Zero Knowledge Proofs

SNARKs via Interactive Proofs

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang
Recall: What is a SNARK?

- **SNARK**: a succinct proof that a certain statement is true

 Example statement: “I know an \(m \) such that \(\text{SHA256}(m) = 0 \)”

- **SNARK**: the proof is “short” and “fast” to verify
 [if \(m \) is 1GB then the trivial proof (the message \(m \) is neither]

- **zk-SNARK**: the proof “reveals nothing” about \(m \) (privacy for \(m \))
Interactive Proofs: Motivation and Model
Interactive Proofs

Cloud Provider

Business/Agency/Scientist
Interactive Proofs

Cloud Provider

Data

Business/Agency/Scientist
Interactive Proofs

Cloud Provider

Data

Business/Agency/Scientist

Data Summary
Interactive Proofs

Cloud Provider

Data

Business/Agency/Scientist

Data Summary

Question

Answer
Interactive Proofs

Cloud Provider

Data

Challenge

Response

Business/Agency/Scientist

Data Summary
Interactive Proofs

Cloud Provider

Data

Challenge

Response

Business/Agency/Scientist

Data Summary

Challenge

Response
Interactive Proofs

Cloud Provider

Data

Challenge

Response

Business/Agency/Scientist

Data Summary

Challenge

Response
Interactive Proofs

Cloud Provider

Data

Challenge

Response

Challenge

Response

Business/Agency/Scientist

Accept or Reject
Interactive Proofs

- P solves problem, tells V the answer.
 - Then they have a conversation.
 - P’s goal: convince V the answer is correct.

- Requirements:
 1. Completeness: an honest P can convince V to accept.
 2. (Statistical) Soundness: V will catch a lying P with high probability.
Interactive Proofs

- P solves problem, tells V the answer.
 - Then they have a conversation.
 - P’s goal: convince V the answer is correct.

- Requirements:
 1. Completeness: an honest P can convince V to accept.
 2. (Statistical) Soundness: V will catch a lying P with high probability. This must hold even if P is computationally unbounded and trying to trick V into accepting the incorrect answer.
Interactive Proofs

- P solves problem, tells V the answer.
 - Then they have a conversation.
 - P’s goal: convince V the answer is correct.
- Requirements:
 1. Completeness: an honest P can convince V to accept.
 2. (Statistical) Soundness: V will catch a lying P with high probability.
 If soundness holds only against polynomial-time provers, then the protocol is called an interactive argument.
Interactive Proofs and Arguments

- Compare soundness to knowledge soundness (last lecture) for circuit-satisfiability:

Public arithmetic circuit: \(C(x, w) \rightarrow \mathbb{F} \)

- public statement in \(\mathbb{F}^n \)
- secret witness in \(\mathbb{F}^m \)
Interactive Proofs and Arguments

- Compare **soundness** to **knowledge soundness** (last lecture) for circuit-satisfiability:

 - **Sound**: \(V \) accepts \(\Rightarrow \) There exists \(w \) s.t. \(C(x, w) = 0 \)
 - **Knowledge sound**: \(V \) accepts \(\Rightarrow P \) “knows” \(w \) s.t. \(C(x, w) = 0 \)

 - Knowledge soundness is stronger.
 - But standard soundness is meaningful even in contexts where knowledge soundness isn’t.
 - Because there’s no natural “witness”.
 - E.g., P claims the output of V’s program on x is 42.
Interactive Proofs and Arguments

- Compare **soundness** to **knowledge soundness** (last lecture) for circuit-satisfiability:

 - **Sound**: V accepts \Rightarrow There exists w s.t. $C(x, w) = 0$
 - **Knowledge sound**: V accepts $\Rightarrow P$ “knows” w s.t. $C(x, w) = 0$

- Knowledge soundness is stronger.
 - But standard soundness is meaningful over in contexts where knowledge soundness isn’t.
 - Because there’s no natural “witness”.
 - E.g., P claims the output of V’s program on x is 42.
Interactive Proofs and Arguments

- Compare **soundness** to **knowledge soundness** (last lecture) for circuit-satisfiability:
 - **Sound**: V accepts \Rightarrow There exists w s.t. $C(x, w) = 0$
 - **Knowledge sound**: V accepts $\Rightarrow P$ “knows” w s.t. $C(x, w) = 0$

- Knowledge soundness is stronger.
- But standard soundness is meaningful even in contexts where knowledge soundness isn’t.
 - Because there’s no natural “witness”.
 - E.g., P claims the output of V’s program on x is 42.
Interactive Proofs and Arguments

- Compare **soundness** to **knowledge soundness** (last lecture) for circuit-satisfiability:
 - **Sound**: V accepts \Rightarrow There exists w s.t. $C(x, w) = 0$
 - **Knowledge sound**: V accepts $\Rightarrow P$ “knows” w s.t. $C(x, w) = 0$
 - Knowledge soundness is stronger.
 - Likewise, knowledge soundness is meaningful in contexts where standard soundness isn’t.
 - e.g., P claims to know the secret key that controls a certain bitcoin wallet.
Interactive proofs and arguments only convince the party that is choosing/sending the random challenges.

This is bad if there are many verifiers (as in most blockchain applications).

- P would have to convince each verifier separately.

For public coin protocols, we have a solution: Fiat-Shamir.

- Makes the protocol non-interactive + publicly verifiable.
SNARKs from interactive proofs: outline
Recall: The trivial SNARK is not a SNARK

(a) Prover sends w to verifier,
(b) Verifier checks if $C(x, w) = 0$ and accepts if so.

