Zero Knowledge Proofs

SNARKSs via Interactive Proofs

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

% Stanford

University

EORGETOW,
\ B€rk€1€y TUNIVERSITY

” UNIVERSITY OF CALIFORNIA

Recall: What is a SNARK ?

o SNARK: a succinct proof that a certain statement is true

Example statement: “l know an m such that SHA256(m) = 0”

= SNARK: the proofis “short” and “fast” to verify
[if m is 1GB then the trivial proof (the message m) is neither]

ZKP MOOC

Interactive Proofs:
Motivation and Model

ZKP MOOC

Interactive Proofs

Cloud Provider Business/Agency/Scientist

ZKP MOOC

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Data

ZKP MOOC

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Comssmaaasssa

ZKP MOOC

Interactive Proofs

Cloud Provider Business/Agency/Scientist

eSS e e
— o;ei%"a—

|

ZKP MOOC

Interactive Proofs

Cloud Provider Business/Agency/Scientist

eSS e e
— o;ei%"a—

|

ZKP MOOC

Interactive Proofs

Cloud Provider Business/Agency/Scientist

ZKP MOOC

Interactive Proofs

Cloud Provider Business/Agency/Scientist

ZKP MOOC

Interactive Proofs

Cloud Provider Business/Agency/Scientist

ZKP MOOC

Interactive Proofs

= P solves problem, tells V the answer.
= Then they have a conversation.
= P’s goal: convince V the answer is correct.
= Requirements:
= 1. Completeness: an honest P can convince V to accept.
= 2. (Statistical) Soundness: V will catch a lying P with high probability.

ZKP MOOC

Interactive Proofs

= P solves problem, tells V the answer.
= Then they have a conversation.
= P’s goal: convince V the answer is correct.
= Requirements:
= 1. Completeness: an honest P can convince V to accept.
= 2. (Statistical) Soundness: V will catch a lying P with high probability.

This must hold even if P is computationally unbounded and trying to
trick V into accepting the incorrect answer.

ZKP MOOC

Interactive Proofs

= P solves problem, tells V the answer.
= Then they have a conversation.
= P’s goal: convince V the answer is correct.
= Requirements:
= 1. Completeness: an honest P can convince V to accept.

= 2. (Statistical) Soundness: V will catch a lying P with high probability.

If soundness holds only against polynomial-time provers, then the
protocol is called an interactive argument.

ZKP MOOC

Interactive Proofs and Arguments

= Compare soundness to knowledge soundness (last lecture) for
circuit-satisfiability:

Public arithmetic circuit: C(x, w) —

)

public statement in F" secret witness in F™

ZKP MOOC

Interactive Proofs and Arguments

= Compare soundness to knowledge soundness (last lecture) for
circuit-satisfiability:

 Sound:V accepts = Thereexistsws.t. C(x,w) =0
* Knowledge sound: V accepts = P “knows” ws.t. C(x,w) =0

ZKP MOOC

Interactive Proofs and Arguments

= Compare soundness to knowledge soundness (last lecture) for
circuit-satisfiability:

 Sound:V accepts = Thereexistsws.t. C(x,w) =0
* Knowledge sound: V accepts = P “knows” ws.t. C(x,w) =0

* Knowledge soundness is stronger.

ZKP MOOC

Interactive Proofs and Arguments

= Compare soundness to knowledge soundness (last lecture) for
circuit-satisfiability:
* Sound:Vaccepts = Thereexistsws.t. C(x,w) =0
* Knowledge sound:V accepts = P “knows” ws.t. C(x,w) =0

* Knowledge soundness is stronger.

e But standard soundness is meaningful even in contexts where knowledge
soundness isn’t.

 Because there’s no natural “witness”.
 E.g., Pclaimsthe output of V’s program on x is 42.

ZKP MOOC

Interactive Proofs and Arguments

= Compare soundness to knowledge soundness (last lecture) for
circuit-satisfiability:
Sound: V accepts = Thereexists ws.t. C(x,w) =0
Knowledge sound: V accepts = P “knows” ws.t. C(x,w) =0

Knowledge soundness is stronger.

