Zero Knowledge Proofs

FRI-based Polynomial Commitments
and Fiat-Shamir

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

EORGETOW:
Bﬁrkeley TUNIVERSITY

UNIVERSITY OF CALIFORNIA

> Stanford

University

Let’s build an efficient SNARK

A polynomial
commitment
scheme

SNARK for
general circuits

A polynomial
interactive
oracle proof (IOP)

ZKP MOOC

Recall: What is a Polynomial-IOP?

* P’s first message in the protocol is a polynomial h.
* VV does not learn h in full.
* The description size of h is as large as the circuit.
e Rather, V is permitted to evaluate h at, say, one point.
e After that, P and V execute a standard interactive proof.

Recall: What is a Polynomial Commitment Scheme?

= High-level idea:
= P binds itself to a polynomial h by sending a short string Com(h).
= V can choose x and ask P to evaluate h(x).
= Psends y, the purported evaluation, plus a proof i that y is consistent
with Com(h) and x.
= Goals:
= P cannot produce a convincing proof for an incorrect evaluation.
= Com(h) and m are short and easy to generate; 7 is easy to check.

A Zoo of SNARKs

= There are several different polynomial IOPs in the literature.
= And several different polynomial commitments.

= Can mix-and-match to get different tradeoffs between P time, proof
size, setup assumptions, etc.

= Transparency and plausible post-quantum security determined
entirely by the polynomial commitment scheme used.

ZKP MOOC

Polynomial IOPs: Three classes

1. Based on interactive proofs (IPs).
2. Based on multi-prover interactive proofs (MIPs).
3. Based on constant-round polynomial IOPs.

= Examples: Marlin, PlonK.

= Above SNARKs roughly listed in increasing order of P costs and
decreasing order of proof length and V cost.

= Categories 1 and 2 covered in Lecture 4, Category 3 (PlonK) in Lecture 5.

ZKP MOOC

Polynomial commitments: Three classes

1. Based on pairings + trusted setup (not transparent nor post-quantum).
= e.g., KZG10 (Lecture 5 + 6).
= Unique property: constant sized evaluation proofs.
2. Based on discrete logarithm (transparent, not post-quantum).
= Examples: IPA/Bulletproofs (Lecture 6), Hyrax, Dory.
3. Based on IOPs + hashing (transparent and post-quantum)
= e.g., FRI (will be covered today), Ligero, Brakedown, Orion (Lecture 7).

ZKP MOOC

Polynomial commitments: Three classes

1. Based on pairings + trusted setup (not transparent nor post-quantum).
= e.g., KZG10 (Lecture 5 + 6).
= Unique property: constant sized evaluation proofs.

2. Based on discrete logarithm (transparent, not post-quantum).
= Examples: IPA/Bulletproofs (Lecture 6), Hyrax, Dory.

= C(Classes 1. and 2. are homomorphic.

= Leads to efficient batching/amortization of P and V costs (e.g., when
proving knowledge of several different witnesses).

ZKP MOOC

Some specimens
from the zoo

ZKP MOOC

Highlights of SNARK Taxonomy: Transparent SNARKs

1. [Any polynomial IOP] + IPA/Bulletproofs polynomial commitment.
= Ex: Halo2-ZCash
= Pros: Shortest proofs among transparent SNARKs.
= Cons: Slow V

ZKP MOOC

Highlights of SNARK Taxonomy: Transparent SNARKs

2. [Any polynomial IOP] + FRI polynomial commitment.
= Ex: STARKSs, Fractal, Aurora, Virgo, Ligero++
= Pros: Shortest proofs amongst plausibly post-quantum SNARKSs.
= Cons: Proofs are large (100s of KBs depending on security)

ZKP MOOC

Highlights of SNARK Taxonomy: Transparent SNARKs

3. MIPs and IPs + [fast-prover polynomial commitments].
= Ex: Spartan, Brakedown, Orion, Orion+.

= Pros: Fastest P in the literature, plausibly post-quantum + transparent if polynomial
commitment is.

= Cons: Bigger proofs than 1. and 2. above.

ZKP MOOC

Highlights of SNARK Taxonomy: Non-transparent SNARKS

1. Linear-PCP based:
= Ex: Grothl6
= Pros: Shortest proofs (3 group elements), fastest V.

= Cons: Circuit-specific trusted setup, slow and space-intensive P, not post-
guantum

ZKP MOOC

Highlights of SNARK Taxonomy: Non-transparent SNARKS

2. Constant-round polynomial IOP + KZG polynomial commitment:
= Ex: Marlin-KZG, PlonK-KZG
" Pros: Universal trusted setup.

= Cons: Proofs are ~4x-6x larger than Groth16, P is slower than Groth16, also
not post-quantum.