Problems with this:

(1) w might be long: we want a “short” proof

(2) computing $C(x, w)$ may be hard: we want a “fast” verifier

(3) w might be secret: prover might not want to reveal w to verifier
SNARKS from Interactive Proofs (IPs)

- Slightly less trivial: P sends w to V, and uses an IP to prove that w satisfies the claimed property.
 - Fast V, but proof is still too long.

Actual SNARK: P commits cryptographically to w.

- Uses an IP to prove that w satisfies the claimed property.
- Reveals just enough information about the committed witness w to allow V to run its checks in the IP.
- Render the protocol non-interactive via Fiat-Shamir.
SNARKS from Interactive Proofs (IPs)

- Slightly less trivial: P sends w to V, and uses an IP to prove that w satisfies the claimed property.
 - Fast V, but proof is still too long.
- Actual SNARK: P commits cryptographically to w.
 - Uses an IP to prove that w satisfies the claimed property.
 - Reveals just enough information about the committed witness w to allow V to run its checks in the IP.
 - Render non-interactive via Fiat-Shamir.
Review of functional commitments
Recall: three important functional commitments

Polynomial commitments: commit to a univariate $f(X)$ in $\mathbb{F}_p^{(\leq d)}[X]$

Multilinear commitments: commit to multilinear f in $\mathbb{F}_p^{(\leq 1)}[X_1, \ldots, X_k]$

\[f(x_1, \ldots, x_k) = x_1x_3 + x_1x_4x_5 + x_7 \]

Vector commitments (e.g., Merkle trees):
- Commit to $\vec{u} = (u_1, \ldots, u_d) \in \mathbb{F}_p^d$. Open cells: $f_\vec{u}(i) = u_i$

Inner product commitments (inner product arguments - IPAs):
- Commit to $\vec{x} \in \mathbb{F}_p^d$. Open an inner product: $f_{\vec{x}}(\vec{y}) = \langle \vec{x}, \vec{y} \rangle$
Recall: three important functional commitments

Polynomial commitments: commit to a univariate \(f(X) \) in \(\mathbb{F}_p^{(\leq d)}[X] \)

Multilinear commitments: commit to multilinear \(f \) in \(\mathbb{F}_p^{(\leq 1)}[X_1, \ldots, X_k] \)

\[f(x_1, \ldots, x_k) = x_1x_3 + x_1x_4x_5 + x_7 \]

Vector commitments (e.g., Merkle trees):
- Commit to \(\overrightarrow{u} = (u_1, \ldots, u_d) \in \mathbb{F}_p^d \).
- Open cells: \(f_{\overrightarrow{u}}(i) = u_i \)

Inner product commitments (inner product arguments - IPA):
- Commit to \(\overrightarrow{q} \in \mathbb{F}_p^d \).
- Open an inner product: \(f_{\overrightarrow{q}}(\overrightarrow{x}) = \langle \overrightarrow{x}, \overrightarrow{q} \rangle \)
Recall: three important functional commitments

Polynomial commitments: commit to a univariate $f(X)$ in $\mathbb{F}_p^{\leq d}[X]$

Multilinear commitments: commit to multilinear f in $\mathbb{F}_p^{\leq 1}[X_1, \ldots, X_k]$

 e.g., $f(x_1, \ldots, x_k) = x_1 x_3 + x_1 x_4 x_5 + x_7$

Vector commitments (e.g., Merkle trees):
- Commit to $\vec{u} = (u_1, \ldots, u_d) \in \mathbb{F}_p^d$.
 Open cells: $f_{\vec{u}}(i) = u_i$

Inner product commitments (inner product arguments — IPA):
Commit to $\vec{v} \in \mathbb{F}_p^d$.
Open an inner product: $f_{\vec{v}}(\vec{s}) = (\vec{v}, \vec{s})$
Merkle Trees: The Commitment

\[m_1 = H(M, Y) \]
\[h_1 = H(m_1, m_2) \]
\[k_1 = H(h_1, h_2) \]
\[m_2 = H(V, E) \]
\[h_2 = H(m_3, m_4) \]
\[m_3 = H(C, T) \]
\[m_4 = H(O, R) \]
Merkle Trees: Opening Leaf T

\[k_1 = H(h_1, h_2) \]

\[h_1 = H(m_1, m_2) \]

\[m_1 = H(M, Y) \]

\[h_2 = H(m_3, m_4) \]

\[m_2 = H(V, E) \]

\[m_3 = H(C, T) \]

\[m_4 = H(O, R) \]
Merkle Trees

- Commitment to vector is root hash.
- To open an entry of the committed vector (leaf of the tree):
 - Send sibling hashes of all nodes on root-to-leaf path.
 - V checks these are consistent with the root hash.
 - “Opening proof” size is $O(\log n)$ hash values.
Merkle Trees

- Commitment to vector is root hash.
- To open an entry of the committed vector (leaf of the tree):
 - Send sibling hashes of all nodes on root-to-leaf path.
 - V checks these are consistent with the root hash.
 - "Opening proof" size is $O(\log n)$ hash values.
- Binding: once the root hash is sent, the committer is bound to a fixed vector.
 - Opening any leaf to two different values requires finding a hash collision (assumed to be intractable).
A First Polynomial commitment: commit to a univariate $f(X)$ in $\mathbb{F}^{(\leq d)}_7[X]$.
Reveal $f(4)$

$$k_1 = H(h_1, h_2)$$

$$h_1 = H(m_1, m_2)$$

$$h_2 = H(m_3, m_4)$$

$$m_1 = H(f(0), f(1))$$

$$m_2 = H(f(2), f(3))$$

$$m_3 = H(f(4), f(5))$$

$$m_4 = H(f(6), \ast)$$

$f(0)$ $f(1)$ $f(2)$ $f(3)$ $f(4)$ $f(5)$ $f(6)$ \ast
Summary: commit to a univariate $f(X)$ in $\mathbb{F}^{(\leq d)}[X]$

- P Merkle-commits to all evaluations of the polynomial f.
- When V requests $f(r)$, P reveals the associated leaf along with opening information.