Likewise, knowledge soundness is meaningful in contexts where standard
soundness isn’t.

e e.g., Pclaims to know the secret key that controls a certain bitcoin wallet.

ZKP MOOC

Public Verifiability

* |nteractive proofs and arguments only convince the party
that is choosing/sending the random challenges.

= This is bad if there are many verifiers (as in most
blockchain applications).
= P would have to convince each verifier separately.

= For public coin protocols, we have a solution: Fiat-Shamir.
= Makes the protocol non-interactive + publicly verifiable.

ZKP MOOC

SNARKSs from interactive
proofs: outline

ZKP MOOC

Recall: The trivial SNARK is not a SNARK

(@) Prover sends w to verifier,
(b) Verifier checks if C(x,w) = 0 and accepts if so.

Problems with this:

(1) w might be long: we want a “short” proof

(2) computing C(x,w) may be hard: we want a “fast” verifier

ZKP MOOC

SNARKS from Interactive Proofs (IPs)

% Slightly less trivial: P sends w to V, and uses an IP to prove
that w satisfies the claimed property.

= FastV, but proof is still too long.

ZKP MOOC

SNARKS from Interactive Proofs (IPs)

% Slightly less trivial: P sends w to V, and uses an IP to prove
that w satisfies the claimed property.
= FastV, but proof is still too long.

= Actual SNARK: P commits cryptographically to w.
= Uses an IP to prove that w satisfies the claimed property.

= Reveals just enough information about the committed witness
w to allow V to run its checks in the IP.

= Render non-interactive via Fiat-Shamir.

ZKP MOOC

Review of functional
commitments

ZKP MOOC

Recall: three important functional commitments

Rolynomial commitments: commit to a univariate f(X) in le(fd) [X]

Multilinear commitments: commit to multilinear f in le(fl) Xy, ..., Xi]
e.g., f(xl, ...,xk) = X1X3 + X1X4X5 + X7

Vector commitments (e.g., Merkle trees):
= Committou = (uq,...,Ug) € ng : Opencells: f3(i) = u;

ZKP MOOC

Recall: three important functional commitments

Rolynomial commitments: commit to a univariate f(X) in IFgfd)[X]

Multilinear commitments: commit to multilinear f in IFgfl) (X1, ., Xk]
e.g., f(xl, ...,xk) = X1X3 + X1X4X5 + X7

Vector commitments (e.g., Merkle trees):
= Committou = (uq,...,Ug) € [Fg : Open cells: f3(i) = y;

ZKP MOOC

Recall: three important functional commitments

Rolynomial commitments: commit to a univariate f(X) in IFgfd)[X]

Multilinear commitments: commit to multilinear f in IFgfl) (X1, ., Xk]
e.g., f(xl, ...,xk) = X1X3 + X1X4X5 + X7

Vector commitments (e.g., Merkle trees):
= Committou = (uq,...,Ug) € [Fg : Open cells: f3(i) = y;

ZKP MOOC

Merkle Trees: The Commitment

L]

ZKP MOOC

Merkle Trees: Opening Leaf T

L]

ZKP MOOC

Merkle Trees

= Commitment to vector is root hash.

= To open an entry of the committed vector (leaf of the tree):
= Send sibling hashes of all nodes on root-to-leaf path.
= V checks these are consistent with the root hash.
= “Opening proof” size is O(log n) hash values.

ZKP MOOC

Merkle Trees

= Commitment to vector is root hash.
= To open an entry of the committed vector (leaf of the tree):
= Send sibling hashes of all nodes on root-to-leaf path.
= V checks these are consistent with the root hash.
= “Opening proof” size is O(log n) hash values.
= Binding: once the root hash is sent, the committer is bound to
a fixed vector.

= Opening any leaf to two different values requires finding a hash
collision (assumed to be intractable).