= Counterpoint for P: can use more flexible intermediate representations
than circuits and R1CS.

ZKP MOOC

FRI (Univariate)
Polynomial
Commitment

ZKP MOOC

Recall: Univariate Polynomial Commitments

1. Let q be a degree-(k — 1) polynomial over field [F,,.
= Eg,k=5andq(X) =1+ 2X + 4X%+ Xx*

2. Want P to succinctly commit to g, later reveal q(r) for anr € [F,, chosen by V.
= Along with associated “evaluation proof”.

ZKP MOOC

Recall: Initial Attempt from Lecture 4

= P Merkle-commits to all evaluations of the polynomial g.

= When V requests q(r), P reveals the associated leaf along with
opening information.

ZKP MOOC

Recall: Initial Attempt from Lecture 4

= P Merkle-commits to all evaluations of the polynomial g.

= When V requests q(r), P reveals the associated leaf along with
opening information.

= Two problems:

1. The number of leaves is |[F|, which means the time to compute the
commitment is at least |F|.

= Big problem when working over large fields (say, |F| ~ 2% or |F| =~ 219),
= Want time proportional to the degree bound d.
2. Vdoes not know if f has degree at most k!

ZKP MOOC

Fixing the first problem (Want P time linear in degree, not field size)

= Rather than P Merkle-committing to all (p — 1) evaluations of g, P only
Merkle-commits to evaluations q(x) for those x in a carefully chosen subset
Qof IF,,.
p

ZKP MOOC

Fixing the first problem (Want P time linear in degree, not field size)

= Rather than P Merkle-committing to all (p — 1) evaluations of g, P only
Merkle-commits to evaluations q(x) for those x in a carefully chosen subset

Q of [F),.
= () has size p~! k for some constant p < 1/2, where k is the degree of q.

= p~1 > 2is called the “FRI blowup factor”.
= pis called the “rate of the Reed-Solomon code” used.

ZKP MOOC

Fixing the first problem (Want P time linear in degree, not field size)

= Rather than P Merkle-committing to all (p — 1) evaluations of g, P only
Merkle-commits to evaluations q(x) for those x in a carefully chosen subset

Q of [F),.
= () has size p~! k for some constant p < 1/2, where k is the degree of g.
= p~1 > 2is called the “FRI blowup factor”.
= Strong tension between P time and verification costs:
= The bigger the blowup factor, the slower P is, because it has to evaluate g
on more inputs and Merkle-hash the results.

= But the smaller the verification costs will be.

ZKP MOOC

Fixing the first problem (Want P time linear in degree, not field size)

= Rather than P Merkle-committing to all (p — 1) evaluations of g, P only
Merkle-commits to evaluations q(x) for those x in a carefully chosen subset

Q of [F),.
= () has size p~! k for some constant p < 1/2, where k is the degree of q.
= p~1 > 2is called the “FRI blowup factor”.
= Strong tension between P time and verification costs:
= The bigger the blowup factor, the slower P is, because it has to evaluate g
on more inputs and Merkle-hash the results.

= Proof length will be about (A/log (p™1)) - log? (k) hash values.
= Ais the security parameter a.k.a. “A bits of security” (more on this later)

ZKP MOOC

The key subset: roots of unity

= Letn = p~ ! k. Assume 1 is a power of 2.
" The key subset () comprises all nth roots of unity in IF,,.
= x such that x™ = 1. Equivalently, x™ — 1 = 0.

ZKP MOOC

Roots of Unity visualized

Im Im Im

1.0 | - o 1.0 }) 1.0 ¢

E ™ . : [] L]
0.'35 o . 0.5 0.5
0.0 e . Re 0.0 —e e— Re 0,05- - . Re
o5} ° 7 0.5 0.5

| [] - L] L]
1.0 | ¢ ¢ 1.0 ' 1.0 "

S -10-05 00 05 10 - 10 -05 00 05 10 - 10 -05 00 05 10

th - : :
16™ roots of unity 8th roots of unity 4th roots of unity

ZKP MOOC

The key subset: roots of unity

" Fact: Let w €), be a primitive n'th root of unity. That is, n is the smallest integer such
that w™ =1.Then Q ={1, w, w?, ..., ™1}

ZKP MOOC

The key subset: roots of unity

" Fact: Let w €), be a primitive n'th root of unity. That is, n is the smallest integer such
that w™ =1.Then Q ={1, w, w?, ..., ™1}

" Fact: () is a “multiplicative subgroup” of IF,,.
= |f x and y are both n'th roots of unity, then so is xy.
= Special case 1 (since n is even): If x is a n’th root of unity, x2 is a (n/2)’th root of unity.
= Special case 2 (since n is even): if x is a n’th root of unity, so is —x.

