FORMAL

VERIFICATION

Stronger guarantees
More human effort

Concolic

Execution

ABstract

Inter-

pretation

ZKP MOOC

Classification of FM Techniques

10

FUZZING
ABstract

Inter-

pretation

FORMAL

VERIFICATION

Concolic

Execution

DYNAMIC STATIC
Execute the program on interesting inputs

& monitor what happens
Analyze source code and

reason about all executions

ZKP MOOC

Fundamentals of Static Analysis

11

● Blue irregular shape is the actual states

● Red region corresponds to “bad states”

● Due to undecidability, we can never

determine exactly what the blue region is

● Over-approximate blue region with the

regular green region above

ZKP MOOC

Fundamentals of Static Analysis

12

False Positives False Negatives

ZKP MOOC

Concrete Interpretation is Easy

13

If f(x) = x+2, then f(1) = 3

ZKP MOOC

Static Analysis via Abstract Interpretation

14

ZKP MOOC

Static Analysis via Abstract Interpretation

15

Idea: Emulate all possible program paths

if(flag)

x = 1;

else

x = -1;

When in doubt, conservatively assume
either path could be taken and merge
information for different paths

x ∈ [−1,1]

ZKP MOOC

Abstract Interpretation Tools in Web3

16

•Slither (TrailOfBits)

•Sailfish (Bose et al, Oakland’22)

•Vanguard (Veridise)

ZKP MOOC

Static Analysis via Formal Verification

17

•Program implementation: Source code of the program, or intermediate
representation

•The specification: A formal description of the property to be verified

•Human annotations (optional): Loop invariants, Contract invariants

ZKP MOOC

Formal Specifications

18

Formal specification: Precise mathematical
description of intended program behavior,

typically in some formal logic

□ ((finish(bid, msg . value = X ∧ msg . sender = L))

→ ◊ send(to = L ∧ amt = X))

∧ ◊ finish(close, L ≠ winner)

If auction closes with me
not being the winner, I
should eventually get
back my bid

ZKP MOOC

Formal Verification Tools in Web3

19

•Certora prover (Certora)

•K framework (Runtime Verification)

ZKP MOOC

Different Flavors of Static Analysis

20

Formal verification checks program
against provided specification

Abstract Interpretation Formal Verification

Looks for known types of bugs Can find (prove absence of) any bug

Doesn’t require specifications Requires specifications

Credit: Faithie/Shutterstock

ZKP MOOC

Section 2 
Formal Methods in ZK: part I

21

ZKP MOOC

Circuits Workflow

22

Source Code

C

Proverf

Verifierf

SNARK

Polynomial Field
Equations

Source Code: Witness Generation and Constraints

Witness Generation and
Constraints

should (generally) be equivalent!

P

Witness
Generator

ZKP MOOC

What is Equivalence

23

For every . if and only if is x, y P(x) = y C(x, y) true

Program: P
Input: x

Set of Constraints: C

Output: y
Inputs: x, y

Output: or true false

Every input-output of P
must satisfy C

Every (x,y) which satisfy
C must be an input-out

pair of P

How can this be violated?

ZKP MOOC

Equivalence Violations

24

Two Requirements:

(1) Every input-out pair of satisfies

(2) For any which satisfy ,

P C
x, y C P(x) = y

Overconstrained Bugs

Exists where but is x, y P(x) = y C(x, y) false

Underconstrained Bugs

Exists where is but x, y C(x, y) true P(x) ≠ y

Most ZK languages (e.g., Circom,
Halo2) add field equations as

assertions to circuit!

ZKP MOOC

Why Do We Care

25

Source Code

Compiled

C

Proverf

Verifierf

SNARK

Polynomial Field
Equations

ZK Circuit Workflow
Underconstrained bugs:

Verifier can accept bad inputs/
outputs

Could be used
to drain

all tokens

Double spend

ZKP MOOC

A Taxonomy of ZK Bugs

26

ZK Bugs

Unconstrained Signals Unsafe Component
Usage

Constraint/
Computation

Unconstrained
Output

Unconstrained
Public Signal

Under-
Constrained
Sub-Circuit

Output

Under-
Constrained

Sub-Circuit Input

No Zero Inverse

… … …

ZKP MOOC

Unconstrained Signals

27

Unconstrained
Signals

Unconstrained
Output

Unconstrained
Public Signal

…

Corresponds to signals whose constraints always evaluate to true, accepting everything

ZKP MOOC

Underconstrained Output

28

template Num2Bits(n) {
 signal input in;
 signal output out[n];
 var lc1 = 0;

 var e2 = 1;
 for (var i = 0; i < n-1; i++) {
 out[i] <-- (in >> i) & 1;
 out[i] * (out[i] - 1) === 0;
 lc1 += out[i] * e2;
 e2 = e2 + e2;
 }

 lc1 === in;
}

Buggy Implementation Constraints for n = 3

Developer added
constraints

𝗂𝗇𝗉𝗎𝗍 in
𝗈𝗎𝗍𝗉𝗎𝗍 out0, out1, out2
out0 ⋅ (out0 − 1) = 0
out1 ⋅ (out1 − 1) = 0
out0 + 2 * out1 = in