ZKP MOOC

A First Polynomial commitment: commit to a univariate f(X) in]F;Sd) | X]

L]

—_— —

h,=H(m_, m,) h,=H(m_, m,)

| m, =1 || me =H0@rGD | me=nG@.ron || my=HEE),

o] [

ZKP MOOC

Reveal f(4)

L]

h2=H(m3, m4)

“ my = H(f(0),f(1)) “ m, = H(f(2),f(3)) “ mz = H(f (4).f (5))

] (o] o] [5]

my = H(f(6))

ZKP MOOC

Summary: commit to a univariate f(X) in FED[x]

% P Merkle-commits to all evaluations of the polynomial f.

= When V requests f(r), P reveals the associated leaf along with
opening information.

ZKP MOOC

Summary: commit to a univariate f(X) in FED[x]

% P Merkle-commits to all evaluations of the polynomial f.

= When V requests f(r), P reveals the associated leaf along with
opening information.

= Two problems:

1. The number of leaves is |IF|, which means the time to compute the
commitmentis at least |[F|.

= Big problem when working over large fields (say, |F| =~ 2%*or |F| ~ 2129),
= Want time proportional to the degree bound d.

2. Vdoesnot know if f has degree at most d!

= We'll explain how to address both issues later in the course.

ZKP MOOC

Interactive proof design:
Technical preliminaries

ZKP MOOC

Recap: SZDL Lemma

% Recall FACT: Let p # g be univariate polynomlals of degree at
most d. Then Prcp|[p(r) = q(r)] < Tk

" The Schwartz-Zippel-Demillo-Lipton lemma is a
multivariate generalization:

" Let p # g be f-variate polynomlals of total degree at most d.
Then Pr,_.¢[p(r) = q(r)] < ik

“Total degree refers to the maX|mum sum of degrees of all
varlables in any term. E.g., x#x, + x;x, has total degree 3.

ZKP MOOC

Low-Degree and Multilinear Extensions

% Definition [Extensions]. Given a function f: {0,1}*—> F, a ¢-
variate ponnomlaI g over FF is said to extend f if f(x) = g(x)

for all x € {0,1}".

= Definition [Multilinear Extensions]. Any function
f:{0,1¥ > F has a unique multilinear extension (MLE),
denoted f.
= Multilinear means the polynomial has degree at most 1 in each

variable.
= (1 —x,)(1— x;)is multilinear, x#x, is not.

ZKP MOOC

f:{0,1}*> F

1 2|

3 10|

ZKP MOOC

f:F?>F

1 2 3 4 5 6
3 10 f{| 12 ||| 14 ||| 16 ||| 18
15 | 18 ||| 21 ||| 24 ||| 27 ||| 30
22 11126 ||| 30 ||| 34 ||| 38 ||| 42
29 1134 11|39 ||| 44 || 49 ||| 56

ZKP MOOC

f(xl, xz) = (1 — xl)(l — xz) -+ 2(1 — xl)x2+ 8x1(1 — x2)+10x1x2

1 2 3 4 5 6
3 10 f{| 12 ||| 14 ||| 16 ||| 18
15 | 18 ||| 21 ||| 24 ||| 27 ||| 30
22 11126 ||| 30 ||| 34 ||| 38 ||| 42
29 1134 11|39 ||| 44 || 49 ||| 56

Can check:

~

£(0,0) =1
000 /(0,1)=2

f(1,0) =8
f(1,1) =10

ZKP MOOC

Another (non-multilinear) extension of f: g(x1,%;) = —x% + x,x,+8 x; + x, + 1

1 2 3 4 5 6
3 10 |{| 12 ||| 14 ||| 16 ||| 18
13 1116 ||| 19 || 22 ||| 25 ||| 28
16 ||| 20 ||| 24 ||| 28 ||| 32 ||| 36
17 1| 22 ||| 27 ||| 32 ||| 37 ||| 42

Can check:
g 0,0)=1
000 ((0,1)=2
g(1,0) =8
g(1,1) =10

ZKP MOOC

Evaluating multilinear extensions quickly

= Fact: Given as input all 2 evaluations of a function f: {0,1}*—> F, for
any point 7 € ¢ there is an 0(2%)-time algorithm for evaluating f (7).