ZKP MOOC

The key subset: roots of unity

" Fact: Let w €), be a primitive n'th root of unity. That is, n is the smallest integer such
that w™ =1.Then Q ={1, w, w?, ..., ™1}

" Fact: () is a “multiplicative subgroup” of IF,,.
= |f x and y are both n'th roots of unity, then so is xy.
= Special case 1 (since n is even): If x is a n’th root of unity, x2 is a (n/2)’th root of unity.
= Special case 2 (since n is even): if x is a n’th root of unity, so is —x.

= Fact: () has size n if and only if n divides p — 1.

ZKP MOOC

The key subset: roots of unity

" Fact: Let w €), be a primitive n'th root of unity. That is, n is the smallest integer such
that w™ =1.Then Q ={1, w, w?, ..., ™1}
" Fact: () is a “multiplicative subgroup” of IF,,.
= |f x and y are both n'th roots of unity, then so is xy.
= Special case 1 (since n is even): If x is a n’th root of unity, x2 is a (n/2)’th root of unity.
= Special case 2 (since n is even): if x is a n’th root of unity, so is —x.
= Fact: () has size n if and only if n divides p — 1.
= This is why many FRI-based SNARKs work over fields like F), with p = 26% — 232 + 1
« p — 1is divisible by 232,

* Running FRI over the field can support any power-of-two value of n up to 232.

ZKP MOOC

Roots of Unity: finite field example

= Consider the prime field [F44 of size 41.
= 1stroots of unity: {1}

= 2nd roots of unity: {1, -1}

= 4t roots of unity: {1, -1, 9, -9}.

= 8t roots of unity: {1, -1, 9, -9, 3, -3, 14, -14}

ZKP MOOC

FRI commitment to a univariate g(X) in F,4[X] when 8 = p~1 k

- L]

h1=H(m11 mz) h2=H(m3, m4)
mq = “ m, = ‘ mg = my =
H(q(3),9(=3))

%1)) H(q(9),9(=9)) H(g(14),a(=14))
/\)\

ZKP MOOC

Fixing the second problem

= \/ needs to know that the committed vector is all evaluations over domain () of
some degree-(k — 1) polynomial.

= |dea from the PCP literature: V “inspects” only a few entries of the vector to “get a
sense” of whether it is low-degree.

= Each query will add a Merkle-authentication path (i.e., log(n) hash values) to
the proof.

= This turns out to be impractical.
= |nstead, the FRI “low-degree test” will be interactive.
= The test will consist of a “folding phase” followed by a “query phase”.
= The folding phase is log(k) rounds. The query phase is one round.

ZKP MOOC

The (interactive) low-degree test: Folding Phase

= Folding Phase:
= “Randomly fold the committed vector in half”.

= This means pair up entries of the committed vector, have V pick a random field
element r, and use r to “randomly combine” every two paired up entries.

= This halves the length of the vector.
= Have P Merkle-commit to the folded vector.

ZKP MOOC

The (interactive) low-degree test: Folding Phase

= Folding Phase:

= “Randomly fold the committed vector in half”.

= This means pair up entries of the committed vector, have V pick a random field
element r, and use r to “randomly combine” every two paired up entries.

= This halves the length of the vector.

= Have P Merkle-commit to the folded vector.

= The random combining technique is chosen so that the folded vector will have half
the degree of the original vector.

= Repeat the folding until the degree should fall to 0.

= At this point, the length of the folded vector is still p~! > 2. But since the degree
should be 0, P can specify the folded vector with a single field element.

ZKP MOOC

Folding phase (committed degree-3 polynomial in [F,;[X] when 8 = 4p~1)

q(1) q(-1) q(9) q(-9) q(3) q(-3) q(14) q(-14)
B2 g g | B2 g2 qre) | B2 g2) [t 1D
B(l) —B(1) —B(9) 2-14 — B(—9)2°14

\AA/

(15 +1)

B(1)+2 1)B(1)

(7”2 + 9)

B(9)+ (’”2 %) 2 B(-9)

The (interactive) low-degree test: Query Phase

= P may have “lied” at some step of the folding phase, by not performing the fold
correctly.

= j.e., sending a vector that is not the prescribed folding of the previous vector.
= To “artificially” reduce the degree of the (claimed) folded vector.
= V attempts to “detect” such inconsistencies during the query phase.

ZKP MOOC

The (interactive) low-degree test: Query Phase

= P may have “lied” at some step of the folding phase, by not performing the fold
correctly.
= j.e., sending a vector that is not the prescribed folding of the previous vector.
= To “artificially” reduce the degree of the (claimed) folded vector.

= V attempts to “detect” such inconsistencies during the query phase.