 is
underconstrained

out2

Attacker can pass in any value for out2

https://github.com/iden3/circomlib/blob/master/circuits/bitify.circom

ZKP MOOC

Unsafe Component Usage

29

Sub-circuits often assume constraints are placed on inputs and outputs

Unsafe Component Usage

Under-Constrained
Sub-Circuit Output

Under-Constrained
Sub-Circuit Input

…

Corresponds to cases where the use of a sub-circuit do not follow

ZKP MOOC

Example: Under-Constrained Sub-Circuit Output

30

 template withdraw(n) {

 assert(n <= 252);

 signal input bal;

 signal input amt;

 signal output out;

 component n2b1 = Num2Bits(n); // assert (bal < 2^n)

 n2b1.in <== bal;

 component n2b2 = Num2Bits(n); // assert (amt < 2^n)

 n2b2.in <== amt;

 component lt = LessThan(n); // check amt < bal

 lt.in[0] <== bal;

 lt.in[1] <== amt;

 out <== bal - amt;

 }

Missing constraint
lt.out === 0

Without the missing constraint, attacker can withdraw more funds than they have

ZKP MOOC

Constraint/Computation Discrepancy

31

Constraint/
Computation
Discrepancy

No Zero
Inverse

…

Not all computation can be directly expressed as a constraint

Corresponds to constraints that do not capture a computation’s semantics

ZKP MOOC

Example: No Zero Inverse

32

 template MulInverse() {

 signal input a;

 signal input b;

 signal output out;

 out <-- a / b;

 out * b === a;

 }

Multiplicative
inverse undefined

when b = 0

Constraints allow  
b = 0

Accepts arbitrary out when a and b are 0!

ZKP MOOC

Circuit Dependence Graphs (CDG)

33

Goal: Identify discrepancies between computation and constraints

in

out Output Signal

Input Signal

i O

o <-- i

i o

o === i

ZKP MOOC

Vanguard Static Analysis

34

Source Code Common Vulnerability
Report

Vanguard

Create CDG Analyze CDG

Used to evaluate 258 circuits from 17 public Circom projects on Github

ZKP MOOC

Evaluation Results

35

Developers have the most difficulty reasoning about a computation’s semantics!

Unconstrained Signals

Unsafe Component Usage

Constraint/Computation Discrepancy

0 10 20 30 40 50 60

Identified 32 previously unknown vulnerabilities!

Some Circuits had
multiple bugs!

Credit: Faithie/Shutterstock

ZKP MOOC

Section 3 
Formal Methods in ZK: part II

36

ZKP MOOC

Existing Strategies

37

Static Analysis of Constraints (SA) SMT Solver

𝗂𝗇𝗉𝗎𝗍 x
𝗈𝗎𝗍𝗉𝗎𝗍 y
z = 3x + 4
y = z + 2x

Since is linear in

we immediately infer

it is not under constrained

y x, z

Underconstrained can be expressed as SMT query
∃y1, y2 . P[y1/y] ∧ P[y2/y] ∧ y1 ≠ y2

Apply predefined rules

to quickly detect if circuit

is properly constrained SAT means the circuit

is underconstrained

ZKP MOOC

Picus

38

PicusP
If it can prove is constrainedPPolynomial

Field
Equations

If it can prove is unconstrainedP

?? Otherwise

Combine the strengths of Static Analysis and SMT!

Static Analysis and SMT phases interact in a loop

Fast but imprecise! Precise but slow!

ZKP MOOC

Static Analysis Phase

39

Takes as input field equations P, and set of signals proven K

Static Analyzer
P
K

K′￼

If we return 𝖮𝗎𝗍𝗉𝗎𝗍𝖲𝗂𝗀𝗇𝖺𝗅𝗌 ⊆ K′￼

Otherwise we send as input to SMT PhaseK′￼

At the start of the algorithm .K = {} New set of signals
proven unique.

K′￼

K ⊆ K′￼

ZKP MOOC

SMT Phase

40

SMT Solver
P
K

K′￼′￼

If we return 𝖮𝗎𝗍𝗉𝗎𝗍𝖲𝗂𝗀𝗇𝖺𝗅𝗌 ⊆ K′￼′￼

If we return 𝖮𝗎𝗍𝗉𝗎𝗍𝖲𝗂𝗀𝗇𝖺𝗅𝗌 ∩ Kuncons ≠ ∅

Kuncons

If we return K = K′￼′￼ ??

Otherwise we send to Static Analysis phase and repeat.K′￼′￼

 computed assuming K.
Larger K = faster query.

K′￼′￼

K ⊆ K′￼′￼

ZKP MOOC

Picus Results

41

$./picus-solve.sh ./benchmarks/motivating/
adder.r1cs
number of constraints: 9
parsing alternative r1cs...
configuring precondition...
safe.

Picus Output

Guaranteed to have
 no underconstrained

signals!

ZKP MOOC

Evaluation

42

ZKP MOOC

Conclusion

43

https://veridise.com/

https://veridise.medium.com/

@VeridiseInc

https://github.com/Veridise/Picus

• Automated Detection of Underconstrained Circuits for Zero-

Knowledge Proofs, PLDI’23

• Practical Security Analysis of Zero-Knowledge Proof Circuits

• Certifying Zero-Knowledge Circuits with Refinement Types

https://veridise.com/
https://veridise.medium.com/
https://mobile.twitter.com/VeridiseInc
https://github.com/Veridise/Picus