ZKP MOOC

Evaluating multilinear extensions quickly

= Fact: Given as input all 2 evaluations of a function f: {0,1}*—> F, for
any point 7 € ¢ there is an 0(2%)-time algorithm for evaluating f (7).
= Sketch: Use Lagrange interpolation.

ZKP MOOC

Evaluating multilinear extensions quickly

= Fact: Given as input all 2 evaluations of a function f: {0,1}*—> F, for
any point 7 € ¢ there is an 0(2%)-time algorithm for evaluating f (7).
= Sketch: Use Lagrange interpolation.
= Define 8,,(r) = [Ti=(riw; + (1 — r) (1 — wy)).
= This is called the multilinear Lagrange basis polynomial corresponding to w.

= Fact: f(r) = Sypeqonye f W) - 6 ().

ZKP MOOC

Evaluating multilinear extensions quickly

' Fact: Given asi {put all 2¢ evaluations of a function f:{0,1}Y— F, for
any point r € ¢ there is an 0(2%)-time algorithm for evaluatmg f ().
= Sketch: Use Lagrange interpolation.
= Define 8,,(r) = [Ti=(riw; + (1 — r) (1 — wy)).

= This is called the multilinear Lagrange basis polynomial corresponding to w.
" Fact: f(T) ZWE 0,1} ef(W) 6w(r)
* Foreachw € {0, 1}’9 5,,(r) can be computed with O (¥) field operations.

= Yields an 0 (£2%)-time algorithm.

= Can reduce to time 0(2‘)) via dynamic programming.

ZKP MOOC

The sum-check
protocol

ZKP MOOC

Sum-Check Protocol [LFKN9O]

= |nput: V given oracle access to a £-variate polynomial
g over field FF.

" Goal: compute the quantity:

z z z g(by, ... by).

b,€{0,1} b,€{0,1} b,€{0,1}

ZKP MOOC

Sum-Check Protocol [LFKN9O]

= Start: P sends claimed answer (1. The protocol must check that:

b,€{0,1) b,€{0,1} b,€{0,1}

ZKP MOOC

Sum-Check Protocol [LFKN9O]

= Start: P sends claimed answer (1. The protocol must check that:

C, = Z 2 Z g(bs, ..., by).

b1€{0,1} b,€{0,1} b,€{0,1}
= Round 1: P sends univariate polynomial s; (X;) claimed to equal:

Hl(Xl):z z Z g(lebZ""'bf)
b,€{0,1} by€e{0,1}

ZKP MOOC

Sum-Check Protocol [LFKN9O]

= Start: P sends claimed answer (1. The protocol must check that:

C, = Z 2 Z g(bs, ..., by).

b1€{0,1} b,€{0,1} b,€{0,1}
= Round 1: P sends univariate polynomial s; (X;) claimed to equal:

Hl(Xl):: z Z g(Xlle' ,bf)
b,€{0,1} by€e{0,1}
= V checks that C; = s{(0) + s{(1).

ZKP MOOC

Sum-Check Protocol [LFKN9O]

= Start: P sends claimed answer (1. The protocol must check that:

C, = Z 2 Z g(bs, ..., by).

b,1€{0,1} b,€{0,1} b,€{0,1}
= Round 1: P sends univariate polynomial s; (X;) claimed to equal:

Hl(Xl):: 2 Z g(Xlle' ,bg)
b,€{0,1} by€e{0,1}
= V checksthat C; = 51(0) + s{(1).

= |fthis check passes, it is safe for V to believe that C; is the correct answer, so long as
V believes that s;= H;.

= How to check this? Just check that s; and H, agree at a random point ry.

ZKP MOOC

Sum-Check Protocol [LFKN9O]

= Start: P sends claimed answer (1. The protocol must check that:

C, = Z 2 Z g(bs, ..., by).

b,1€{0,1} b,€{0,1} b,€{0,1}
= Round 1: P sends univariate polynomial s; (X;) claimed to equal:

Hl(Xl):: 2 Z g(Xlle' ,bg)
b,€{0,1} by€e{0,1}
= V checks that C; = s{(0) + s{(1).

= |fthis check passes, it is safe for V to believe that C; is the correct answer, so long as
V believes that s;= H;.