= Query phase: V picks about (A/log(p~1)) entries of each folded vector and
confirming each is the prescribed linear combination of the relevant two entries of
the previous vector.

ZKP MOOC

The (interactive) low-degree test: Query Phase

= P may have “lied” at some step of the folding phase, by not performing the fold
correctly.
= j.e., sending a vector that is not the prescribed folding of the previous vector.
= To “artificially” reduce the degree of the (claimed) folded vector.

= V attempts to “detect” such inconsistencies during the query phase.

= Query phase: V picks about (A/log(p~1)) entries of each folded vector and
confirming each is the prescribed linear combination of the relevant two entries of
the previous vector.

= Proof length (and V time): roughly (1/log(p~1)) log(k)? hash evaluations.

ZKP MOOC

Back to the folding
phase: more details

ZKP MOOC

The (interactive) low-degree test: Folding Phase

= Split g(X) into “even and odd parts” in the following sense.
= q(X) = q.(X*) + X q,(X?)
= Eg,ifg(X) =1+ 2X +3X?%+ 4X3.
= Theng,(X) =1+ 3Xandq,(X) = 2 + 4X.
= Note that both g, and g, have (at most) half the degree of g.
= V picks a random field element r and sends r to P.
= The prescribed “folding” q is: qp14(Z) = qc(Z) +1q,(Z)
= Clearly deg(qro14) is half the degree of q itself.

ZKP MOOC

The (interactive) low-degree test: Folding Phase

= Recall: g(X) = q.(X?) + X q,(X?%)
= Recall: The prescribed “folding” q is: qp1q(Z) = q.(Z) + rq,(Z).

ZKP MOOC

The (interactive) low-degree test: Folding Phase

= Recall: g(X) = q.(X?) + X q,(X?%)
= Recall: The prescribed “folding” q is: qp1q(Z) = q.(Z) + rq,(Z).
= Fact: Let x and —x be n'th roots of unity and z = x?. Then:

dro1a@ = =2 q(x)

ZKP MOOC

The (interactive) low-degree test: Folding Phase

= Recall: g(X) = q.(X?) + X q,(X?%)
= Recall: The prescribed “folding” q is: qp1q(Z) = q.(Z) + rq,(Z).
= Fact: Let x and —x be n'th roots of unity and z = x2. Then:

droa@ = E2q(0 + 52 ().

= Proof: Clearly q(x) = q.(2) + xq,(2).
= In other words, if r = x then q414(2)= q(x).

= Similarly, if r = —x then q¢414(z) = q(—x).

ZKP MOOC

The (interactive) low-degree test: Folding Phase

Recall: g(X) = q.(X?) + X q,(X?)
Recall: The prescribed “folding” q is: qro14(Z) = q.(Z) + rq,(Z).

Fact: Let x and —x be n'th roots of unity and z = x?. Then:
(r+x)

dfo1a(z) =
Proof: Clearly g(x) = qe (Z) + xqo (Z).
In other words, if r = x then q414(2)= q(x).
Similarly, if r = —x then qf4,4(z) = q(—x).
The fact follows because it gives a degree-1 function of r with exactly this behavior

atr = —x and r = x, and any two degree-1 functions of r that agree at two or
more inputs must be the same function.

ZKP MOOC

Folding phase (committed degree-3 polynomial in [F,;[X] when 8 = 4p~1)

q(1) q(-1) q(9) q(-9) q(3) q(-3) q(14) q(-14)
B2 g g | B2 g2 qre) | B2 g2) [t 1D
B(l) —B(1) —B(9) 2-14 — B(—9)2°14

\AA/

(15 +1)

B(1)+2 1)B(1)

(7”1 + 9)

B(9)+ (’”1 %) 2 B(-9)

The (interactive) low-degree test: Folding Phase

= Recall: g(X) = q.(X?) + X q,(X?%)

= Recall: The prescribed “folding” q is: qp1q(Z) = q.(Z) + rq,(Z).

= The fact that the map x + x?is 2-to-1on Q ={1, w, w?, ..., "1} ensures that the
relevant domain halves in size with each fold.
= Other domains, like {0, 1,2, ... n — 1}, don’t have this property.

ZKP MOOC

Compare to Lecture 7

= Lecture 7 covered a variety of polynomial commitments (Ligero, Brakedown, Orion) that
are similar to FRI.

= All use error-correcting codes.
= The only cryptography used is hashing (Merkle-hashing + Fiat-Shamir).

ZKP MOOC

Compare to Lecture 7

= Lecture 7 covered a variety of polynomial commitments (Ligero, Brakedown, Orion) that

are similar to FRI.
= All use error-correcting codes.
= The only cryptography used is hashing (Merkle-hashing + Fiat-Shamir).