Two problems:

1. The number of leaves is $|\mathcal{F}|$, which means the time to compute the commitment is as issues $|\mathcal{F}|$.
2. Big problem when working over large fields (say, $|\mathcal{F}| \approx 2^{65}$ or $|\mathcal{F}| \approx 2^{129}$). We get time proportional to the degree bound d.
3. V does not know if f has degree at most d.

We’ll explain how to address both issues later in the course.
Summary: commit to a **univariate** $f(X)$ in $\mathbb{F}^{(\leq d)}[X]$

- P Merkle-commits to all evaluations of the polynomial f.
- When V requests $f(r)$, P reveals the associated leaf along with opening information.
- Two problems:
 1. The number of leaves is $|\mathbb{F}|$, which means the time to compute the commitment is at least $|\mathbb{F}|$.
 - Big problem when working over large fields (say, $|\mathbb{F}| \approx 2^{64}$ or $|\mathbb{F}| \approx 2^{128}$).
 - Want time proportional to the degree bound d.
 2. V does not know if f has degree at most d!
 - We’ll explain how to address both issues later in the course.
Interactive proof design: Technical preliminaries
Recall **FACT:** Let \(p \neq q \) be univariate polynomials of degree at most \(d \). Then \(\Pr_{r \in \mathbb{F}}[p(r) = q(r)] \leq \frac{d}{|\mathbb{F}|} \).

The **Schwartz-Zippel-Demillo-Lipton lemma** is a multivariate generalization:

- Let \(p \neq q \) be \(\ell \)-variate polynomials of total degree at most \(d \). Then \(\Pr_{r \in \mathbb{F}^\ell}[p(r) = q(r)] \leq \frac{d}{|\mathbb{F}|} \).
- “Total degree” refers to the maximum sum of degrees of all variables in any term. E.g., \(x_1^2 x_2 + x_1 x_2 \) has total degree 3.
Low-Degree and Multilinear Extensions

Definition [Extensions]. Given a function \(f : \{0,1\}^\ell \rightarrow \mathbb{F} \), a \(\ell \)-variate polynomial \(g \) over \(\mathbb{F} \) is said to extend \(f \) if \(f(x) = g(x) \) for all \(x \in \{0,1\}^\ell \).

Definition [Multilinear Extensions]. Any function \(f : \{0,1\}^\ell \rightarrow \mathbb{F} \) has a unique multilinear extension (MLE), denoted \(\tilde{f} \).

- Multilinear means the polynomial has degree at most 1 in each variable.
- \((1 - x_1)(1 - x_2) \) is multilinear, \(x_1^2 x_2 \) is not.
\(f: \{0,1\}^2 \rightarrow \mathbb{F} \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
\[\tilde{f} : \mathbb{F}^2 \rightarrow \mathbb{F} \]
\[\tilde{f}(x_1, x_2) = (1 - x_1)(1 - x_2) + 2(1 - x_1)x_2 + 8x_1(1 - x_2) + 10x_1x_2 \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>22</td>
<td>26</td>
<td>30</td>
<td>34</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>39</td>
<td>44</td>
<td>49</td>
<td>56</td>
</tr>
</tbody>
</table>

Can check:
- \(\tilde{f}(0, 0) = 1 \)
- \(\tilde{f}(0, 1) = 2 \)
- \(\tilde{f}(1, 0) = 8 \)
- \(\tilde{f}(1, 1) = 10 \)
Another (non-multilinear) extension of f: $g(x_1, x_2) = -x_1^2 + x_1x_2 + 8x_1 + x_2 + 1$

Can check:
- $g(0, 0) = 1$
- $g(0, 1) = 2$
- $g(1, 0) = 8$
- $g(1, 1) = 10$
Fact: Given as input all \(2^\ell \) evaluations of a function \(f : \{0,1\}^\ell \to \mathbb{F} \), for any point \(r \in \mathbb{F}^\ell \) there is an \(O(2^\ell) \)-time algorithm for evaluating \(\tilde{f}(r) \).

Method: Use Lagrange interpolation.

Define \(\delta_x(r) = \prod_{y \neq x} (1 - x_y)(1 - y_y) \). This is called the multilinear Lagrange basis polynomial corresponding to \(x \).

Fact: \(\tilde{f}(r) = \sum_{x \in \{0,1\}^\ell} f(x) \cdot \delta_x(r) \).

For each \(x \in \{0,1\}^\ell \), \(\delta_x(r) \) can be computed with \(O(\ell) \) field operations.

This yields an \(O(2^\ell) \)-time algorithm.
Evaluating multilinear extensions quickly

Fact: Given as input all 2^ℓ evaluations of a function $f : \{0,1\}^\ell \to \mathbb{F}$, for any point $r \in \mathbb{F}^\ell$ there is an $O(2^\ell)$-time algorithm for evaluating $\tilde{f}(r)$.

