
zkBridge Track Program

We cordially invite the community to join us in creating a community-driven extensible solution
for ZKP-based bridges (zkBridge). The end goal of this track is to bring the community together
to build end-to-end solutions for open-source zkBridge across different chains as public good
and foster an open ecosystem towards building a secure, efficient, universal foundation for
multichain interoperability. We hope this track in particular will help contribute diverse solutions
for a defense-in-depth design for zkBridge with proof diversity and different implementations.

Introduction

zkBridge proposes a new solution for building trustless, permissionless, extensible, universal,
and efficient cross-chain bridges using ZKP. With succinct proofs, zkBridge not only guarantees
strong security without external assumptions, but also significantly reduces on-chain verification
cost. zkBridge provides a modular design supporting a base layer with a standard API for smart
contracts on one chain to obtain verified block headers from another chain using snarks. By
separating the bridge base layer from application-specific logic, zkBridge makes it easy to
enable additional applications on top of the bridge, including message passing, token transfer,
etc.

Given zkBridge’s modular design, the work needed for building a zkBridge is highly
decomposable and parallelizable, making it a great project for community contribution and the
hackathon. We have carefully designed the tasks in this zkBridge track such that different teams
and participants can contribute to different components of a zkBridge which when put together
can build high-quality solutions of zkBridges across different chains.

http://zkbridge.org
http://zkbridge.org

This track is co-hosted with zkCollective, an open community to help advance ZKP technologies
in focused areas including zkBridge.

The overall goal for this effort is also to enable a defense-in-depth design, leveraging different,
independent implementations and proof diversity; thus the overall solution combining the
different implementations will provide even stronger security even if each implementation may
have bugs. To achieve this goal, we encourage two parallel efforts: 1) developing different
implementations of each component in a zkBridge from one network (or L2) to another; 2)
developing a framework to combine the different implementations for defense-in-depth. Note
that this framework could incorporate other non-zk approaches later as well such as an
optimistic bridge, as part of a defense-in-depth solution.

Program Task Description

In short, this track aims to bring together the community and participants to build the foundation
of a ZKP-based cross-chain bridge, as shown below.

Figure 1. Overview of a zero-knowledge proof based bridge

The above graph shows the components of a typical Zero Knowledge (ZK) based bridge,
including a proof system, light client, updater contracts, and DApps on top of the bridge.

We've created specific tasks and prizes for each component. The focus is on enabling
inter-communication between popular L1/L2 chains, such as Ethereum, BSC, Polygon, Gnosis
and Tendermint.

Category 1: Circuit

The community can greatly benefit from high-quality circuits that are easily incorporated into
projects as standard libraries, particularly for popular code blocks like hash functions and elliptic
curves. This category focuses on designated tasks that are building blocks for bridges on
certain chains.

We recommend Circom and gnark as starting points for circuit programming languages since it's
widely used and well-documented, but other circuit programming languages are also welcome.

Designated Task 1.1: Simple serialize (SSZ)

Simple serialize (SSZ) is the serialization method used on the Beacon Chain. SSZ is designed
to be deterministic and also to Merkleize efficiently. SSZ relies on a schema that must be known
in advance.

● Implement a circuit that implements the serialization and merkleization of SSZ.
● Existing implementation: Succinct Labs’ SSZ for beacon chain

Prize: up to $1000

Designated Task 1.2: RLP serialization

RLP serialization is widely used by blockchains for serialization. RLP can be used to convert
complex data structures to bytes so they can be consumed by a circuit. This task involves
building a circuit that can check the correctness of RLP serialization. Specifically,

● Implement a circuit that checks input1 = RLP-encode(input2) (or equivalently
input2=RLP-decode(input1)) for given inputs. Note the difficulty comes from the variable
size of items in the data structure.

● Existing implementation: Yi Sun's RLP decoding

In the zkBridge track git repo, we provide an example implementation of RLP decoding circuits,
as well as the instructions and test framework. Check the quick start for instructions.