= The Lecture 7 schemes viewed a degree-d polynomial as d1/? vectors each of length
about d'/? and performed “a single random fold on all these vectors”.

= This resulted in larger proofs (size roughly d/?), but some advantages (e.g., linear-

time prover, field-agnostic).
= Proof size can be reduced via SNARK composition (will be discussed in Lecture 10).

= FRIviews a degree-d polynomial as a single vector of length O(d) and “randomly folds it
in half” logarithmically many times.

ZKP MOOC

Sketch of the security
analysis

ZKP MOOC

The security analysis

= Recall: at the start of the FRI polynomial commitment, P Merkle-commits to a vector w
claimed to equal g’s evaluations over ().

" Here, (is the set of n’th roots of unity in IF,, where n = p‘1 k.
= And q is claimed to have degree less than k.

ZKP MOOC

The security analysis

= Let 6 be the “relative Hamming distance” of g from the closest polynomial h of degree k — 1.
= § is the fraction of x € Q such that h(x) # q(x).

ZKP MOOC

The security analysis

= Let 6 be the “relative Hamming distance” of g from the closest polynomial h of degree k — 1.
= § is the fraction of x € Q such that h(x) # q(x).

= Claim: P “passes” all t “FRI verifier queries” with probability at most S + (1 - 6)%.

ZKP MOOC

The security analysis

= Let 6 be the “relative Hamming distance” of g from the closest polynomial h of degree k — 1.
= § is the fraction of x € Q such that h(x) # q(x).

= Claim: P “passes” all t “FRI verifier queries” with probability at most S + (1 - 6)%.
= Caveat: this is only known to hold for § upto 1 — pl/z, but is conjectured to hold for § up
tol —p.
= Most FRI deployments’ security are analyzed under this conjecture.

= |nformal interpretation: FRI V accepts with probability at most about (1 — (1 — p))t= pt.
= |n other words, each of the t queries contributes about Log2(1/p) “bits of security”.

ZKP MOOC

The security analysis

= Let 6 be the “relative Hamming distance” of g from the closest polynomial h of degree k — 1.

d is the fraction of x € Q such that h(x) # q(x).

= Claim: P “passes” all t “FRI verifier queries” with probability at most S + (1 - 6)%.

Caveat: this is only known to hold for S upto 1 — pl/z, but is conjectured to hold for § up
tol —p.

Most FRI deployments’ security are analyzed under this conjecture.

Informal interpretation: FRI V accepts with probability at most about (1 — (1 — p))t= pt.
In other words, each of the t queries contributes about Log2(1/p) “bits of security”.

E.g., ifp= %, each FRI verifier queries contributes about 2 bits of security.

= At the cost of roughly log(n)? hash values included in the proof.

ZKP MOOC

The security analysis

= Let 6 be the “relative Hamming distance” of g from the closest polynomial h of degree k — 1.

d is the fraction of x € Q such that h(x) # q(x).

= Claim: P “passes” all t “FRI verifier queries” with probability at most S + (1 - 6)%.

Recall: Gro14(Z2) = qe(Z) +1q,(2).
Can check: since q is §-far from every degree-(k — 1) polynomial h, at least one of g, or
q, must be 6-far from every degree-(k/2 — 1) polynomial over the (n /2)-roots of unity.

Idea: A “random linear combination” of two functions, at least one of which is §-far from
degree-d polynomials, will also be is 6-far from degree-d with overwhelming probability.

The g term bounds the probability that P “gets a lucky fold”.
" ({folq is close to degree-(k /2 — 1) even though g is not close to degree-(k-1).

ZKP MOOC

The security analysis

= Let 6 be the “relative Hamming distance” of g from the closest polynomial h of degree k — 1.

d is the fraction of x € Q such that h(x) # q(x).

= Claim: P “passes” all t “FRI verifier queries” with probability at most S + (1 - 6)%.

Idea 2: If P does “not get a lucky fold”, then the “true” final folded function is 6-far from
any degree-0 function.

But P is forced to send a degree-0 function as the final fold.
So at least one “fold” is done dishonestly by P.

In this case, each “FRI verifier query” detects a discrepancy in a fold with probability at
least §.

So all FRI verifier queries fail to detect the discrepancy with probability at most (1 — §)¢.

ZKP MOOC

The Known Attack on FRI

ZKP MOOC

The known attack

= Recall: at the start of the FRI polynomial commitment, P Merkle-commits to a vector w
claimed to equal g’s evaluations over ().
" Here, (is the set of n’th roots of unity in IF,, where n = p‘1 k.
= And q is claimed to have degree less than k.
= The following P strategy works for any g (even ones maximally far from degree-k) and
passes all FRI verifier checks with probability pt.