Sketch: Use Lagrange interpolation.

Define $\delta_w(r) = \prod_{i=1}^{\ell} (r_i + (1 - r_i)(1 - w_i))$. This is called the multilinear Lagrange basis polynomial corresponding to w.

Fact: $f(r) = \sum_{w \in \{0,1\}^\ell} f(w) \cdot \delta_w(r)$.

For each $w \in \{0,1\}^\ell$, $\delta_w(r)$ can be computed with $O(\ell)$ field operations.

Yield a an $O(2^\ell)$-time algorithm.
Evaluating multilinear extensions quickly

Fact: Given as input all \(2^\ell\) evaluations of a function \(f : \{0,1\}^\ell \to \mathbb{F}\), for any point \(r \in \mathbb{F}^\ell\) there is an \(O(2^\ell)\)-time algorithm for evaluating \(\tilde{f}(r)\).

- **Sketch:** Use Lagrange interpolation.
- Define \(\tilde{\delta}_w(r) = \prod_{i=1}^\ell (r_iw_i + (1 - r_i)(1 - w_i))\).
 - This is called the **multilinear Lagrange basis polynomial** corresponding to \(w\).
- Fact: \(\tilde{f}(r) = \sum_{w \in \{0,1\}^\ell} f(w) \cdot \tilde{\delta}_w(r)\).

For each \(w \in \{0,1\}^\ell\), \(\tilde{\delta}_w(r)\) can be computed with \(O(\ell)\) field operations. Yields an \(O(2^\ell)\)-time algorithm. Can reduce to time \(O(2^\ell)\) via dynamic programming.
Evaluating multilinear extensions quickly

Fact: Given as input all 2^ℓ evaluations of a function $f : \{0,1\}^\ell \rightarrow \mathbb{F}$, for any point $r \in \mathbb{F}^\ell$ there is an $O(2^\ell)$-time algorithm for evaluating $\tilde{f}(r)$.

- **Sketch:** Use Lagrange interpolation.
- Define $\tilde{\delta}_w(r) = \prod_{i=1}^\ell (r_i w_i + (1 - r_i)(1 - w_i))$.
 - This is called the **multilinear Lagrange basis polynomial** corresponding to w.
- Fact: $\tilde{f}(r) = \sum_{w \in \{0,1\}^\ell} f(w) \cdot \tilde{\delta}_w(r)$.
- For each $w \in \{0,1\}^\ell$, $\tilde{\delta}_w(r)$ can be computed with $O(\ell)$ field operations.
 - Yields an $O(\ell 2^\ell)$-time algorithm.
 - Can reduce to time $O(2^\ell)$ via dynamic programming.
The sum-check protocol
Sum-Check Protocol [LFKN90]

- **Input:** Given oracle access to a ℓ-variate polynomial g over field \mathbb{F}.
- **Goal:** Compute the quantity:

\[
\sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \cdots \sum_{b_\ell \in \{0,1\}} g(b_1, \ldots, b_\ell).
\]
Sum-Check Protocol [LFKN90]

Start: P sends claimed answer C_1. The protocol must check that:

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \cdots \sum_{b_\ell \in \{0,1\}} g(b_1, \ldots, b_\ell).$$

Round 1: P sends univariate polynomial $s_\ell(x_\ell)$ claimed to equal:

$$B_\ell(x_\ell) = \sum_{b_\ell \in \{0,1\}} g(x_\ell, b_\ell).$$

V checks that $C_1 = s_\ell(0) + s_\ell(1)$.

If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_\ell(x_\ell) = B_\ell(x_\ell)$.

How to check this? Just check that s_ℓ and B_ℓ agree at a random point x_ℓ.

V can compute $s_\ell(x_\ell)$ directly from P's first message, but not $B_\ell(x_\ell)$.
Sum-Check Protocol [LFKN90]

- **Start:** P sends claimed answer C_1. The protocol must check that:

 $$C_1 = \sum \sum \ldots \sum g(b_1, \ldots, b_\ell).$$

- **Round 1:** P sends **univariate** polynomial $s_1(X_1)$ claimed to equal:

 $$H_1(X_1) := \sum \ldots \sum g(X_1, b_2, \ldots, b_\ell)$$

 V checks that $C_1 = s_1(0) + s_1(1)$.

 If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_1 = X_1$.

 How to check this? Just check that s_1 and H_1 agree at a random point y_1.

 V can compute $s_1(y_1)$ directly from P's first message, but not $H_1(y_1)$.
Sum-Check Protocol [LFKN90]

- **Start:** P sends claimed answer C_1. The protocol must check that:

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \ldots \sum_{b_\ell \in \{0,1\}} g(b_1, \ldots, b_\ell).$$

- **Round 1:** P sends **univariate** polynomial $s_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \ldots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \ldots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.

If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_1(X_1)$.

How to check this? Just check that s_1 and H_1 agree at a random point x_1.

V can compute $s_1(x_1)$ already from P‘s first message, but not $H_1(x_1)$.
Sum-Check Protocol [LFKN90]

- **Start**: \(P \) sends claimed answer \(C_1 \). The protocol must check that:

\[
C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \ldots \sum_{b_\ell \in \{0,1\}} g(b_1, \ldots, b_\ell).
\]

- **Round 1**: \(P \) sends **univariate** polynomial \(s_1(X_1) \) claimed to equal:

\[
H_1(X_1): = \sum_{b_2 \in \{0,1\}} \ldots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \ldots, b_\ell)
\]

- \(V \) checks that \(C_1 = s_1(0) + s_1(1) \).