= How to check this? Just check that s; and H, agree at a random point ry.
= V can compute s;(ry) directly from P’s first message, but not H; (7).

ZKP MOOC

Sum-Check Protocol [LFKN9O]

= Start: P sends claimed answer (1. The protocol must check that:

C, = Z 2 Z g(bs, ..., by).

b,1€{0,1} b,€{0,1} b,€{0,1}
= Round 1: P sends univariate polynomial s; (X;) claimed to equal:

H(X)i=)) g(Xubyniby)
b,€{0,1} b,y€e{0,1}
= V checks that C; = s1(0) + s,(1).
= V picks r; at random from [F and sends r; to P.
= Round 2: They recursively check that s; (1) = Hq (7).

ZKP MOOC

Sum-Check Protocol [LFKN9O]

= Start: P sends claimed answer (1. The protocol must check that:

C, = Z 2 Z g(bs, ..., by).

b,€{0,1} b,€{0,1} b,€{0,1}
= Round 1: P sends univariate polynomial s; (X;) claimed to equal:

H(X)i=)) g(Xubynby)
b,€{0,1} b,y€e{0,1}
= V checks that C; = s{(0) + s{(1).
= V picks rq at random from [F and sends r; to P.
= Round 2: They recursively check that s; (1) = Hq (7).

i.e., that Sl(T'l) = ZbZE{O,l} ...Zb{)e{ojl}g(rl, bz, cery bg)

ZKP MOOC

Sum-Check Protocol [LFKN9O]

% Round # (Final round): P sends univariate polynomial s, (X,) claimed to
equal
Hp := g(r1, ..., 191, Xp).
= V checks that sp,_1(1p_1) = s,(0) + s,(1).
=\ picks 1, at random, and needs to check that s, (1) = g(ry, ..., 79).
= No need for more rounds. V can perform this check with one oracle

query.

ZKP MOOC

Analysis of the
sum-check protocol

ZKP MOOC

Completeness

= Completeness holds by design: If P sends the
prescribed messages, then all of V’s checks will pass.

ZKP MOOC

Soundness

= |f P does not send the prescribed messages, then V rejects
with probability at least 1- %, where d is the maximum

degree of g in any variable.
" Eg |F| ~ 2128, d =3,¢ = 60.
= Then soundness error is at most 3 - 60/ 2128= 2"

ZKP MOOC

120

Soundness

% |f P does not send the prescribed messages, then V rejects

with probability at least 1- ﬁ where d is the maximum

degree of g in any variable.
= Proof is by induction on the number of variables £.

= Base case: £ = 1. In this case, P sends a single message s, (X;) claimed
to equal g(X;).V picks r; at random, checks that s; (1) = g(r).

= Ifs; # g, then P, ep[s1(ry) = g(ry)] < |1F|

ZKP MOOC

Soundness

% Inductive case: £ > 1.
= Recall: P’s first message s, (X;) is claimed to equal
Hi(X1) = Xp,e0,1) - Lbefo,1) 9 K1, b2, ., b).

= Then V picks a random r; and sends r; to P. They (recursively) invoke sum-check
to confirm that s, (1) = H{(ry).

ZKP MOOC

Soundness

% Inductive case: £ > 1.
= Recall: P’s first message s, (X;) is claimed to equal

Hy(X1) = Xp,e(0,1} = Lbyefo,13 9 (X1, b2, ..., by).

* Then V picks a random r; and sends r; to P. They (recursively) invoke sum-check
to confirm that s; (1) = H;(1y).

= Ifs; # Hy,then Pr,. cp[s; (1) = Hy(r))] < L

IF|’
" |fs,(ry) # H{(rp), Pis left to prove a false claim in the recursive call.
* The recursive call applies sum-check to g(ry, X5, ..., Xp), which is £-1 variate.

. s d(¢-1
= By induction, P convinces V in the recursive call with probability at most (IIFI).