ZKP MOOC

The known attack

= Recall: at the start of the FRI polynomial commitment, P Merkle-commits to a vector w
claimed to equal g’s evaluations over ().

Here, (1 is the set of n’th roots of unity in I[F,, where n = p‘1 k.

And q is claimed to have degree less than k.

The following P strategy works for any g (even ones maximally far from degree-k) and
passes all FRI verifier checks with probability pt.

P picks a set T of k = pn elements of 2 and computes a polynomial s of degree k — 1
that agrees with g at those points.

P folds s rather than g during the folding phase.
All t FRI verifier queries lie in T with probability p°.

ZKP MOOC

Polynomial Commitment
from FRI

ZKP MOOC

Recall: Initial Attempt from Lecture 4

= P Merkle-commits to all evaluations of the polynomial g.

= When V requests q(r), P reveals the associated leaf along with
opening information.

= New Problems with FRI:

" P has only Merkle-committed to evaluations of g over domain (),
not the whole field.

= Vonly knows that g is "not too far” from low-degree, not exactly
low-degree.

ZKP MOOC

A fix for both problems

= Recall the following FACT used in KZG commitments:
= FACT: For any degree-d univariate polynomial g, the assertion “q(r) = v" is
equivalent to the existence of a polynomial w of degree at most d such that
= g X)—v=wX)X —71).
= So to confirm that q(r) = v, V applies FRI’s fold+query procedure to the function
(g(X) —v) (X — 1)1 using degree bound d — 1.

ZKP MOOC

A fix for both problems

= Recall the following FACT used in KZG commitments:

= FACT: For any degree-d univariate polynomial g, the assertion “q(r) = v" is
equivalent to the existence of a polynomial w of degree at most d such that
= g X)—v=wX)X —71).

= So to confirm that q(r) = v, V applies FRI’s fold+query procedure to the function
(g(X) —v) (X — 1)1 using degree bound d — 1.
= Whenever the FRI verifier queries this function at a point in (), the evaluation can

be obtained with one query to g at the same point.

ZKP MOOC

A fix for both problems

= Recall the following FACT used in KZG commitments:

= FACT: For any degree-d univariate polynomial g, the assertion “q(r) = v" is
equivalent to the existence of a polynomial w of degree at most d such that
= g X)—v=wX)X —71).

= So to confirm that q(r) = v, V applies FRI’s fold+query procedure to the function
(g(X) —v) (X — 1)1 using degree bound d — 1.
= Whenever the FRI verifier queries this function at a point in (), the evaluation can

be obtained with one query to g at the same point.

= Can show: To pass V’s checks in this polynomial commitment with noticeable
probability, v has to equal h(r), where h is the degree-d polynomial that is closest to
q.

ZKP MOOC

A fix for both problems

= Recall the following FACT used in KZG commitments:

= FACT: For any degree-d univariate polynomial g, the assertion “q(r) = v" is
equivalent to the existence of a polynomial w of degree at most d such that
= g X)—v=wX)X —71).

= So to confirm that q(r) = v, V applies FRI’s fold+query procedure to the function
(g(X) —v) (X — 1)1 using degree bound d — 1.
= Whenever the FRI verifier queries this function at a point in (), the evaluation can

be obtained with one query to g at the same point.

= Caveat: The security analysis requires 6 to be (at most) (1 — p)/2. Each FRI verifier
queries brings (less than) 1 bit of security, not log2(1/p) bits.

ZKP MOOC

A fix for both problems

= Recall the following FACT used in KZG commitments:

= FACT: For any degree-d univariate polynomial g, the assertion “q(r) = v" is
equivalent to the existence of a polynomial w of degree at most d such that

= g X)—v=wX)X —71).
= So to confirm that q(r) = v, V applies FRI’s fold+query procedure to the function
(g(X) —v) (X — 1)1 using degree bound d — 1.
= Whenever the FRI verifier queries this function at a point in (), the evaluation can
be obtained with one query to g at the same point.

= People are using FRI today as a weaker primitive than a polynomial commitment,
which still suffices for SNARK security.

= Pisbound to a “small set” of low-degree polynomials rather than to a single one.