- If this check passes, it is safe for \(V \) to believe that \(C_1 \) is the correct answer, so long as \(V \) believes that \(s_1 = H_1 \).

- How to check this? Just check that \(s_1 \) and \(H_1 \) agree at a random point \(r_1 \).

\(V \) can compute \(s_1(X_1) \) directly from \(P \)'s first message, but not \(H_1(X_1) \).
Sum-Check Protocol [LFKN90]

- **Start**: P sends claimed answer C_1. The protocol must check that:
 \[
 C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \ldots \sum_{b_\ell \in \{0,1\}} g(b_1, \ldots, b_\ell).
 \]

- **Round 1**: P sends univariate polynomial $s_1(X_1)$ claimed to equal:
 \[
 H_1(X_1) := \sum_{b_2 \in \{0,1\}} \ldots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \ldots, b_\ell)
 \]

- V checks that $C_1 = s_1(0) + s_1(1)$.
- If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_1 = H_1$.
- How to check this? Just check that s_1 and H_1 agree at a random point r_1.
- V can compute $s_1(r_1)$ directly from P’s first message, but not $H_1(r_1)$.

ZKP MOOC
Sum-Check Protocol [LFKN90]

- **Start**: P sends claimed answer C_1. The protocol must check that:
 \[
 C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \ldots \sum_{b_\ell \in \{0,1\}} g(b_1, \ldots, b_\ell).
 \]

- **Round 1**: P sends univariate polynomial $s_1(X_1)$ claimed to equal:
 \[
 H_1(X_1):= \sum_{b_2 \in \{0,1\}} \ldots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \ldots, b_\ell)
 \]

- V checks that $C_1 = s_1(0) + s_1(1)$.
- V picks r_1 at random from \mathbb{F} and sends r_1 to P.
- **Round 2**: They recursively check that $s_1(r_1) = H_1(r_1)$.

\[\text{Is that } s_1(x) = x_{i_1} \cdot x_{i_2} \cdots x_{i_k} \cdot \theta(x_{i_1}, \ldots, x_{i_k}).\]
Sum-Check Protocol [LFKN90]

- **Start:** P sends claimed answer C_1. The protocol must check that:

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \ldots \sum_{b_\ell \in \{0,1\}} g(b_1, \ldots, b_\ell).$$

- **Round 1:** P sends **univariate** polynomial $s_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \ldots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \ldots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.
- V picks r_1 at random from \mathbb{F} and sends r_1 to P.
- **Round 2:** They recursively check that $s_1(r_1) = H_1(r_1)$.

i.e., that $s_1(r_1) = \sum_{b_2 \in \{0,1\}} \ldots \sum_{b_\ell \in \{0,1\}} g(r_1, b_2, \ldots, b_\ell).$
Sum-Check Protocol [LFKN90]

- **Round \(\ell \) (Final round):** \(P \) sends univariate polynomial \(s_\ell(X_\ell) \) claimed to equal

\[
H_\ell := g(r_1, \ldots, r_{\ell-1}, X_\ell).
\]

- \(V \) checks that \(s_{\ell-1}(r_{\ell-1}) = s_\ell(0) + s_\ell(1) \).
- \(V \) picks \(r_\ell \) at random, and needs to check that \(s_\ell(r_\ell) = g(r_1, \ldots, r_\ell) \).
 - No need for more rounds. \(V \) can perform this check with one oracle query.
Analysis of the sum-check protocol
Completeness holds by design: If P sends the prescribed messages, then all of V’s checks will pass.
Soundness

- If P does not send the prescribed messages, then V rejects with probability at least $1 - \frac{\ell \cdot d}{|F|}$, where d is the maximum degree of g in any variable.
- E.g. $|F| \approx 2^{128}$, $d = 3$, $\ell = 60$.
 - Then soundness error is at most $3 \cdot 60 / 2^{128} = 2^{-120}$.
Soundness

- If P does not send the prescribed messages, then V rejects with probability at least $1 - \frac{\ell \cdot d}{|F|}$, where d is the maximum degree of g in any variable.

- Proof is by induction on the number of variables ℓ.
 - Base case: $\ell = 1$. In this case, P sends a single message $s_1(X_1)$ claimed to equal $g(X_1)$. V picks r_1 at random, checks that $s_1(r_1) = g(r_1)$.
 - If $s_1 \neq g$, then $\Pr_{r_1 \in F}[s_1(r_1) = g(r_1)] \leq \frac{d}{|F|}$.
Soundness

- Inductive case: $\ell > 1$.
 - Recall: P’s first message $s_1(X_1)$ is claimed to equal
 \[H_1(X_1) := \sum_{b_2 \in \{0,1\}} \cdots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \ldots, b_\ell). \]
 - Then V picks a random r_1 and sends r_1 to P. They (recursively) invoke sum-check to confirm that $s_1(r_1) = H_1(r_1)$.

If $s_1 = X_1$, then $\Pr_{r_1 \leftarrow \{0,1\}}[s_1(r_1) = X_1(r_1)] < \frac{1}{m}$.

If $s_1(r_1) \neq X_1(r_1)$, P is left to prove a false claim in the recursive call.

The recursive call applies sum-check to $g(s_1, X_2, \ldots, X_\ell)$, which is $\ell-1$ variate.

By induction, P fails to convince V in the recursive call with probability at least $1 - \frac{1}{m}$.

