Lecture 3: Programming ZKPs

Guest Lecturers: Pratyush Mishra and Alex Ozdemir

L) Berkeley @Penn 3 Stanford

uuuuuu SITY OF CALIFORNIA UNIVERSITY 0f PERNSYLVANIA University

Zero Knowledge Proofs

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

EORGETOW.
B€]Tk€l€y Er T A ACH T | TEXA5 2 |

UNIVERSITY OF CALIFORNIA

> Stanford

University

Using a ZKP

N ®
"Q- £ () Yool 7@] P P)

|dea =——> Program =—» R1CS —> Params —» ZKP

Programmer Compiler* Setup \D‘rove\/

This Lecture

ve,.'.£i| — {01

This Lecture

Big Picture: ZKP programmability

Using an HDL (+ tutorial)

Using a library (+ tutorial)

Using a compiler (+ tutorial)

An overview of prominent ZKP toolchains

3 ZKP MOOC

s e

ZKP Programmability

4 ZKP MOOC
Credit: Faithie/Shutterstock

Recap: ZKPs for a predicate ¢

" Prover knows ¢, x, w

= \erifier knows ¢, x

» Proof m shows that ¢ (x, w) holds
= but does not reveal w

» Key Question: what can ¢ be?

5 ZKP MOOC

What is ¢?

@ in theory ¢ in practice

" w is a factorization of = ¢ is an “arithmetic circuit”

integer x | over inputs x, w
= w is the secret key for public

key x
= w is the credential for
account x

=" W is a valid transaction

6 ZKP MOOC

Arithmetic Circuits (ACs), Part |

= Domain: “prime field” = ACs as systems of field
" p:alarge (~255 bit) prime equations:
" Zy: the integers, mod p = Example:
= operations: +,X, = (mod p) " WoXWoXWy = X
"= Example in Zs: "W Xwp =X
" 44+5=9=4 = Addition is also OK

= 4x4 =16 =1

7 ZKP MOOC

Arithmetic Circuits (ACs), Part II

= ACs as circuits = Example:
= Directed, acyclic graph " WoXWoXWy = X
= Nodes: inputs, gates, " Wy XWy =X
constants = As a circuit:
= Edges: wires/connections W @ T
< \@
W, 2® :
x— ©

8 ZKP MOOC

R1CS: a common Arithmetic Circuit format

= R1CS: format for ZKP ACs = Examples:
= Definition: = woX(wg —wy, — 1) = x4
= x:field elements x4, ..., x_¢ " WoXWy = Wy
" W:IWq, e, Wop—p_q 2 — X1
" ¢:n equations of form " WaXWy = Wy
= axB =y = W XWy = X

= where a, 5,y are affine
combinations of variables

9 ZKP MOOC

R1CS: Matrix Definition

= x:vector of £ field elements

= w:vector of m — £ — 1 field elements o ailc]
= ¢: matrices A, B, C € Z;*™ | /iﬁm S
z=11xllw) ez} i Ho/_{:%s‘o

= Holdswhen Azo Bz =(Cz
T 6[@’/\@44"&7;% procl\kd'

ZKP MOOC

Writing an AC as R1CS (Example)

= Step 1: intermediate ws

= Step 2: write equations
u W0XW1 = Wy

@ " w3 =W, + X
Ko \@/wq = Wy XXy = Wy

" W3 = Wy

ZKP MOOC

Zooming out: a Programming Languages problem

High-level
specification for ¢

Program in high-
level language

Using:

e Libraries

 Compilers

* Programming Langs.

* Domain Specific Langs.

R1CS

Assembly

ZKP MOOC

The Idea

High-level code

Compiler/Library |©

R1CS

ZK Proof System

e Booleans
* Structures
e Modules

e Functions

ZKP MOOC

An Example

Zcash Circuit |©| Bellman Library | R1CS D Groth16

e Merkle tree

* Pedersen
Hash

* Signatures

* Spend logic

ZKP MOOC

An HDL for R1CS

15 ZKP MOOC
Credit: Faithie/Shutterstock

Programming Languages (PLs) vs.
Hardware Description Languages (HDLs)

PL objects

= Variables

= Operations

* Program/Functions

PL actions
= Mutate variables
= Call functions

HDL objects

= Wires
= GGates
= Circuit/Sub-circuits

HDL actions

= Connect wires
= Create sub-circuits

ZKP MOOC

HDLs: From Digital to Arithmetic

HDLs for Digital Circuits An HDL for R1CS

= Verilog = circom

= SystemVerilog = wires: R1CS variables

= VHDL = gates: R1CS constraints
. " 3 circom circuit does 2

= Chisel things:

. = sets variable values

= creates R1CS constraints

ZKP MOOC

Circom: Base Language

= A “template” is a (sub)circuit
= A “signal” is a wire

= “input” or “output”

“<--" sets signal values
m “===" creates constraints

= Must be rank-1:

= one side: linear
= other side: quadratic

m “<==" does both

template Multiply() {

}

signal input x;

— ,
signal input y; \eritier levow>
signal output z;é”’/’

z <-- x *y;

Z === X * y;
// ERROR: z === x * x * vy
// OR 12 <K== X *y;

component main {public [x]} =

Multiply();

ZKP MOOC

Circom: Metaprogramming Language

= Template arguments templatc; BepeitedSquaring(n) {
. signal input x;

. Slgnal arrays signal output y;
= Variables |

= Mutable ii?g"]"lgi[;?’

= Not signals for (var i = @; i <= n; i++) {

= Evaluated at compile-time } xs[i+1] <== xs[i] * xs[i];
- LOOpS y <== xs[n];
= |f statements }

component main {public [x]} =

- Array aCCesses RepeatedSquaring(1000);

ZKP MOOC

Circom: Witness Computation & Sub-circuits

= Witness computation: template Nonzero() {
signal input in;
more general than R1CS signal inverse;
“_ oo inverse <-- 1 / in; // not R1CS
“ <--Ismore general 1 == in * signal; // 1is R1CS
than “===" }
= “component”s hold sub- temp1ate Main() §
CirCUitS signal input a; signal input b;
] component nz = NonZero();
= Access mputs/outputs nz.in <== a;

@ == a * b;

with dot-notation y

ZKP MOOC

Circom Tutorial

21 ZKP MOOC
Credit: Faithie/Shutterstock

Tutorial Example: Sudoku

= 9 by 9 grid

= Some cells have #s EBE AT EEREEETS
. . '\ 823 83 4123222223?
= Goal: fill all cells with 1...9 I IR B S ER D
. . 117|5|3
= Rule: no duplicates in any: I I R EIETE) (A
7 1 39 75 2|6 18|13 9 4
lee-l-u-m.ﬂ_
4) Puzzle Solution
= Row X W

" 3x3-sub=grid

ZKP MOOC

A Library for R1CS

23 ZKP MOOC
Credit: Faithie/Shutterstock

Circom: Recap

= An HDL for R1CS

= Key features:
= Direct control over constraints

= Custom language
= Can be good
= Can be bad

ZKP MOOC

R1CS Libraries

= Alibraryin a host language (Eg: Rust, OCaml, C++, Go, ...)
= Key type: constraint system
= Maintains state about R1CS constraints

and variables Constraint System
= Key operations:

= create variable 4 B C
= create linear combinations of variables
= add constraint

variables

ZKP MOOC

ConstraintSystem Operations

Variable creation Adding constraints

cs.add_var(p, v) ~» id cs.constrain(lc,, lcg, 1lcc)

* CS: constraint system » Adds a constraint 1c, x lcg = 1lcc

* p: visibility of variable

e v: assigned value Constraint System

e id: variable handle
Linear Combination creation

cs.zero() : returns the empty LC A b C
lc.add(c, id) -» 1c' 1cy lcg lcc
e id: variable

e c: coefficient variables

e 1c' := 1lc + ¢ * 1id

ZKP MOOC

Example: Boolean AND

Create result
variable

fn and(cs: C\/straintSystem, a: Var, b: Var) -» Var {
let result = cs.new witness var(|| a.value() & b.value());
self.cs.enforce _constraint(

lc!() + a,

lc!() + b, -

1c!() + result, Enforce constralnt]
)5

result Create linear combinations]

ZKP MOOC

Example: Boolean AND

&

fn and(cs:
let re This is unpleasant, tedious, and error-prone! .value());

self.q
Ife Can you imagine writing a complex algorithm like

1c signature verification in this style?
1¢

)5

result

28 ZKP MOOC

ldea: Leverage Language Abstractions!

— guage abstractions like structs, operator
Wrap variable in dedicated type jip, s etc. to allow better developer UX:

struct Boolean { var: Var };

impl BitAnd for Boolean {
fn and(self: Boolean, other: Boolean) -» Boolean {

// Same as before
Boolean { var: result }

Implement
interface for
operator

overloading
s

ZKP MOOC

Does it work? Yes!