ZKP MOOC

The Fiat-Shamir
Transformation and
Concrete Security

ZKP MOOC

Recall: Fiat-Shamir transformation

Public-Coin Non-Interactive
Interactive Protocol Argument
' Random Oracle R
P @ V. i Pgg Vs

B : a, B,y
1

z \ B=R(x,a)
1
1

ZKP MOOC

Recall: Fiat-Shamir transformation

Public-Coin Non-Interactive
Interactive Protocol Argument
' Random Oracle R
P @ V. i Pgg Vs

B : a, B,y
1

z \ B=R(x,a)
1
1

Grinding attack on Fiat-Shamir:
* P iterates over first-messages a until it finds one such that R(x, a) is “lucky”

ZKP MOOC

Recall: Fiat-Shamir transformation

Grinding attack on Fiat-Shamir:
P iterates over first-messages a until it finds one such that R(x, «) is “lucky”

ZKP MOOC

Recall: Fiat-Shamir transformation

Grinding attack on Fiat-Shamir:
P iterates over first-messages a until it finds one such that R(x, «) is “lucky”
* Example: Suppose you apply Fiat-Shamir to an interactive protocol with 80 bits of
statistical security (soundness error 278%)
 With 2P hash evaluations, grinding attack will succeed with probability
2—80+b.

* E.g., with 279 hashes, successfully attack with probability about 271

ZKP MOOC

Recall: Fiat-Shamir transformation

Grinding attack on Fiat-Shamir:
P iterates over first-messages a until it finds one such that R(x, «) is “lucky”
* Example: Suppose you apply Fiat-Shamir to an interactive protocol with 80 bits of
statistical security (soundness error 278%)
 With 2P hash evaluations, grinding attack will succeed with probability
2—80+b.
* E.g., with 279 hashes, successfully attack with probability about 271
Comparison:
For a collision-resistant hash function (CRHF) configured to 80 bits of security,
the fastest collision-finding procedure should be a birthday attack.

ZKP MOOC

Recall: Fiat-Shamir transformation

Grinding attack on Fiat-Shamir:
P iterates over first-messages a until it finds one such that R(x, «) is “lucky”
* Example: Suppose you apply Fiat-Shamir to an interactive protocol with 80 bits of
statistical security (soundness error 278%)
 With 2P hash evaluations, grinding attack will succeed with probability
2—80+b.
* E.g., with 279 hashes, successfully attack with probability about 271
Comparison:
With 2% hash evaluations, finds a collision with a probability of only 22k160,

For example, 279 hash evaluations will yield a collision with a probability of
2720,

ZKP MOOC

How many hashes are feasible today?

1. Today, the bitcoin network performs 23° SHA-256
hashes roughly every hour.

= At current prices, those hashes typically earn less
than S1 million worth of block rewards.

How many hashes are feasible today?

1. Today, the bitcoin network performs 23° SHA-256
hashes roughly every hour.

= At current prices, those hashes typically earn less
than S1 million worth of block rewards.

2. InJanuary 2020, the cost of computing just shy of
254 SHA-1 evaluations using GPUs was $45,000.

= This puts 27% hashes at about $3,000,000.
= Likely less today, post-Ethereum-merge.

Interactive vs. Non-
Interactive Security

ZKP MOOC

Interactive Security

= A polynomial commitment scheme such as FRI, when run interactively at “A
bits of security”, has the following security guarantee
= Assuming P cannot find a collision in the hash function used to build
Merkle trees, a lying P cannot pass the verifier’s checks with probability
better than 274,
= Alying P must actually interact with V to learn V’s challenges, in order to
find out if it receives a “lucky” challenge!

Interactive Security

= For example, if 1 = 60, then with probability at least 1- 273%, V will reject (at
least) 239 times before a lying P succeeds in convincing V to accept.

= |t seems unlikely that V would continue interacting with a P that has been
caught in a lie 239 times.

: In many settings, interactive with V may take long enough that P wouldn’t
have time to make 1 billion attempts even if V were willing to consider
each one.

= E.g., One billion Ethereum blocks take 3 years to create (at one block
per 12 seconds).

Non-interactive security

= Suppose Fiat-Shamir is applied to an interactive protocol such as FRI that was run
at A bits of interactive security.

= The resulting non-interactive protocol has the following much weaker
guarantee:

. A lying P willing to perform 2% hash evaluations can successfully attack the
protocol with probability 2¥=% .

= Alying P can attempt the attack “silently”.

= Unlike in the interactive case, P can perform a “grinding attack” without
interacting with V until P receives a lucky challenge.

Non-interactive security

= Suppose Fiat-Shamir is applied to an interactive protocol such as FRI that was run
at A bits of interactive security.

= The resulting non-interactive protocol has the following much weaker
guarantee:

. A lying P willing to perform 2% hash evaluations can successfully attack the
protocol with probability 2¥=% .

= Alying P can attempt the attack “silently”.

= Unlike in the interactive case, P can perform a “grinding attack” without
interacting with V until P receives a lucky challenge.

= Higher security levels A are necessary in this setting.
= 60 bits of interactive security is fine in many contexts.

= 60 bits of non-interactive security is not okay unless the payoff of a
successful attack is minimal.

Fiat-Shamir security loss
for many-round
protocols can be huge

ZKP MOOC

An interactive protocol

Consider the following (silly) interactive protocol for the empty language (i.e.,
V should always reject).