ZKP MOOC
Soundness

- Inductive case: $\ell > 1$.
 - Recall: P’s first message $s_1(X_1)$ is claimed to equal
 $$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \ldots \sum_{b_{\ell} \in \{0,1\}} g(X_1, b_2, \ldots, b_{\ell}).$$
 - Then V picks a random r_1 and sends r_1 to P. They (recursively) invoke sum-check to confirm that $s_1(r_1) = H_1(r_1)$.
 - If $s_1 \neq H_1$, then $\Pr_{r_1 \in F}[s_1(r_1) = H_1(r_1)] \leq \frac{d}{|F|}$.
 - If $s_1(r_1) \neq H_1(r_1)$, P is left to prove a false claim in the recursive call.
 - The recursive call applies sum-check to $g(r_1, X_2, \ldots, X_{\ell})$, which is ℓ-1 variate.
 - By induction, P convinces V in the recursive call with probability at most $\frac{d(\ell-1)}{|F|}$.
Soundness analysis: wrap-up

Summary: if $s_1 \neq H_1$, the probability V accepts is at most:

$$\Pr_{r_1 \in \mathbb{F}}[s_1(r_1) = H(r_1)] + \Pr_{r_2, \ldots, r_\ell \in \mathbb{F}}[V \text{ accepts} | s_1(r_1) \neq H(r_1)]$$

$$\leq \frac{d}{|\mathbb{F}|} + \frac{d(\ell-1)}{|\mathbb{F}|} \leq \frac{d\ell}{|\mathbb{F}|}.$$
Costs of the sum-check protocol

- Total communication is $O(d \ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends $\ell - 1$ messages, each consisting of one field element.

V's runtime is:

$O(d^2 \ell \cdot [\text{time required to evaluate } g \text{ at one point}])$.

P's runtime is at most:

$O(d \cdot 2^\ell \cdot [\text{time required to evaluate } g \text{ at one point}])$.
Costs of the sum-check protocol

- Total communication is $O(d\ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends $\ell - 1$ messages, each consisting of one field element.

- V’s runtime is:
 $$O(d\ell + [\text{time required to evaluate } g \text{ at one point}]).$$

- P’s runtime is at most:
 $$O(d \cdot 2^\ell \cdot [\text{time required to evaluate } g \text{ at one point}]).$$
A first application of the sum-check protocol: An IP for counting triangles with linear-time verifier
Costs of the sum-check protocol

- Total communication is $O(d\ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends $\ell - 1$ messages, each consisting of one field element.

- V’s runtime is:
 $$O(d\ell + [\text{time required to evaluate } g \text{ at one point}]).$$

- P’s runtime is at most:
 $$O(d \cdot 2^\ell \cdot [\text{time required to evaluate } g \text{ at one point}]).$$
Counting Triangles

- Input: \(A \in \{0,1\}^{n\times n} \), representing the adjacency matrix of a graph.
- Desired Output: \(\sum_{(i,j,k)\in[n]^3} A_{ij}A_{jk}A_{ik} \).
- Fastest known algorithm runs in matrix-multiplication time, currently about \(n^{2.37} \).
Counting Triangles

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\sum_{(i,j,k)\in[n]^3} A_{ij}A_{jk}A_{ik}$.
- The Protocol:
 - View A as a function mapping $\{0,1\}^{\log n} \times \{0,1\}^{\log n}$ to \mathbb{F}.
$$A \in F^{4 \times 4}$$
Counting Triangles

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\sum_{(i,j,k) \in [n]^3} A_{ij}A_{jk}A_{ik}$.
- The Protocol:
 - View A as a function mapping $\{0,1\}^{\log n} \times \{0,1\}^{\log n} \to \mathbb{F}$.
 - Recall that \tilde{A} denotes the multilinear extension of A.
 - Define the polynomial $g(X,Y,Z) = \tilde{A}(X,Y) \tilde{A}(Y,Z) \tilde{A}(X,Z)$
 - Apply the sum-check protocol to g to compute:

$$\sum_{(a,b,c) \in \{0,1\}^{3\log n}} g(a,b,c)$$
Counting Triangles

- Costs:
 - Total communication is $O(\log n)$, V runtime is $O(n^2)$, P runtime is $O(n^3)$.
 - V’s runtime dominated by evaluating:
 \[g(r_1, r_2, r_3) = \tilde{A}(r_1, r_2) \tilde{A}(r_2, r_3) \tilde{A}(r_1, r_3). \]
A SNARK for circuit-satisfiability
Recall: SNARKs for circuit-satisfiability

- Given: An arithmetic circuit C over \mathbb{F} of size S and output y.
- P claims to know a w such that $C(x, w) = y$.
- For simplicity, let’s take x to be the empty input.
Recall: SNARKs for circuit-satisfiability

- A **transcript** T for C is an assignment of a value to every gate.
 - T is a **correct** transcript if it assigns the gate values obtained by evaluating C on a valid witness w.