ZKP MOOC

Soundness analysis: wrap-up

= Summary: if s; # Hq, the probability V accepts is at most:

Pry. er[s1(r1) = H(r))] + Pry,, r,er[V accepts|s; () # H(ry)]

<L 2D 2
F T IE

ZKP MOOC

Costs of the sum-check protocol

% Total communication is O (d?) field elements.

= P sends € messages, each a univariate polynomial of degree at
most d. V sends £ — 1 messages, each consisting of one field
element.

ZKP MOOC

Costs of the sum-check protocol

% Total communication is O (d¥) field elements.

= P sends £ messages, each a univariate polynomial of degree at
most d. V sends £ — 1 messages, each consisting of one field
element.

= \V’s runtime is:
O(d? + [time required to evaluate g at one point]).

= P’s runtime is at most:
O(d . 2% . [time required to evaluate g at one point]).

ZKP MOOC

A first application of the
sum-check protocol:
An IP for counting triangles
with linear-time verifier

ZKP MOOC

Costs of the sum-check protocol

% Total communication is O (d¥) field elements.

= P sends £ messages, each a univariate polynomial of degree at
most d. V sends £ — 1 messages, each consisting of one field
element.

= \V’s runtime is:
O(d? + [time required to evaluate g at one point]).

= P’s runtime is at most:
O(d . 2% . [time required to evaluate g at one point]).

ZKP MOOC

Counting Triangles

= Input: A € {0,1}"**", representing the adjacency
matrix of a graph.
" Desired Output: 2. ; i yernj® AijAjkAik -

= Fastest known algorithm runs in matrix-multiplication
time, currently about n%37.

ZKP MOOC

Counting Triangles

= Input: A € {0,1}"**", representing the adjacency
matrix of a graph.
" Desired Output: 2. ; i yernj® AijAjkAik -
= The Protocol:
= View 4 as a function mapping {0,1}1°8" x {0,1}1°8 ™
to IF.

ZKP MOOC

113 5]|7
214|638
315|719
4 | 618 |10

A€ F4-><4

ZKP MOOC

Counting Triangles

= Input: A € {0,1}"™*", representing the adjacency matrix of a graph.
= Desired Output: Z(i,j,k)e[n]g AijAjkAig .
= The Protocol:

= View 4 as a function mapping {0,1}1°8™ x {0,1}1°8" to F.

= Recall that A denotes the multilinear extension of A.

= Define the polynomial g(X,Y,Z) =A(X,Y) A(Y,Z) A(X,Z)

= Apply the sum-check protocol to g to compute:

z g(a,b,c)

(a,b,c) €{0,1}3logn

ZKP MOOC

Counting Triangles

= Costs:

= Total communication is O(logn), V runtime is 0(n?), P
runtime is 0(n3).
= \’s runtime dominated by evaluating:

g(ry,73,13) = A(T1» 2) A(rz»r3) A(T1:T3)-

ZKP MOOC

A SNARK for
circuit-satisfiability

ZKP MOOC

Recall: SNARKSs for circuit-satisfiability

i Given: An arithmetic circuit C over F of size S and output y.
= P claimsto know aw such that C(x,w) =y
= For simplicity, let’s take x to beithe empty input.

888
—

| 4%

ZKP MOOC

Recall: SNARKSs for circuit-satisfiability

B AtranscriptT for C isan assignment of a value to every gate.

= Tisacorrecttranscriptif it assigns the gate values obtained by
evaluating C on a valid witness w.

VN
A
y N P T

)

PPN
o

@Y © O O
Circuit-SAT instance C Correct transcript for C yielding output 5.

ZKP MOOC

Viewing a transcript as a function with domain {O,l}logs

B Assign each gatein C a (log S)-bit label and view T as a function mapping
gate labels to F.

T(0,0,0,0) = 3

7(0,0,01) =2

7(0,0,1,0) = 0

7(0,0,1,1) =0

7(0,1,0,0) = 1

7(0,1,0,1) =6

* * 7(0,1,1,1) = 2
7(1,0,0,0) = 0

7(1,001) =1

7(1,0,1,0) = 0

T(1,0,1,1) =2

7(1,1,0,0) = 1

A T(1,1,0,1) =2

4 7(1,1,1,0) =2
T(1,1,1,1) = 4

Circuit-SAT instance C Correct transcript T for €

ZKP MOOC

The polynomial IOP
underlying the SNARK

ZKP MOOC

The start of the polynomial IOP

B Assign each gatein C a (log S)-bit label and view T as a function mapping
gate labels to .