P sends a message (a nonce) which V ignores.

V tosses a random coin, rejecting if it comes up heads and accepting if it
comes up tails.

The soundness error of this protocol is 1/2.

If you sequentially repeat it A times and accept only if every run accepts, the
soundness error falls to 1/27%.

Fiat-Shamir-ing this interactive protocol is insecure

= Recall: If you sequentially repeat it A times and accept only if every run
accepts, the soundness error falls to 1/22.

= Consider Fiat-Shamir-ing this A-round protocol to render it non-interactive.

= Acheating prover P can find a convincing “proof” for the non-interactive
protocol with O(A) hash evaluations.

Fiat-Shamir-ing this interactive protocol is insecure

= Recall: If you sequentially repeat it A times and accept only if every run
accepts, the soundness error falls to 1/22.

= Consider Fiat-Shamir-ing this A-round protocol to render it non-interactive.
= Acheating prover P can find a convincing “proof” for the non-interactive
protocol with O(A) hash evaluations.

n Idea: P, grinds on the first repetition alone (i.e., iterate over nonces in
the first repetition until one is found that hashes to tails. This requires 2
attempts in expectation until success.) Fix this first nonce m, for the
remainder of the attack.

Fiat-Shamir-ing this interactive protocol is insecure

= Recall: If you sequentially repeat it A times and accept only if every run
accepts, the soundness error falls to 1/22.

= Consider Fiat-Shamir-ing this A-round protocol to render it non-interactive.

= Acheating prover P can find a convincing “proof” for the non-interactive
protocol with O(A) hash evaluations.

n Idea: P, grinds on the first repetition alone (i.e., iterate over nonces in
the first repetition until one is found that hashes to tails. This requires 2
attempts in expectation until success.) Fix this first nonce m, for the
remainder of the attack.

= Then P grinds on the second repetition alone until it finds an m, such
that (m,, m,) hashes to tails. Fix m, for the remainder of the attack.

= Then Py grinds on the third repetition, and so on.

The takeaway

= Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge
loss in security, whereby the resulting non-interactive protocol is totally
insecure.

The takeaway

Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge

loss in security, whereby the resulting non-interactive protocol is totally
insecure.

Fortunately, this security loss can be ruled out if the interactive protocol
satisfies a stronger notion of soundness called round-by-round soundness.

The takeaway

Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge

loss in security, whereby the resulting non-interactive protocol is totally
insecure.

Fortunately, this security loss can be ruled out if the interactive protocol
satisfies a stronger notion of soundness called round-by-round soundness.

This means an attacker in the interactive protocol has to “get very lucky all at once”
(in a single round)... it can’t succeed by getting “a little bit lucky many times”.

The sequential repetition of soundness error 1/2 is not round-by-round sound.

= The attacker can “get a little lucky” each round and succeed (i.e., in each round with
probability 1/2 it gets the “lucky” challenge Tails each round).

The sum-check protocol (Lecture 4) is an example of a logarithmic-round protocol
that is known to be round-by-round sound.

Something analogous is known for Bulletproofs [AFK22, Wik21].

The takeaway

Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge
loss in security, whereby the resulting non-interactive protocol is totally
insecure.

Fortunately, this security loss can be ruled out if the interactive protocol
satisfies a stronger notion of soundness called round-by-round soundness.
FRI is a logarithmic-round interactive protocol that is always deployed non-
interactively today.

It has not been shown to be round-by-round sound.

The takeaway

Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge
loss in security, whereby the resulting non-interactive protocol is totally
insecure.
Fortunately, this security loss can be ruled out if the interactive protocol
satisfies a stronger notion of soundness called round-by-round soundness.
FRI is a logarithmic-round interactive protocol that is always deployed non-
interactively today.

It has not been shown to be round-by-round sound.
SNARK designers applying Fiat-Shamir to interactive protocols with more than
3 messages should show that the protocol is round-by-round sound if they
want to rule out a major security loss.

END OF LECTURE

Next lecture:
SNARKs from Linear PCPs
(e.g., Groth16)

ZKP MOOC

Example: Reed-Solomon encoding of a vector over [F4;.

2 |4.(0) o q4(6)
2 1]qq.(1) |5 qa(7)
1 G, () =2+X+x%2 |1 (42 |0 | q.08)
1 2 |q.(3) |7 q4(9)
a _> 4 9. |4 |q,010)
7 94(5)

ZKP MOOC

FRI (citation)

1. Recall from Lecture 5: n’th roots of unity

Let w € IF), be a primitive k-th root of unity (so that wk =1).
" if Q={1, w, w? ., w1 CSF, then Zog(X)=X"-1