Circuit-SAT instance C
Correct transcript for C yielding output 5.
Viewing a transcript as a **function** with domain $\{0,1\}^{\log S}$

- Assign each gate in C a $(\log S)$-bit label and view T as a function mapping gate labels to \mathbb{F}.
The polynomial IOP underlying the SNARK
The start of the polynomial IOP

- Assign each gate in C a $(\log S)$-bit label and view T as a function mapping gate labels to \mathbb{F}.
- P’s first message is a $(\log S)$-variate polynomial h claimed to extend a correct transcript T, which means:

 $$h(x) = T(x) \ \forall \ x \in \{0, 1\}^{\log S}.$$
The start of the polynomial IOP

- Assign each gate in C a $(\log S)$-bit label and view T as a function mapping gate labels to \mathbb{F}.
- P’s first message is a $(\log S)$-variate polynomial h claimed to extend a correct transcript T, which means:
 \[h(x) = T(x) \quad \forall \ x \in \{0, 1\}^{\log S}. \]
- V needs to check this, but is only able to learn a few evaluations of h.
Intuition for why h is a useful object for P to send

- Think of h as a **distance-amplified encoding** of the transcript T.
- The domain of T is $\{0, 1\}^{\log S}$. The domain of h is $\mathbb{F}^{\log S}$, which is vastly bigger.
Intuition for why h is a useful object for P to send

- Think of h as a **distance-amplified encoding** of the transcript T.
- The domain of T is $\{0, 1\}^{\log S}$. The domain of h is $\mathbb{F}^{\log S}$, which is vastly bigger.

All four evaluations of a function T mapping $\{0,1\}^2$ to F_5

All 25 evaluations of the multilinear polynomial h that extends T, one for each element of $F_5 \times F_5$
Intuition for why h is a useful object for P to send

- Think of h as a **distance-amplified encoding** of the transcript T.
- The domain of T is $\{0, 1\}^{\log S}$. The domain of h is $\mathbb{F}^{\log S}$, which is vastly bigger.
- Schwartz-Zippel: If two transcripts T, T' disagree at even a **single** gate value, their extension polynomials h, h' disagree at **almost all** points in $\mathbb{F}^{\log S}$.
 - Specifically, a $1 - \log(S)/|\mathbb{F}|$ fraction.
- Distance-amplifying nature of the encoding will enable V to detect even a single “inconsistency” in the entire transcript.
Reminder: the start of the polynomial IOP

- P’s first message is a \((\log S)\)-variate polynomial \(h\) claimed to extend a correct transcript \(T\), which means:
 \[h(x) = T(x) \quad \forall \ x \in \{0, 1\}^{\log S}. \]
- \(V\) needs to check this, but is only able to learn a few evaluations of \(h\).
Two-step plan of attack

1. Given any \((\log S)\)-variate polynomial \(h\), identify a related \((3\log S)\)-variate polynomial \(g_h\) such that:

\[
\text{\(h\) extends a correct transcript } T \iff g_h(a, b, c) = 0 \ \forall (a, b, c) \in \{0,1\}^{3 \log S}.
\]

- Moreover, to evaluate \(g_h(r)\) at any input \(r\), suffices to evaluate \(h\) at only 3 inputs.

2. Design an interactive proof to check that \(g_h(a, b, c) = 0 \ \forall (a, b, c) \in \{0,1\}^{3 \log S}\).

- In which \(V\) only needs to evaluate \(g_h(r)\) at one point \(r\).
Step 1 of the plan

- Given \((\log S)\)-variate polynomial \(h\), identify a related \((3\log S)\)-variate polynomial \(g_h\) such that:
 \[h \text{ extends a correct transcript } T \iff g_h(a, b, c) = 0 \ \forall (a, b, c) \in \{0,1\}^{3\log S}. \]
- And to evaluate \(g_h(r)\) at any \(r\), suffices to evaluate \(h\) at only 3 inputs.

Proof sketch (simple functions): Define \(g_{a, b, c}(x, y, z)\) via:

\[
\begin{align*}
 g_{a, b, c}(x, y, z) &= \left(h(x) - (h(y) + h(z)) \right) + \left(h(a, b, c) - h(y) - h(z) \right) + \left(h(a) - h(b) - h(c) \right).
\end{align*}
\]

- \(g_{a, b, c}(x, y, z) = h(x) - (h(y) + h(z))\) if \(a\) is the label of a gate that computes the sum of gates \(y\) and \(z\).
- \(g_{a, b, c}(x, y, z) = h(a, b, c) - h(y) - h(z)\) if \(a\) is the label of a gate that computes the product of gates \(y\) and \(z\).
- \(g_{a, b, c}(x, y, z) = 0\) otherwise.
Step 1 of the plan

- Given \((\log S)\)-variate polynomial \(h\), identify a related \((3\log S)\)-variate polynomial \(g_h\) such that:

 \(h\) extends a correct transcript \(T \iff g_h(a, b, c) = 0 \forall (a, b, c) \in \{0,1\}^{3\log S}\).

- And to evaluate \(g_h(r)\) at any \(r\), suffices to evaluate \(h\) at only 3 inputs.

- Proof sketch (simplification): Define \(g_h(a, b, c)\) via:

 \[
 \overline{\text{add}}(a, b, c) \cdot \left(h(a) - (h(b) + h(c)) \right) + \overline{\text{mult}}(a, b, c) \cdot (h(a) - h(b) \cdot h(c)).
 \]

- \(\overline{\text{add}}(a, b, c) = \overline{\text{A}}(a) - (\overline{\text{B}}(a) - \overline{\text{C}}(a))\) if \(a\) is the label of a gate that computes the sum of gates \(b\) and \(c\).

- \(\overline{\text{mult}}(a, b, c) = \overline{\text{A}}(a) - \overline{\text{B}}(a) \cdot \overline{\text{C}}(a)\) if \(a\) is the label of a gate that computes the product of gates \(b\) and \(c\).