Prize: up to $1000

Designated Task 1.3: Ecrecover for ECDSA

Ethereum and many EVM-compatible chains use the Elliptic Curve Digital Signature Algorithm
(ECDSA) to validate the origin and integrity of messages. For example, BSC validators use
ECDSA to sign block headers.

https://iden3.io/circom
https://github.com/ConsenSys/gnark
https://ethereum.org/en/developers/docs/data-structures-and-encoding/ssz/
https://github.com/yi-sun/zk-attestor/blob/master/circuits/rlp.circom
https://github.com/succinctlabs/eth-proof-of-consensus/blob/main/circuits/circuits/simple_serialize.circom
https://ethereum.org/en/developers/docs/data-structures-and-encoding/rlp/
https://github.com/yi-sun/zk-attestor/blob/master/circuits/rlp.circom
https://github.com/zkCollective/2023-entries-zkbridge
https://github.com/zkCollective/hackathon-program/blob/main/quick-start.md

To validate a signature, EVM provides an ecrecover that recovers the public key (account
address) of the signer from the signature and verifies the account address is the same as the
claimed signer.

In this task, you will implement ecrecover in a circuit:

● Implement the circuit of ecrecover functionality.
● Related implementation: 0xPARC's ECDSA (missing ecrecover)

Prize: up to $1500

Designated Task 1.4: Ed25519 signature circuit

Ed25519 signature has been widely used as an CPU efficient signature scheme. In the
blockchain world, it has been used in Tendermint to sign and verify the validator’s signatures.

To validate a signature, you need to implement the verify circuit that takes the public key and
signed message as input, outputs true if the signature is valid, otherwise throws an exception.

In this task, you will implement ed25519 verifier in a circuit in Circom or gnark

● Related implementation: https://github.com/Electron-Labs/ed25519-circom
● Bug warning: this related implementation has some bugs in the code, for example the

following code:

template fulladder() {
signal input bit1;
signal input bit2;
signal input carry;

signal output val;
signal output carry_out;

val <-- (bit1 + bit2 + carry) % 2;
val * (val - 1) === 0;
carry_out <-- (bit1 + bit2 + carry) \ 2;
carry_out * (carry_out - 1) === 0;

}

The code doesn’t check the constraint val == bit1 + bit2 + carry - 2 * carry_out

Prize: see prize in zk-circuits track (same prize pool)

https://github.com/0xPARC/circom-ecdsa
https://github.com/Electron-Labs/ed25519-circom

Designated Task 1.5: Amino serialization

Amino serialization is the key part of computing tendermint’s blockhash. In this serialization, you
are required to take Tendermint’s block header as input and output the serialized byte string.
Later, in the final task you will take these bytes into a hash function and calculate the final block
hash.

● Related implementation: tendermint/go-amino: Protobuf3 with Interface support -
Designed for blockchains (deterministic, upgradeable, fast, and compact) (github.com)

● Related doc: spec/encoding.md at master · tendermint/spec (github.com)
● Related data structure: spec/data_structures.md at master · tendermint/spec

(github.com)

Prize: up to $2000

Designated Task 1.6: SHA256 hash

SHA256 is a popular hash function. Many block chains use it to calculate block hashes and
transaction hashes. This task requires you to implement or audit the existing SHA256 hash
function:

Task Details:

● Reference implementation: sha256 package -
github.com/xuperchain/crypto/core/zkp/zk_snark/hash/sha256 - Go Packages

● Existing implementation: circomlib’s sha236 circom circuits

Prize: see prize in zk-circuits track (same prize pool)

Designated Task 1.7: Tendermint block header verification

Given a block header in Tendermint (cosmos), the light client shall be able to validate its
integrity and authenticity. In short, the light client shall verify all ed25519 signatures from
validators in the block header and handle validator changes.

Dependency:

Amino, ed25519, sha256

https://github.com/tendermint/go-amino
https://github.com/tendermint/go-amino
https://github.com/tendermint/spec/blob/master/spec/core/encoding.md#key-types
https://github.com/tendermint/spec/blob/master/spec/core/data_structures.md#header
https://github.com/tendermint/spec/blob/master/spec/core/data_structures.md#header
https://pkg.go.dev/github.com/xuperchain/crypto/core/zkp/zk_snark/hash/sha256
https://pkg.go.dev/github.com/xuperchain/crypto/core/zkp/zk_snark/hash/sha256
https://github.com/iden3/circomlib/tree/master/circuits/sha256

Task details:

● Implement the block header verification for Tendermint
● Related implementation:
● Validator set update
● Batched proofs and skip blocks policy.

Prize: up to $2000

Designated Task 1.8: Keccak-256

Keccak-256 is a popular cryptographic hash function from the SHA-3 family, commonly used in
Web3. For instance, to sign a block header, BSC validators first hash the block header using
Keccak-256.

Task Detail:

● Implement the complete Keccak-256 algorithm.
● Related implementation: Vocdoni's Keccak256 (missing multiple blocks).