= P’sfirst messageis a (log S)-variate polynomial h claimed to extend a
correct transcript T, which means:

h(x) = T(x) V x € {0, 1}1°85.

ZKP MOOC

The start of the polynomial IOP

B Assign each gatein C a (log S)-bit label and view T as a function mapping
gate labels to FF.

= P’sfirst messageis a (log S)-variate polynomial h claimed to extend a
correct transcript T, which means:

h(x) = T(x) V x € {0, 1}1°85.
= V needs to check this, but is only able to learn a few evaluations of h.

ZKP MOOC

Intuition for why h is a useful object for P to send

‘« Think of h as a distance-amplified encoding of the transcript T.
* The domain of T is {0, 1}!°8 5. The domain of h is F1°85, which is vastly bigger.

ZKP MOOC

Intuition for why h is a useful object for P to send

‘« Think of h as a distance-amplified encoding of the transcript T.
* The domain of T is {0, 1}!°8 5. The domain of h is F1°85, which is vastly bigger.

O 1 2 3 4
0O 1 o012 |3|4|0
0] 12 1.1/4|2 0|3 All 25 evaluations of the
multilinear polynomial h
1| 4
1 2/ 1]1)1 1)1 that extends T, one for
All four evaluations of 31,3, 0|24 each element of F; X F¢
a function T mapping |
{0,1}2 to F 41 /04|32

ZKP MOOC

Intuition for why h is a useful object for P to send

‘« Think of h as a distance-amplified encoding of the transcript T.

* The domain of T is {0, 1}!°8 5. The domain of h is F1°85, which is vastly bigger.

* Schwartz-Zippel: If two transcripts T, T’ disagree at even a single gate value,
their extension polynomials h, h’ disagree at almost all points in F1°85,

* Specifically, a1 —log(S) /|F| fraction.

* Distance-amplifying nature of the encoding will enable V to detect even a single
“inconsistency” in the entire transcript.

ZKP MOOC

Reminder: the start of the polynomial IOP

B P’sfirst messageis a (log S)-variate polynomial h claimed to extend a
correct transcript T, which means:

h(x) = T(x) V x € {0, 1}1°85.
= V needs to check this, but is only able to learn a few evaluations of h.

ZKP MOOC

Two-step plan of attack

= 1. Given any (log S)-variate polynomial h, identify a related (3log S)-variate polynomial
gn such that:

h extends a correct transcript T < g, (a,b,¢) = 0V(a, b, ¢) € {0,1}° log s

= Moreover, to evaluate g (1) at any input 7, suffices to evaluate h atonly 3
inputs.

2. Design an interactive proof to check that g, (a, b,¢) = 0V(a, b,c) € {0,1}° log s
" In which V only needs to evaluate gy () at one point .

ZKP MOOC

Step 1 of the plan

= " Given (log S)-variate polynomial h, identify a related (3log S)-variate polynomial g;, such that:
h extends a correct transcript T < g, (a,b,c) = 0V(a, b, c) € {0,1}31085,
= And to evaluate g, () at any r, suffices to evaluate h at only 3 inputs.

ZKP MOOC

Step 1 of the plan

= " Given (log S)-variate polynomial h, identify a related (3log S)-variate polynomial g;, such that:
h extends a correct transcript T < g, (a,b,c) = 0V(a, b, c) € {0,1}31085,
= And to evaluate g, () at any r, suffices to evaluate h at only 3 inputs.
* Proof sketch (simplification): Define g, (a, b, ¢) via:
add(a,b,c) - (h(a) — (h(b) + h(c))) + mult(a, b, c) - (h(a) — h(b) - h(c)).