- \(\overline{\text{A}}(a) = 0\) otherwise.
Step 1 of the plan

- Given \((\log S)\)-variate polynomial \(h\), identify a related \((3\log S)\)-variate polynomial \(g_h\) such that:

 \[
 h \text{ extends a correct transcript } T \iff g_h(a, b, c) = 0 \forall (a, b, c) \in \{0,1\}^{3\log S}.
 \]

- And to evaluate \(g_h(r)\) at any \(r\), suffices to evaluate \(h\) at only 3 inputs.

- Proof sketch (simplification): Define \(g_h(a, b, c)\) via:

 \[
 \overline{\text{add}}(a, b, c) \cdot \left(h(a) - (h(b) + h(c)) \right) + \overline{\text{mult}}(a, b, c) \cdot (h(a) - h(b) \cdot h(c)).
 \]

 1. \(g_h(a, b, c) = h(a) - (h(b) + h(c))\) if \(a\) is the label of a gate that computes the sum of gates \(b\) and \(c\).

 2. \(g_h(a, b, c) = h(a) - h(b) \cdot h(c)\) if \(a\) is the label of a gate that computes the product of gates \(b\) and \(c\).

 3. \(g_h(a, b, c) = 0\) otherwise.
Step 2: A Hint

- How to check that $g_h(a, b, c) = 0 \forall (a, b, c) \in \{0,1\}^{3 \log S}$?
 - With V only evaluating g_h at a single point?
- Imagine for a moment that g_h were a univariate polynomial $g_h(X)$.
 - And rather than needing to check that g_h vanishes over input set $\{0,1\}^{3 \log S}$, we needed to check that g_h vanishes over some set $H \subseteq \mathbb{F}$.

For $y_i(x) = 0$ for all $x \in H \Rightarrow g_h$ is divisible by $Z_H(x) = \Pi_{x \in H} (x - a)$.
Z_H is called the vanishing polynomial for H.

Polynomial IOPs:
- P sends a polynomial q such that $g_h(H) = q(H) \cdot Z_H(H)$.
- V checks this by picking a random $y \in \mathbb{F}$ and checking that $g_h(y) = q(y) \cdot Z_h(y)$.

ZKP MOOC
Step 2: A Hint

- How to check that $g_h(a, b, c) = 0 \ \forall (a, b, c) \in \{0, 1\}^{3 \log S}$?
 - With V only evaluating g_h at a single point?

- Imagine for a moment that g_h were a univariate polynomial $g_h(X)$.
 - And rather than needing to check that g_h vanishes over input set $\{0, 1\}^{3 \log S}$, we needed to check that g_h vanishes over some set $H \subseteq \mathbb{F}$.

- Fact: $g_h(x) = 0$ for all $x \in H \iff g_h$ is divisible by $Z_H(x) := \prod_{a \in H} (x - a)$.
 - Z_H is called the vanishing polynomial for H.

- Polynomial IOP:
 - P sends a polynomial q such that $g_h(X) = q(X) \cdot Z_H(X)$.
 - V checks this by picking a random $r \in \mathbb{F}$ and checking that $g_h(r) = q(r) \cdot Z_H(r)$.
Previous slide doesn’t actually work.
- g_h is not univariate, it has $3 \log S$ variables.
- Also, having P find and send the quotient polynomial is expensive.
 - In the final SNARK, this would mean applying polynomial commitment to additional polynomials.
 - This is what Marlin, PlonK, and Groth16 do.

Solution: use the sum-check protocol [LFKN90].
- Handles multivariate polynomials.
- Doesn’t require P to send additional large polynomials.
Recall sum-check
Sum-check protocol: a reminder

- Goal: compute the quantity:

\[\sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \ldots \sum_{b_\ell \in \{0,1\}} g(b_1, \ldots, b_\ell). \]

- Proof length is roughly the total degree of \(g \).
- Number of rounds is \(\ell \).
- \(V \) time is roughly the time to evaluate \(g \) at a single randomly chosen input.
- To run the protocol, \(V \) doesn’t even need to “know” what polynomial \(g \) is being summed, so long as it knows \(g(r) \) for a randomly chosen input \(r \in \mathbb{F}^\ell \).
The polynomial IOP for circuit-satisfiability

- How to check that $g_h(a, b, c) = 0 \forall (a, b, c) \in \{0,1\}^{3 \log s}$?
 - With V only evaluating g_h at a **single** point?

- General idea (working over the integers instead of \mathbb{F}):
 - V checks this by running sum-check protocol with P to compute:
 $$\sum_{a,b,c\in\{0,1\}^{\log s}} g_h(a, b, c)^2.$$
 - If all terms in the sum are 0, the sum is 0.
 - If working over the integers, any non-zero term in the sum will cause the sum to be strictly positive.
The polynomial IOP for circuit-satisfiability

- How to check that $g_h(a, b, c) = 0 \forall (a, b, c) \in \{0,1\}^{3 \log S}$?
 - With V only evaluating g_h at a single point?
- General idea (working over the integers instead of \mathbb{F}):
 - V checks this by running sum-check protocol with P to compute:
 $$\sum_{a, b, c \in \{0,1\}^{\log S}} g_h(a, b, c)^2.$$
 - At end of sum-check protocol, V needs to evaluate $g_h(r_1, r_2, r_3)$.
 - Suffices to evaluate $h(r_1), h(r_2), h(r_3)$.
 - Outside of these evaluations, V runs in time $O(\log S)$.
 - P performs $O(S)$ field operations given a witness w.
END OF LECTURE