Prize: see prize in zk-circuits track (same prize pool)

Designated Task 1.9: Ethereum block header verification

Given a block header in Ethereum, the light client shall be able to validate its integrity and
authenticity. In short, the light client shall calculate the hash of the block header encoded in SSZ
(Simple Serialization), and validate that the corresponding BLS signatures are from the sync
committee.

Task Detail:

● Implement the block header verification for Ethereum.
● Related implementation: Proof of Consensus for Ethereum.
● We should tell them to batch and skip blocks if the sync committee doesn’t change.

○ Skip blocks: since sync committee only changes every 27 hours, we don’t need
to prove every blocks, we only need to prove following blocks:

■ User requested blocks: block that contains a cross-chain transaction
■ Sync committee update block: block that contains the next sync

committee

https://keccak.team/keccak.html
https://github.com/vocdoni/keccak256-circom
https://ethereum.org/en/glossary/#sync-committee
https://ethereum.org/en/glossary/#sync-committee
https://github.com/succinctlabs/eth-proof-of-consensus

Prize: up to $1500

Designated Task 1.10: Ethereum sync committee update

Sync committees are chosen every 256 epochs (~27 hours) consisting of at least 128 validators.
The sync committee signs every block. The light client shall update the new sync committee
every 256 epochs.

Task Detail:

● Implement Ethereum sync committee update.
● Related implementation: Proof of Consensus for Ethereum.

Prize: up to $2000

Designated Task 1.11: BSC single block header verification

Putting everything together, a BSC light client can be implemented. Given a block header of
BSC (e.g. block 7705800), the light client will calculate the hash of the RLP-encoded block
header, and verify that the ECDSA signature is from a legitimate validator.

Task Detail:

● Implement BSC block header verification.
● Related implementation: Darwinia's BSC Light Client.

Prize: up to $1500

Designated Task 1.12: BSC authority set update

BSC updates the authority set every Epoch, at the checkpoint header. For example, BSC block
7705800) includes the addresses of the 21 validators. Given a series of block headers, the light
client shall extract validator addresses securely.

Task Detail:

● Implement the validator address extraction from multiple block headers.
● Related implementation: Darwinia's BSC Light Client.

https://eth2book.info/bellatrix/part2/building_blocks/committees/
https://eth2book.info/bellatrix/part2/building_blocks/committees/
https://github.com/succinctlabs/eth-proof-of-consensus
https://bscscan.com/block/7705800
https://github.com/darwinia-network/darwinia-messages-sol/blob/master/contracts/bridge/src/truth/bsc/BSCLightClient.sol
https://bscscan.com/block/7705800
https://bscscan.com/block/7705800
https://github.com/darwinia-network/darwinia-messages-sol/blob/master/contracts/bridge/src/truth/bsc/BSCLightClient.sol

Prize: up to $1500

Category 2: Smart Contracts

As shown in zkBridge, it uses an updater smart contract on one chain to verify and accept
proofs of block headers of another chain from relay nodes. Figure 1 shows how the updater
contract maintains a list of recent block headers and updates it after verifying the relay node
proofs. The contract provides an application-agnostic API for smart contracts to access the
latest block headers of the sender blockchain and build application-specific logic.

In this category, the participants are expected to implement the framework of updater smart
contracts and the updater contracts for specific chains.

Designated task 2.1 Updater contract for Ethereum and Gnosis

● SSZ encoding of block header
● Batched proof generation/verification and skipping block policy

○ Batched proof generation aims to generate multiple block header proofs to
reduce the proof verification cost. It will merge multiple block header verifications
into one giant proof.

○ The Skipping Block Method is a feature of the light client. Since the sync
committee changes every 27.3 hours, we do not need to verify intermediate
unused blocks. We only need to verify two types of blocks:

■ Those requested by the user
■ Those that handle the sync committee change

● Sync committee set update and maintenance

Prize: Up to $2000

Designated task 2.2 Updater contract for BSC

● Batched proof verification
● Validator set update and maintenance
● RLP decoding of block header
● Fork resolution

Prize: Up to $2000

http://zkbridge.org

Designated task 2.3 Updater contract for Polygon

● Batched proof verification
● Validator set update and maintenance
● Fork resolution

Prize: Up to $2000

Designated task 2.4 Updater contract for Tendermint (Cosmos)

● Batched proof verification / Skipping block policy
○ Similar to the Ethereum task, but the validator committee changes much more

frequently. Fortunately, you don’t need to update the committee frequently
because most of the validator committee updates are minor updates and it will
not change the verification result. You need to figure out the skipping policy
(actually they have a document about this).