ZKP MOOC

Step 1 of the plan

= " Given (log S)-variate polynomial h, identify a related (3log S)-variate polynomial g;, such that:
h extends a correct transcript T < g, (a,b,c) = 0V(a, b, c) € {0,1}31085,
= And to evaluate g, () at any r, suffices to evaluate h at only 3 inputs.
* Proof sketch (simplification): Define g, (a, b, ¢) via:
add(a,b,c) - (h(a) — (h(b) + h(c))) + mult(a, b, c) - (h(a) — h(b) - h(c)).

1. gy(a,b,c) = h(a)— (h(b) + h(c)) if a is the label of a gate that computes
the sum of gates b and c.

2. gn(a,b,c) = h(a) — h(b) - h(c) if a is the label of a gate that computes the
product of gates b and c.

3. gn(a, b,c) = 0 otherwise.

ZKP MOOC

Step 2: A Hint

= " Howto checkthat g,(a,b,c) =0V(a,b,c) € {0,1}3 log $9
= With V only evaluating g;, at a single point?
= Imagine for a moment that g; were a univariate polynomial g, (X).

= And rather than needing to check that g, vanishes over input set {0,1}31°85,
we needed to check that g; vanishes over some set H C F.

ZKP MOOC

Step 2: A Hint

= " Howto checkthat g,(a,b,c) =0V(a,b,c) € {0,1}3 log $9
= With V only evaluating g;, at a single point?
= Imagine for a moment that g; were a univariate polynomial g, (X).

= And rather than needing to check that g, vanishes over input set {0,1}31°85,
we needed to check that g; vanishes over some set H C F.

" Fact: g,(x) = 0forallx € H & g, is divisible by Zy (x) = [[,eg(x — a).
= Zy is called the vanishing polynomial for H.
= Polynomial IOP:
= P sends a polynomial g such that g, (X) = q(X) - Zy (X).
=V checks this by picking a random r € FF and checking that g,,(r) = q(r) - Zyx (7).

ZKP MOOC

The actual protocol

s " Previousslide doesn’t actually work.
= gj is not univariate, it has 3 log S variables.
= Also, having P find and send the quotient polynomial is expensive.

= |nthe final SNARK, this would mean applying polynomial commitment to
additional polynomials.

= This is what Marlin, PlonK, and Groth16 do.
= Solution: use the sum-check protocol [LFKN9O].
= Handles multivariate polynomials.
= Doesn’t require P to send additional large polynomials.

ZKP MOOC

Recall sum-check

92 ZKP MOOC
Credit: Faithie/Shutterstock

Sum-check protocol: a reminder

% Goal: compute the quantity:

g(bq, ..., bp).
b1€{0,1} b,€{0,1} b,€{0,1}
= Proof length is roughly the total degree of g.
* Number of rounds is ¥.
= Vtime is roughly the time to evaluate g at a single randomly chosen input.
= To run the protocol, V doesn’t even need to “know” what polynomial g is
being summed, so long as it knows g(r) for a randomly chosen inputr € F*.

ZKP MOOC

The polynomial IOP for circuit-satisfiability

= * How to check that g,(a,b,c) = 0V(a,b,c) € {0,1}31085?
= With V only evaluating g; at a single point?
= General idea (working over the integers instead of [F):
= V checks this by running sum-check protocol with P to compute:

2
Za,b,ce{0,1}10g S gh(a; b, C) .
= |f all terms in the sum are O, the sum is 0.

= |f working over the integers, any non-zero term in the sum will cause the
sum to be strictly positive.

ZKP MOOC

The polynomial IOP for circuit-satisfiability

= * How to check that g,(a,b,c) = 0V(a,b,c) € {0,1}31085?
= With V only evaluating g; at a single point?
= General idea (working over the integers instead of [F):
= V checks this by running sum-check protocol with P to compute:

Za,b,cE{O,l}logS gh(a; b, C)Z .
= At end of sum-check protocol, V needs to evaluate g;, (11,15, 13).
= Suffices to evaluate h(ry), h(ry), h(13).
= Qutside of these evaluations, V runs in time O(log $).
= P performs O(S) field operations given a witness w.

ZKP MOOC

END OF LECTURE

96 ZKP MOOC
Credit: Faithie/Shutterstock