Can use abstractions like normal code:

let a = Boolean::new witness(|| true);
let b = Boolean::new witness(|| false);
(a & b).enforce_equal(Boolean::FALSE);

Many different gadget libraries:

* libsnark: gadgetlib (C++)

» arkworks: rlcs-std + crypto-primitives (Rust)
* Snarky (Ocaml)

 Gnark (Go)

ZKP MOOC

What about Witness Computation?

= Can perform arbitrary computations to generate
witnhesses

Closure (lambda) executed only during proving!

let a = Boolean::new witness(|| (4 == 5) & (x < y));
let b = Boolean::new _witness(|| false);
(a & b).enforce equal(Boolean: :FALSE);

ZKP MOOC

Arkworks Tutorial

32 ZKP MOOC
Credit: Faithie/Shutterstock

Compiling a
Programming Language

to R1CS

33 ZKP MOOC
Credit: Faithie/Shutterstock

HDLs & Circuit Libraries

= Difference:
= Host language v. custom language
= Similarities:
= explicit wire creation (explicitly wire values)
= explicit constraint creation
= Do we need to explicitly build a circuit?
= No!

ZKP MOOC

Compiling PLs to Circuits (ldea)

Program > R1CS
n wain(-)§ Compiler
S

)

e Wires

e Variables
* Constraints

* Mutation
* Functions
* Arrays

ZKP MOOC

ZoKrates: Syntax

" Struct syntax for custom .
type F = field;

types \brifer lonows
" Variables contain values —
: : : def main(public F x, private
during execution/proving F[2] ys) {
= Can annotate privacy field yo = y[0];

field y1 = y[1];
o)
constraints }

ZKP MOOC

Zokrates: Language features

N |nteger generics def repeated squaring<N>(field x) -> field {
field[N] mut xs;
= Arrays xs[0] = X;
. for u32 1 in 0..n {
" Variables xs[i + 1] = xs[i] * xs[i];
= Mutable }

return xs[N];

" Fixed-length loops 3

" |f expressions def main (public field x) -> field {
- Array 3ccesses repeated _squaring::<1000>(x)

ZKP MOOC

What about Witness Computation?

=" No way to compute witnhesses
= All witnesses must be provided as input

def main(private field a, public
field b) {
assert(a * b == 1)

}

ZKP MOOC

ZoKrates Tutorial

39 ZKP MOOC
Credit: Faithie/Shutterstock

/KP Toolchains:
A Quick Tour

40 ZKP MOOC
Credit: Faithie/Shutterstock

Toolchain Type

HDL Library PL + Compiler
a language for a library for describing a language,
describing circuit circuit synthesis compiled to a circuit
synthesis

C‘\rc QAé_\.\)‘VLQ' . .) 'P'\ main ("’) {_
~-ou : -
>DH; ‘? dfc..oéd_%o}b(-"’) y

ZKP MOOC

Toolchain Types, Organized

Standalone Language?

No Yes
N Library HDL
Circutt (arkworks) (circom)
Language Type
Program PL
8 (noir)

ZKP MOOC

circom

Pros:

/

m Clear constraints

= Elegant syntax

Cons:

= Hard to learn

arkworks

HDL

= |imited abstraction

\

types?

Pros:

= Clear constraints

= As expressive as Rust
Cons:

= Need to know Rust

= Few optimizations

[

manual opts

ZoKrates

just a PL

Pros:

/

= Easiest to learn

= Elegant syntax

Cons:

= Limited witness
computation
|

always implicit

ZKP MOOC

Other toolchains

HDL Library PL + Compiler
 Circom e Arkworks (Rust) e ZoKrates

* Gadgetlib (C++) * Noir

* Bellman (Rust) * Leo

* Snarky (OCaml)
 PLONKish (Rust)

Cairo

ZKP MOOC

Timeline

Bellman Snarky ArkworksNoir |
PLONKish
| | l | | | | l | | »
|| || I || || || || I || || i
2015 2020
Gadgetlib Circom 5 krates Cairo ?
Leo .

ZKP MOOC

Shared Compiler Infrastructure?

Source

Cairo
ZoKrates
Circom
PLONKish
Noir
Snarky
Bellman
Gadgetlib
Leo

Common Techniques

RAM

4 C‘ir'C)

res

Bc

on

A library for

Fixed-

ZKP languages

es

Opti

\\ github.com/circify/circ J

Flow

Target

R1CS
Plonk
AIR

ZKP MOOC

https://github.com/circify/circ

Summary

HDL (circom) 4]

- ¢ / . mack\w“-LB\
Q > Library (ark) &%y / lé] -

ldea R1CS ZKP

tn wainl-2
PL (noir)
b

ZKP MOOC

End of Lecture

48 ZKP MOOC
Credit: Faithie/Shutterstock