● Vadliator set update
● Fork resolution

Prize: Up to $2000

Category 3: Block Header Relayer
The zero-knowledge based bridge requires a relay service to deliver the block header securely
from the source chain to the destination chain. A node in the block header relay service may
connect to the full nodes of the source chain, and get the block headers continuously. Then the
node generates the zero-knowledge proof of the block headers and delivers them to the updater
contract on the target chain.

In this category, we assume the zero-knowledge proof generation is taken care of by the tasks
in other categories, and use a placeholder for the zero-knowledge proof generation. We expect
participants to build the block header relay service with the following components:

● Block header monitor
● Given a source chain, build the monitor to continuously connect to full nodes of

the chain to retrieve new block headers
● Call the placeholder zero-knowledge proof generation api for the proof

● Updater contract pusher
● For different target chains, the pusher can call the api provided by the updater contracts

to deliver the block headers and the zero-knowledge proofs

Designated task 3.1 Block header monitor for Ethereum and Gnosis

Designated task 3.2 Updater contractor pusher to Ethereum and Gnosis

Designated task 3.3 Block header monitor for BSC

Designated task 3.4 Updater contractor pusher to BSC

Designated task 3.5 Block header monitor for Polygon

Designated task 3.6 Updater contractor pusher to Polygon

Prize: up to $1000 for each designated task

Category 4: Message Relay Services

The off-chain message relaying node is a crucial component of a bridge as it delivers messages
from the sender chain to the receiver chain. The relay node monitors a smart contract on the
sender chain and gathers the messages for transmission. It generates a Merkle tree proof and
delivers the messages to the receiver smart contract on the receiver chain.

Participants in this category are expected to build the message relay service, including the relay
node and the relevant smart contracts. A relay service contains the following components:

● Source chain smart contract.
○ Interface to write binary messages.

● Receiver chain smart contract
○ Merkle Patricia tree proof verification
○ Interfaces for other applications to read data
○ User fee calculation algorithm

● Relay node
○ Monitor the source chain and get all the cross-chain transactions (block

number/block hash, transaction index etc)
○ Generate transaction inclusion proof:

■ A Merkle Patricia tree proof of transaction
○ Submit the proof along with the transaction to the receiver chain smart contract

Designated task 4.1 Source chain smart contract for Ethereum/Gnosis

Designated task 4.2 Receiver chain smart contract for Ethereum/Gonsis

Designated task 4.3 Relay node for Ethereum/Gnosis to other chains

Designated task 4.4 Source chain smart contract for BSC

Designated task 4.5 Receiver chain smart contract for BSC

Designated task 4.6 Relay node for BSC to other chains

Designated task 4.7 Source chain smart contract for Polygon

Designated task 4.8 Receiver chain smart contract for Polygon

Designated task 4.9 Relay node for Polygon to other chains

Prize: Up to $1000 each for message relay service for Ethereum, Gnosis, BSC, Polygon,
Tendermint respectively

Category 5: Applications on zkBridge

Cross-chain bridges have various use cases, including cross-chain token transfer/swap and
NFT lock/stake, and can be used to transfer any message or share data across chains.

Participants are encouraged to develop innovative applications on top of the cross-chain bridge.

We provide following bridge interface (tentative):

On the sender chain side:

interface BridgeSendBytes {

event BytesSent(bytes data);

function sendBytes(bytes calldata data) external;

}

On the receiver chain side:

interface BridgeReceiveBytes {

function receiveBytes(bytes calldata proof) external returns (bytes memory);

}

The sender chain side will take any byte string as input and emit an event containing the byte
string. The app should keep monitoring the event. After the event is generated at some block,
the developer should generate the transaction inclusion proof and send the proof bytes to the
receiveBytes function. The detailed data in the proof will be different for different sending chains,
we will provide detailed instruction soon. Then the app submits the proof to the receiver chain
receiveBytes, it will verify the proof and output the transaction data.

Designated task 5.1 Token transfer

Transferring a token from one chain to another chain usually involves a lock and mint process.
Oftentimes a wrapped token is minted on the target chain. You need to build a token transfer
contract using our bridge interfaces.

Task Detail:

● Lock (receiverAddress, assetAmount, receiverChainID)
○ The user locks their asset using the lock contract, they must specify the

receiver’s address and chainID.
○ The Lock contract will emit an event: TokenLocked(receiver, assesAmount,

chainID, UID)
● Mint (Proof)

○ The mint contract receives the verified block headers and the proof of a
transaction inclusion about the TokenLocked event

○ Mint contract shall be able to decode the tuple (receiver, assesAmount, chainID,
UID) from the proof.

○ The mint contract will make sure chainID is consistent with the current chain and
the UID is never used.

○ The mint contract mints the asset to the user, assuming there is a liquidity pool
that provides sufficient liquidity.

Prize: Up to $1500

Designated task 5.2 Token swap

A cross-chain token swap is a process of exchanging one type of cryptocurrency token for
another type of token on a different blockchain network. It often involves a sender and receiver
smart contract, as well as the Dapp frontend for end users to use the swap service.

Task Detail:

● Sender
○ The Dapp shows the swap rate to the user, and calculates the gas and fees.

○ Once confirmed by the wallet, the sender contract receives the source assert, as
well as the target token, the receiver’s address and chain ID.

● Receiver
○ The receiver contract receives the verified block headers and the proof of

transaction, and then mints the asset to the user, assuming there is a liquidity
pool.

○ The receiver contract shall make sure each transaction executes only once.

Prize: up to $1500

Self-selected tasks: Participants are encouraged to develop innovative
applications on top of the cross-chain bridge.

Prize: Up to $2000

Category 6: Defense in Depth
As mentioned earlier, it is important to develop a defense-in-depth solution, leveraging different,
independent implementations and proof diversity, to achieve even stronger security even if each
implementation may have bugs. In this category, participants are expected to design and
develop a framework to combine the different implementations for defense-in-depth. Note that
this framework could incorporate other non-zk approaches later as well such as an optimistic
bridge, as part of a defense-in-depth solution. The participants are expected to provide a
description of the design and its security analysis, and smart contracts to implement the
framework, including the APIs for different bridge implementations to submit block headers (and
provide the corresponding proofs and validation) as well as the logic for combining them to
provide the API for the final defense-in-depth solution.

Designated task 5.1 ZkBridge block header oracle adapter for Hashi

Hashi (https://github.com/gnosis/hashi) is an EVM Header Oracle Aggregator. The primary
insight being that the vast majority of bridge-related security incidents could have had minimal
impact if the systems relying on them had built in some redundancy. In other words, it's much
more secure to require messages be validated by multiple independent mechanisms, rather
than by just one.

Task details:

Build a header oracle adapter using ZkBridge.

There are several header oracle adapters already built for Hashi ,but we’d like to see more ZK
based ones, especially using ZkBridge.

https://github.com/gnosis/hashi

Prize: Up to $10,000 for this category (Sponsored by Gnosis Builder)

Category 7: Instantiation on XRPL
The XRP Ledger (XRPL) is an open source decentralized public blockchain. But differ from
other blockchains that leverage smart contracts to build zkBridge, XRPL provides an alternative
solution Hooks to support smart contract functionality on XRPL. Participants in this category are
encouraged to use Hooks to develop zkBridge initiatives on XRPL.

Designated task 7.1 Generate proof with Hooks

zkBridge relies on the technology of Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge (ZK-SNARK). Participants in this task are expected to integrate ZK-SNARK on
XRPL and generate valid proof with Hooks:

● Verify the feasibility of building ZK-SNARK instances with Hooks, and investigate how to
integrate proof circuits with Hooks.

● Create valid proof instances for transactions
● Hooks examples: Hooks (https://hooks.xrpl.org/) and some examples

(https://hooks-builder.xrpl.org/develop)

Designated task 7.2 Verify the proof with Hooks

● For an incoming proof, accept a proof and verify its correctness
● Hooks examples: Hooks (https://hooks.xrpl.org/) and some examples

(https://hooks-builder.xrpl.org/develop)

Designated task 7.3 Updater contract for XRPL

Suggested to proceed after task 4.1 and 4.2
● Similar to Category 2, perform batched proof verification
● Validator set update and maintenance

Designated task 7.4 Message Relay Service for XRPL

Total Prize: Up to $10,000 for this category (Sponsored by Ripple)

Overall Prize: prizes for Category 1-5 are provided by Jump and Gnosis Builder

https://hooks.xrpl.org/
https://hooks-builder.xrpl.org/develop
https://hooks.xrpl.org/
https://hooks-builder.xrpl.org/develop

